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Abstract—The design of efficient and distributed scheduling
algorithms is essential to garner the full potential of cognitive
radio networks. In this paper, we propose a distributed OFDM-
based scheduling algorithm, named collision-queue-regulated al-
gorithm, which aims to limit the collision rate to a level imposed
by primary users of a cognitive radio network. Via a novel
equivalent-queue-system analysis, we prove that the proposed
algorithm can achieve at least a constant fraction of the asymp-
totic capacity region in the many-channel regime. Our numerical
studies indicate that the proposed distributed collision-queue-
regulated algorithm achieves a throughput very close to that
achievable by a centralized throughput-optimal back-pressure-
based scheduling algorithm.

I. INTRODUCTION

Cognitive radio networks (CRNs) [1] allow unlicensed

users, referred to as secondary users (SUs), to opportunisti-

cally exploit the unused spectrum allocated to licensed users,

referred to as primary users (PUs). Different from traditional

wireless networks, a typical design requirement for CRNs is

that the collisions/interference between PUs and SUs trans-

mission should be avoided or kept under a certain acceptable

threshold.

Developing efficient scheduling algorithms for CRNs is

essential to garner the full potential of cognitive radio net-

works. In recent years, centralized opportunistic scheduling

algorithms have been developed for cognitive radio networks.

Throughput-optimal cooperative scheduling has been studied

in [2], [3], [4], where PUs are aware of SU activities and SUs

cooperatively relay PU data. Non-cooperative scheduling has

been studied in [5], [6], [7] to achieve optimal SU through-

put/utility. However, the above algorithms, though throughput-

optimal, are centralized with high time complexity and hence

not suitable for practical implementations. In addition to

computational complexity, these algorithms do not work when

a global centralized component is not available (e.g., a scenario

where SUs transmit peer-to-peer without centralized control

and only local information is available). Therefore, low-

complexity and distributed algorithms are needed to deploy

efficient and high performance CRNs. While heuristic dis-

tributed solutions have been proposed in the literature (e.g.,

[8]), the design of distributed algorithms for CRNs with prov-

able properties (i.e., provable throughput/utility performance)

remains an open research problem.

Distributed scheduling algorithms for traditional wireless

networks have been proposed in the literature over the last

decade. Earlier examples [13], [14] achieve at least certain

fractions of the optimal throughput in single-channel wire-

less networks. More recently, throughput optimality has been

achieved with distributed queue-length-based scheduling algo-

rithms [9]-[12] for the same setting. Among the few attempts

to design distributed scheduling algorithms for multi-channel

networks, [15] guarantees at least a certain fraction (dependent

on the network interference model) of the optimal throughput.

However, these algorithms have been designed for wireless

networks with a non-fading channel capacity, and thus are

not suitable for CRNs where channel states are modulated by

PU activities.

In this paper, we propose a distributed scheduling algo-

rithm, called collision-queue-regulated algorithm, for a CRN

in the many-channel regime with a degree-d interference graph

model. We consider an OFDM setting (which is the basis for

IEEE 802.22 standard for cognitive radio networks), where

spectrum is partitioned into tens or hundreds of orthogonal

sub-channels. With collision rate constraints imposed by PUs,

the algorithm achieves at least ddL
(1+d)1+dΓ

fraction of the

capacity region as the number of channels grows, where L
is the number of communication links in the network and Γ
is the size of the maximum independent set of the network’s

underlying interference graph. We also show via simulation

results that the throughput performance is actually close to

the optimal.

Salient contributions of our work are summarized in the

following:

1) Under the collision-queue-regulated algorithm, the collision

rates observed by the PUs are upper bounded by an arbitrary

threshold;

2) We design a novel equivalent queue system such that the

queues in the original CRN converge asymptotically (with

respect to the number of channels) to this system;

3) The collision-queue-regulated algorithm achieves at least
ddL

(1+d)1+dΓ
fraction of the asymptotic (with respect to the

number of channels) capacity region.

The rest of the paper is organized as follows: The network

model and the distributed collision-queue-regulated algorithm

are described in Section II. This is followed by an asymptotic



analysis on the queuing behavior and the throughput perfor-

mance in Section III. Numerical results are provided in Section

IV, and the paper is concluded in Section V.

II. NETWORK MODEL AND ALGORITHM

A. Network Elements

Consider a time-slotted cognitive radio network (CRN)

composed of a PU system and an SU system. The SU system

consists of a set L of single-hop directional SU communication

links, with |L| = L. We consider a degree-d interference graph

model for the SU system, where we define an interference set

Ni ⊂ L for each SU link i ∈ L, such that (i) |Ni| = d, and

(ii) when the PU system is idle, the transmission of SU link i
over a channel fails if and only if there is a simultaneous

transmission of some link l ∈ Ni over the same channel.

An independent set is a set of SU links in L, no two of

which interfere with each other when transmitting over a

same channel. The maximum independent set is the largest

independent set with its size denoted by Γ.1 Under a node-

exclusive setting, typical network topologies of the degree-d
interference graph model include complete graph, cycle (or

infinite tandem), torus (or infinite grid), etc. Some sample

network topologies have been illustrated in Figure 1 under

a node-exclusive setting, where an SU i ∈ L is represented by

a link (a node pair) in the graph. Note that in a node-exclusive

setting, adjacent links (links sharing a common node) cannot

transmit simultaneously. Let Ai(t) be the amount of data (in

unit of bits) arriving at SU link i at the beginning of time slot

t, which is assumed to be i.i.d. over time with average Āi,

∀i ∈ L.

OFDM has proven to be one of the prime candidates for

CRNs (e.g., IEEE 802.22 standard). The reason is two-fold:

(i) We have irregular openings in the PU spectrum, and

OFDM helps with collectively utilizing non-contiguous PU

channels in one SU transmission; (ii) Inter-symbol interference

(ISI) can be significantly reduced in an OFDM system by

transmitting data in parallel over a large number of low-rate

subchannels [16]. Thus, we consider an OFDM mechanism

for SUs’ channel access: an SU link can transmit its data

opportunistically over multiple PU channels in a time slot.

In this section, we consider a single-PU scenario. Note that

the following analysis can be easily extended to the model

of multiple PUs at the expense of notational complexity, and

we provide a brief discussion on the multi-PU scenario in

Section III-C. The CRN is synchronized with a time-slotted

PU system comprised of N orthogonal PU subchannels, which

we refer to as channels for short in the following. Each channel

has a capacity (i.e., maximum data rate in bit per time slot)

equal to K
N

, where we can consider K (bit per time slot) as

the total capacity of the considered PU system. Note that the

growing number of channels leads to diminishing bandwidth

per channel where the sum of all bands is constant K , which

1In graph theory [20], the underlying degree-d interference graph of the
considered interference model is a d-regular graph, and the size of its
maximum independent set Γ is referred to as the independence number.

conforms to the setting of OFDM systems with a large number

of low-rate channels [16]. We assume that the channels are

occupied by a single PU. Specifically, we assume that the PU

system evolves according to an ON-OFF Markovian process

C(t): At time slot t, we let C(t) = 1 if the PU system is

busy (PU system is in ON state and occupies the entire set of

channels) and C(t) = 0 if the PU system is idle (PU system

is in OFF state and the entire set of channels are available to

SUs). For analytical simplicity, we assume the process C(t)
starts with a steady state distribution at t = 0. We denote by

H(t) = C(t − 1) the channel availability information of SUs

at time slot t. Note that the exact knowledge of C(t) may

not be available to SUs due to time-varying PU activities or

sensing overheads. Thus, S(t) , E{1 − C(t)|H(t)} defines

the probability that the PU system is OFF given H(t), which

is known to the SUs at time slot t. We note that S(t) is simply

the transition probability of C(t) and can be obtained by SUs

via the observation of PU data traffic statistics.

Let µij(t) ∈ {0, 1} denote the schedule of SU link i ∈ L
over channel j at time slot t, with j = 1, ..., N . Specifically,

µij(t) = 1 if SU link i is scheduled over channel j; µij(t) =
0, otherwise. For analytical simplicity, we let µij(0) = 0,

∀i, j. Note that when µij(t) = 1, SU link i is scheduled to

transmit up to K
N

bits over channel j in one time slot. We

say a collision with the PU system occurs if µij(t)C(t) = 1,

i.e., there is a scheduled SU data transmission when the PU

system is busy. Thus, for each SU data queue qi(t), i ∈ L, we

have the following queue dynamics:

qi(t) = [qi(t − 1)

−
K

N

N
∑

j=1

µij(t − 1)(1 − C(t − 1)) + Ai(t − 1)]+,
(1)

with qi(0) = 0, ∀i ∈ L. To constrain the potential interference

caused by the SUs to the PU system, we require that the

collision rate (caused by any SU link i) observed by the

PU system be upper-bounded by a maximum collision rate

ρ (normalized by the number of channels):

lim sup
T→∞

1

T

T−1
∑

t=0

1

N

N
∑

j=1

µij(t)C(t) ≤ ρ, ∀i ∈ L. (2)

Note that under the degree-d interference model, the accu-

mulated collision rate in the neighborhood of any SU link is

upper-bounded by (d + 1)ρ.

As suggested in [17], for the considered OFDM-based CRN,

we assume the existence of an out-of-band common control

channel (CCC) which is not interrupted by PU activities. In

the collision-queue-regulated algorithm proposed in Section

II-B, the exchange of local control information is performed

over the CCC at the beginning of each time slot. Since CCC

is dedicated only to the transmission and reception of control

messages, CCC can utilize the small portions of the guard

bands between the licensed channels [17].



(a) Complete graph with d = 6 (b) Cycle with d = 2 (c) (Infinite) grid topology with
d = 6

Fig. 1. Sample network topologies of degree-d interference graph model with a node-exclusive setting

B. Collision-Queue-Regulated Algorithm

In this section, we propose a distributed collision-queue-

regulated algorithm. We will show in Section III that the

proposed algorithm can achieve at least ddL
(d+1)d+1Γ

fraction of

the capacity region asymptotically with respect to N under the

degree-d interference graph model.

We maintain a virtual collision queue Xi(t) at each SU link

i ∈ L, to assist the development of the proposed algorithm.

Specifically, the queue dynamics of Xi(t) is defined as, ∀i ∈
L,

Xi(t)

=



Xi(t − 1) − ρ +
1

N

N
∑

j=1

µij(t − 1)C(t − 1)





+

,
(3)

with Xi(0) = 0. We note that the collision rate constraint (2)

is satisfied if collision queues Xi(t) are stable.

At the beginning of each time slot t, the collision-queue-

regulated algorithm consists of two phases: Exchange Phase

and Scheduling Phase, the duration of which we assume is

negligible compared to that of a unit time slot. The exchange

phase is detailed as follows:

Exchange Phase:

The exchange phase takes place over the CCC. Specifically,

the transmitter of each SU link i ∈ L broadcasts the

following three binary vectors to all its neighbors (its

intended receiver and all nodes in Ni) over the CCC:

its schedules at the previous time slot (µij(t − 1))N
j=1, a

vector of contention variables (aij(t))
N
j=1, and a vector of

transmission variables (pij(t))
N
j=1.

The contention variables (aij(t)) are i.i.d. over SUs i and

channels j with

aij(t) =











1, w.p.
1

d + 1
,

0, w.p.
d

d + 1
.

The transmission variables (pij(t)) are i.i.d. over channels j

and independent over SUs i with

pij(t) =











1, w.p.
eyi(t) − 1

eyi(t)
,

0, w.p.
1

eyi(t)
,

where the collision-queue-regulated weight yi(t) is defined as

yi(t) , [qi(t − 1)S(t) − γXi(t − 1)(1 − S(t))]+ , (4)

and γ > 0 is a constant parameter that serves as a weight to

the collision queue Xi(t − 1).
After the exchange phase, the transmitter and receiver of

each SU link i have the following information:
(

(µlj(t − 1))
l∈Ni∪{i}
j=1,...,N , (alj(t))

l∈Ni∪{i}
j=1,...,N , (pij(t))

N
j=1

)

, which

will be used to determine the transmission schedules for SU

link i.

To assist the development of scheduling phase, we define

the following three conditions, for any given SU link i and

channel j.

Condition (i): The “contention” of SU link i for channel j is

successful, i.e., aij(t)Πl∈Ni
(1 − alj(t)) = 1.

Condition (ii):
∑

l∈Ni
µlj(t − 1) = 0, i.e., none of the

neighbors were scheduled at the previous time slot.

Condition (iii): The transmission variable pij(t) = 1.

The scheduling phase is introduced as follows:

Scheduling Phase:

The transmitter and the receiver of each SU link i deter-

mine the schedules µij(t), j = 1, ..., N , according to the

following:

Case 1: µij(t) = 1 if Conditions (i)(ii)(iii) hold.

Case 2: If Condition (i) does not hold and Condition (iii)

holds, then µij(t) = µij(t − 1).
Case 3: Otherwise, µij(t) = 0.

According to the scheduling phase, we conclude that, ∀i ∈
L, ∀j ∈ {1, 2, ..., N},

µij(t) = pij(t)

× {aij(t)Πl∈Ni
(1 − alj(t))(1 −

∑

l∈Ni

µlj(t − 1))

+ [1 − aij(t)Πl∈Ni
(1 − alj(t))]µij(t − 1)},

(5)



where the first and second terms in the {·} in (5) correspond

to Case 1 and Case 2 in the scheduling phase, respectively.

Since both the transmitter and the receiver of SU link i ∈
L have a copy of the schedule vector (µij(t))

N
j=1 when the

scheduling phase ends, they will tune to the set of channels

{j : µij(t) = 1} for SU data transmission in the remaining

time slot t.
We show in Proposition 1 that the collision-queue-regulated

algorithm is feasible in that interfering links are never sched-

uled over a same channel in any time slot.

Proposition 1: The collision-queue-regulated algorithm

provides a feasible schedule for each time slot t, i.e., ∀i, j, t:
∑

l∈Ni
µlj(t) = 0, if µij(t) = 1.

Proposition 1 can be proved easily by mathematical induction

over time slot t and we omit the proof for brevity.

III. PERFORMANCE ANALYSIS IN THE DEGREE-d
INTERFERENCE GRAPH MODEL IN A MANY-CHANNEL

REGIME

In Section III-A, we show that under the collision-queue-

regulated algorithm, the original system of the queue lengths

qi(t) and the collision queues Xi(t) converge to an equivalent

queue system as the number of channels N grows. Based

on the analysis of the equivalent queue system, we show in

Section III-B that the algorithm achieves at least ddL
(d+1)d+1Γ

fraction of the capacity region asymptotically with respect to

N . We provide a brief discussion on a multiple PU extension

in Section III-C.

A. Asymptotic Queuing Behavior of the Collision-Queue-

Regulated Algorithm

In the following analysis, we assume the arrival processes

follow:

Ai(t)
P
−→N λ, ∀i ∈ L, (6)

where
P
−→N denotes the convergence in probability [18] as

N → ∞ and λ can be considered as the arrival rate normalized

with respect to the number of channels. We present the

asymptotic queuing behavior of the collision-queue-regulated

algorithm in Theorem 1.

Theorem 1: Given H′(t) , (H(t),H(t − 1), ...,H(1)),
there exists an equivalent queuing system (q(t), x(t)) with

an equivalent schedule variable u(t), such that the following

four arguments (I(t), II(t), III(t), and IV(t)) hold under the

collision-queue-regulated algorithm for each time slot t:
I(t): The queue lengths qi(t) and the collision queue lengths

Xi(t) converge to q(t) and x(t), respectively:

qi(t)
P
−→N q(t), and Xi(t)

P
−→N x(t), ∀i ∈ L. (7)

II(t): The schedules µij(t) converge to the equivalent schedule

variable u(t):

µij(t)
L
−→N u(t), ∀i, j, (8)

where
L
−→N denotes the convergence in distribution [18] as

N → ∞.

III(t): The schedules µij(t) follow a Law of Large Numbers

(LLN):

1

N

N
∑

j=1

µij(t)
P
−→N E{u(t)|H′(t)}, ∀i ∈ L. (9)

IV(t): The schedules µij(t) are asymptotically mutually in-

dependent. Specifically, for any given SU links i1, i2 ∈ L,

and any two distinct channels j1 6= j2 ∈ {1, 2, ..., N}, the

scheduling decisions are independent, i.e., ∀k1, k2 ∈ {0, 1},

lim
N→∞

Pr{µi1j1(t) = k1, µi2j2(t) = k2|H
′(t)}

=Pr{u(t) = k1|H
′(t)}Pr{u(t) = k2|H

′(t)}.
(10)

The equivalent queuing system (q(t), x(t)) and the equiva-

lent schedule variable u(t) evolve as follows,

q(t) = [q(t − 1)

− K(1 − C(t − 1))E{u(t − 1)|H′(t − 1)} + λ]+,
(11)

x(t) = [x(t − 1)

− ρ + C(t − 1)E{u(t − 1)|H′(t − 1)}]+
(12)

u(t) = U1(t)u(t − 1) + U2(t)(1 − u(t − 1)), (13)

where U1(t) and U2(t) are independent over time and defined

as follows:

U1(t) =







1, w.p. (1 − dβ)
ey(t) − 1

ey(t)
,

0, otherwise,

U2(t) =







1, w.p. β
ey(t) − 1

ey(t)
,

0, otherwise,

with

β ,
dd

(d + 1)d+1
,

y(t) , [q(t − 1)S(t) − γx(t − 1)(1 − S(t))]+.

The initial conditions of the equivalent queue system are set

as:

q(0) = 0, x(0) = 0, and u(0) = 0. (14)

Proof: The proof for Theorem 1 is provided in Appendix

A.

Remark 1: According to (7) in Theorem 1, given H′(t),
the data queues qi(t) and the collision queues Xi(t) converge

(in probability) asymptotically to two deterministic equivalent

queues q(t) and x(t), respectively. By the dynamics of u(t)
in (13), we find the dynamics of E{u(t)|H′(t)} as follows:

E{u(t)|H′(t)} = β
ey(t) − 1

ey(t)

+ (1 − β − dβ)
ey(t) − 1

ey(t)
E{u(t − 1)|H′(t − 1)},

(15)

where we note that u(t − 1) is independent of H(t) given

H′(t − 1).



In Section III-B, we will study the stability of the equivalent

queuing system (q(t), x(t)), which becomes the asymptotic

network stability (i.e., the stability for the data queues qi(t)
and the collision queues Xi(t)) under the collision-queue-

regulated algorithm.

B. Performance Analysis

We have shown through Theorem 1 that the equivalent sys-

tem (q(t), x(t)) can represent the asymptotic queuing behavior

of the data queues qi(t) and the collision queues Xi(t). In this

section, we will show that under the collision-queue-regulated

algorithm, (q(t), x(t)) are stable for at least ddL
(d+1)d+1Γ

fraction

of the asymptotic capacity region.

Specifically, we define the asymptotic capacity region Λ
(normalized with respect to the number of channels N ) as

Λ = {λ ≥ 0 : ∃(Āi)i∈L s.t. lim
N→∞

Āi = λ, ∀i ∈ L,

and (Āi)i∈L is stabilizable by some scheduling algorithm},

where we recall (Āi)i∈L denotes the arrival rate vector. For

any given 0 < α < 1, we let αΛ denote an α fraction of the

capacity region such that

αΛ , {λ ≥ 0 : ∃λ′ ∈ Λ s.t.
λ

α
< λ′}.

Before we present the asymptotic stability in Theorem 2,

we introduce the following two lemmas to assist the proof of

Theorem 2.

Lemma 1: For any given 0 < δ < βL
Γ , there exists B2(δ) >

0 such that for any time slot t, whenever y(t) ≥ B2, we have:

Pr{u(t) = 1} ≥ β − Γδ
L

.

Proof: Let B2 , log(Lβ
Γδ

). By taking the expectation of

both sides of (15) over H′(t) conditioned on y(t) ≥ B2, we

have

E{u(t)|y(t) ≥ B2}

=βE{
ey(t) − 1

ey(t)
|y(t) ≥ B2}

+ (1 − β(d + 1))E{
ey(t) − 1

ey(t)
u(t − 1)|y(t) ≥ B2}

≥β
eB2 − 1

eB2
= β −

Γδ

L
.

We show that for any λ′ ∈ Λ, there exists an (auxiliary)

random variable µSTAT (t) for each time slot t satisfying the

properties described in Lemma 2.

Lemma 2: For any λ′ ∈ Λ, there exists a random variable

µSTAT (t) ∈ {0, 1} that is dependent only on S(t) for each

time slot t, such that the following holds:

KE{µSTAT (t)S(t)} = λ′, (16)

E{µSTAT (t)(1 − S(t))} ≤ ρ, (17)

E{µSTAT (t)|S(t)} ≤
Γ

L
, ∀S(t). (18)

Proof: Proof of Lemma 2 is provided in [21].

Utilizing Lemma 1 and Lemma 2, we show in Theorem 2

that the equivalent system is stable for at least ddL
(d+1)d+1Γ

frac-

tion of the asymptotic capacity region Λ under the collision-

queue-regulated algorithm.

Theorem 2: ∀λ ∈ αΛ, with α = ddL
(d+1)d+1Γ

, q(t) and x(t)
are stable under the collision-queue-regulated algorithm, i.e.,

lim sup
T→∞

1

T

T−1
∑

t=0

E{q(t) + x(t)} ≤
B3

ǫ2
, (19)

where positive constants B3 and ǫ2 will be defined in the

proof.

Proof: The proof of Theorem 2 is provided in Appendix

B, where we have employed Lemma 1 and Lemma 2.

Since the queue lengths qi(t) and the collision queues Xi(t)
converge to (q(t), x(t)) asymptotically with respect to N , by

Theorem 2, the collision-queue-regulated algorithm achieves

at least α = ddL
(d+1)d+1Γ fraction of the asymptotic capacity

region in the many-channel regime.2

This fraction α, referred to as the efficiency factor of the

asymptotic capacity region, is illustrated in Table I given some

typical network topologies under a node-exclusive setting.

For comparison, we also illustrate in Table I the efficiency

factor of the distributed PLDS algorithm [15] proposed for a

general multi-radio multi-nonfading-channel wireless network.

Note that although both algorithms are proposed for a multi-

channel scenario, the setting for the collision-queue-regulated

algorithm is more stringent than that for PLDS, in that non-

fading channels are assumed in [15] while we consider chan-

nels modulated by PU activities in this work. Yet, the provable

efficiency factor of the collision-queue-regulated algorithm is

larger than that of PLDS given the network topologies in Table

I.

C. Further Discussion in a multiple PU setting

In the CRN model introduced in Section II-A, we have

assumed that there is only one PU, the spectrum of which is

partitioned into N subchannels and modulated by the activities

of this PU. This model can be readily extended to the scenario

where PU spectrum is modulated by a finite number of M
PUs. Specifically, when there are M PUs in the PU system,

the licensed spectrum of each PU k is partitioned into a set Ik

of subchannels, with Ik mutually disjoint and limN→∞
|Ik|
N

=

nk, ∀k, where constants nk satisfy
∑M

k=1 nk = 1. We assume

that a collision rate constraint ρk is imposed by each PU

k = 1, ..., M . Similar to the virtual queue analysis in Section

II-B, we can construct M virtual collision queues (Xik(t))M
k=1

for each SU link i ∈ L as follows:

Xik(t)

=



Xik(t − 1) − ρk +
1

|Ik|

∑

j∈Ik

µij(t − 1)Ck(t − 1)





+

,

2In graph theory [20], the ratio Γ

L
is referred to as the independence ratio

of the underlying interference graph of the network.



TABLE I
EFFICIENCY FACTOR UNDER NODE-EXCLUSIVE SETTING, WHERE e DENOTES EULER’S NUMBER

Efficiency factor collision-queue-regulated PLDS

Fully-connected network (e.g., WLANs, cellular networks)
(

d

d+1

)d

≥ 1

e

1

3e

Cycle (e.g., Figure 1(b)) 4L

27⌊ L

2
⌋
≥

8

27

1

4e

(Infinite) grid topology (e.g., Figure 1(c)) 0.2267 1

4e

where Ck(t) = 1 if PU k is busy at time slot t, and Ck(t) =
0 otherwise. Therefore, the stability of the collision queues

(Xik(t)) implies the collision rate constraints being satisfied.

The collision-queue-regulated algorithm can be modified such

that the weight yi(t) in (4) is replaced by yij(t), for each

channel j ∈ Ik:

yij(t) , [qi(t − 1)Sk(t) − γXik(t − 1)(1 − Sk(t))]
+

,

where Sk(t) , E{1 − Ck(t)|Ck(t − 1)}.

With the above modifications in model and algorithm,

similar to the analysis of the equivalent queue system in

Section III-A, we can construct an equivalent (M + 1)-
queue system (q(t), (xk(t))M

k=1), such that qi(t) converges to

q(t) and Xik(t) converges to xk(t) in probability, ∀i, k. The

throughput analysis follows that of Section III-B.

IV. NUMERICAL RESULTS

In this section, via simulation, we compare the through-

put performance of the proposed algorithm with a back-

pressure-based centralized throughput-optimal algorithm, de-

noted as the BP algorithm. The BP algorithm is based on

the throughput-optimal back-pressure algorithm [19] where we

substitute the (generic) weight in [19] with the collision-queue-

regulated weight yi(t) defined in (4) for each i ∈ L. It can be

shown, similar to the analysis [3][4] that the BP algorithm is

optimal given the collision rate constraints. We consider the

SU network topology of 10 SUs (represented by 10 SU links)

in Figure 1(a) with a node-exclusive setting. Specifically, in

Figure 1(a), each SU link interferes with its 6 adjacent links,

i.e., d = 6. We set the parameter in (4) as γ = 1 and use

N = 50. The channel state evolves according to the transition

diagram in Figure 2, where the “busy” and the “idle” states are

represented as C(t) = 1 and C(t) = 0, respectively. Note that

in Figure 2, p01 and p10 represent the transition probability

from the idle state to the busy state and that from the busy

state to the idle state, respectively. In the numerical evaluation,

we let p01 = 0.3, p10 = 0.7.

We illustrate the stability of queues through Figure 3 under

the collision rate constraint ρ = 0.05. We let the arrival

processes be: Ai(t) = λ + 0.2λ√
N

rand(1), ∀i ∈ L, ∀t, where

rand(1) outputs a random value uniformly distributed over

the interval (0, 1) independently across time slots and SUs. In

our numerical studies, we have observed that both algorithms

stabilize data and collisions queues for λ = 0.110. Again, both

algorithms fail to stabilize the system for λ = 0.118, where

the data and collision queues both keep growing, indicating

both network instability and collision rate violation. Since

BUSY IDLE

10
1 p

10
p

01
1 p

01
p

Fig. 2. Transition diagram of PU activity

the BP algorithm is throughput-optimal, we can expect that

the maximum stabilizable λ is in between 0.110 and 0.118.

Hence, the collision-queue-regulated algorithm achieves at

least 0.110/0.118 = 93% of the throughput optimality under

this simulation setting. Note that 0.93 is significantly higher

than the efficiency factor α = ddL
(d+1)d+1Γ

= 0.2833 in Theorem

2.
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Fig. 3. Queue dynamics, ρ = 0.05.
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Fig. 4. Queue dynamics, ρ = 0.1.



We relax the collision rate constraint as ρ = 0.1 in

Figure IV. Under both algorithms, at λ = 0.133, the data

queues and collision queues are stable; at λ = 0.140, while

the collision queues are stable, the data queue lengths are

increasing over the time slots t, indicating network instability.

That is, both algorithms can stabilize λ = 0.133 but cannot

stabilize λ = 0.140. We can expect that the collision-queue-

regulated algorithm achieves at least 0.133/0.140 = 95% of

the throughput optimality under this simulation setting.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a distributed collision-queue-

regulated scheduling algorithm for cognitive radio networks.

We proved theoretically that the proposed algorithm can

achieve at least ddL
(d+1)d+1Γ of the capacity region asymptot-

ically in the many-channel regime via a novel equivalent

queue system analysis. We also illustrated through numerical

evaluation that the throughput performance of the proposed

algorithm is close to optimal.

We have assumed the degree-d interference graph model in

this work. The proposed algorithm can be readily extended

to general interference-graph-based network topologies (e.g.,

see [9]-[12]). Thus, our future work involves performance

analysis for a more general scenario: a general interference

graph model with heterogenous arrival processes, where we

can expect that the wireless system will converge (in the

number of channels) to an equivalent queue system composed

of 2L queues (L equivalent queues for data queues and L
equivalent queues for collision queues).
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APPENDIX A

PROOF OF THEOREM 1

We prove Theorem 1 by mathematical induction over time

slot t. Given the initial conditions (14), the base case holds

for time slot t = 0. Suppose the induction hypothesis (I(t−1),

II(t−1), III(t−1), and IV(t−1)) holds, we prove I(t) holds in

the following, and prove II(t), III(t), and IV(t) hold in [21].

Given any SU link i ∈ L, according to (6), I(t − 1) and

III(t− 1), we have

qi(t − 1) −
K

N
(1 − C(t − 1))

N
∑

j=1

µij(t − 1) + Ai(t − 1)

P
−→N q(t − 1)

− K(1 − C(t − 1))E{u(t − 1)|H′(t − 1)} + λ.

By queue dynamics (1)(11) and the continuity of [·]+, we

conclude that qi(t)
P
−→N q(t), ∀i ∈ L.

Similarly, we have

Xi(t − 1) − ρ +
1

N

N
∑

j=1

µij(t − 1)C(t − 1)

P
−→Nx(t − 1) − ρ + C(t − 1)E{u(t − 1)|H′(t − 1)}.

By queue dynamics (3)(12) and the continuity of [·]+, we

conclude that Xi(t)
P
−→N x(t), which completes the proof

of I(t).
We have also provided proof for II(t), III(t), and IV(t) in

[21], i.e., the induction step holds, which completes the proof

of Theorem 1.



APPENDIX B

PROOF OF THEOREM 2

For notational simplicity, we define ∆(t) ,

E
{

1
2K

[q(t)2 − q(t − 1)2] + γ
2 [x(t)2 − x(t − 1)2]

}

. By

squaring both sides of the queue dynamics (11)(12), we have

∆(t)

≤B1 +
λ

K
E{q(t − 1)} − γρE{x(t − 1)}

− E{u(t − 1)[(1 − C(t − 1))q(t − 1)

− γC(t − 1)x(t − 1)]}

≤B1 + max{K, γ}

+
λ

K
E{q(t − 1)} − γρE{x(t − 1)}

− E{u(t − 1)[(1 − C(t − 1))q(t − 2)

− γC(t − 1)x(t − 2)]}

(c)

≤B1 + max{K, γ}+
λ

K
E{q(t − 1)}

− γρE{x(t − 1)} − E{u(t − 1)y(t − 1)},

(20)

where B1 , 1
2K

λ2+ γρ2

2 +max{K
2 , 1

2γ}. Note that (c) follows

from the following equality

E{u(t − 1)[(1 − C(t − 1))q(t − 2)

− γC(t − 1)x(t − 2)]|H′(t − 1)}

=E{u(t − 1)|H′(t − 1)}y(t − 1),

where we utilized the fact that q(t−2), x(t−2), and u(t−1)
are independent of C(t−1) given H′(t−1) by their dynamics

(11)(12)(13).

Since λ ∈ ddL
(d+1)d+1ΓΛ, there exists ǫ1 > 0 such that λ′ ,

λΓ
βL

+ǫ1 ∈ Λ by definition. We define δ in Lemma 1 as follows:

0 < δ ,
βLǫ1

2(ǫ1 + λΓ
βL

)Γ
< 1.

By Lemma 1, we have

E{u(t − 1)y(t − 1)|y(t − 1) ≥ B2}

≥(β −
δΓ

L
)E{y(t − 1)|y(t − 1) ≥ B2}.

Employing the above inequality to (20), we obtain

∆(t)

≤B1 + max{K, γ} +
λ

K
E{q(t − 1)} − γρE{x(t − 1)}

− Pr{y(t− 1) ≥ B2}

× E{u(t − 1)y(t − 1)|y(t − 1) ≥ B2}

− Pr{y(t− 1) < B2}

× E{u(t − 1)y(t − 1)|y(t − 1) < B2}

≤B1 + max{K, γ} +
λ

K
E{q(t − 1)} − γρE{x(t − 1)}

+ B2(β −
δΓ

L
) − (β −

δΓ

L
)E{y(t − 1)}.

(21)

Since λ′ = λΓ
βL

+ ǫ1 ∈ Λ, by Lemma 2, there exists

µSTAT (t) such that (16)(17)(18) hold for each time slot t
for this λ′. According to (18), we have

−
Γ

L
E{y(t − 1)} ≤ −E{µSTAT (t − 1)y(t − 1)}. (22)

By applying (22) to (21) and employing (16)(17), we obtain

∆(t)

≤B3 +
λ

K
E{q(t − 1)} − γρE{x(t − 1)}

− (
βL

Γ
− δ)E{µSTAT (t − 1)

× [S(t − 1)q(t − 1) − γ(1 − S(t − 1))x(t − 1)]}

=B3 − E{q(t − 1)

×

[

(
βL

Γ
− δ)µSTAT (t − 1)S(t − 1) −

λ

K

]

}

−E{x(t − 1)

× γ[ρ − (
βL

Γ
− δ)(1 − S(t − 1))µSTAT (t − 1)]}

≤B3 − ǫ2E{q(t − 1) + x(t − 1)},

(23)

where B3 , B1 + B2(β − δΓ
L

) + max{K, γ} +

max{λ, γρ}(βL
Γ − δ), and

ǫ2 , min

{

ǫ1βL

2KΓ
, γρ(1 −

βL

Γ
+ δ)

}

> 0.

From (23), by taking the time-average over t = 0, 1, ..., T −
1 and taking limsup of T , we can prove (19), completing the

proof of Theorem 2.


