
Online Incentive Mechanism Design for
Smartphone Crowd-sourcing

Ashwin Subramanian, G Sai Kanth, Sharayu Moharir and Rahul Vaze

Abstract—In this paper, we consider the problem of online
incentive mechanism design for smart-phone crowd-sourcing. We
consider the online setting where users arrive in a sequence
and each user participating in crowd-sourcing submits a set of
tasks it can accomplish and its corresponding bid. The platform
then selects the users and their payments to maximize its utility
while ensuring truthfulness, individual rationality, profitability,
and polynomial algorithm complexity. The decision whether to
accept or reject each user is made instantaneously, with no
revocation. We propose an algorithm and show that it satisfies
all the four desired properties of an efficient auction. Through
extensive simulations, we evaluate the performance of our online
algorithm.

I. INTRODUCTION

Crowd-sourcing using smart-phones is a new idea that has
gained widespread interest [1]–[8]. Smart phones are equipped
with multiple sensors that can be used to monitor key features
of the surrounding environment, which help in improving
the user experience or reducing human effort. Collectively
using data derived from multiple smart phones (called crowd-
sourcing) helps in improving the social welfare, e.g. helps
public utility companies to track potholes locations, electricity
failure, emergency relief operations, traffic congestion etc.

Several commercial applications like such as Sensorly [2],
Nericell [1], Google voice recognition, and Apple’s Siri use
smart phone crowd-sourcing from users spread across mul-
tiple locations to improve their services. In some of these
applications, users volunteer to share their data since as it
helps in improving their own utility. This is, however, not
true in general, and necessitates an incentive mechanism
design, where users are externally incentivized in the form of
payments for the data/tasks they are willing to share/perform.

In this paper, we consider the incentive mechanism design
problem for smart phone crowd-sourcing by modeling it as a
reverse auction. The platform announces a set of tasks that it
wants to accomplish, and each user submits the list of tasks it
is ready to perform, and the corresponding bid. The platform
has a utility function associated with the set of tasks, and the
problem is to find the set of users and their corresponding
payments to maximize the system utility.

There are two basic paradigms for smart-phone crowd-
sourcing, the offline setting and the online setting. In the offline
setting, all users are present/active simultaneously, and send
their profiles to the platform at the same time. In the online
setting, users arrive sequentially and submit their profiles, and
the platform must decide immediately whether to accept or
reject the user and how much to pay the user. A decision
once made, is irrevocable. For example, the offline scenario

is applicable for current traffic congestion monitoring, while
the online case is more suited for potholes tracking type of
applications that are localized, where users pass over potholes
in a given area sequentially. The online scenario is more
general than the offline case, as all potentially participating
users may not be active at the same time. Therefore, in this
work, we focus on the online setting.

The platforms objective is to select the set of users and
their payments to maximize its utility, subject to the following
four requirements [13], [14]: (i) computational efficiency – the
algorithm implemented by the platform has polynomial run
time complexity, (ii) individual rationality – the selfish utilities
of all users involved are non-negative, (iii) profitability – the
platform utility is non-negative after the auction concludes, and
(iv) truthfulness – no user has any incentive to bid differently
from its true valuation.

The first three properties ensure that the proposed algorithm
is feasible. Truthfulness makes the reverse auction free from
market manipulation. It establishes that there is no incentive
for users to manipulate their bids in the hope of higher
individual profits.

A. Related Work

An algorithm called M-Sensing, proposed in [8], is an
incentive design mechanism smart-phone crowd-sourcing in
the offline setting, and it works in a iterative manner. In each
iteration, M-Sensing adds the user with maximum incremental
utility in a greedy manner. It pays each user in the selected
set, the maximum value which that user can bid and still
be selected at some possible position in the greedy selec-
tion phase. More recently, in [15], both offline and online
algorithms for sensing time schedules have been proposed
for the crowd-sourcing problem. The proposed algorithms
are shown to be truthful, and more importantly, analytical
performance guarantees have been found on the performance
of both offline and online algorithms in [15]. However, unlike
our setting, [15] only considers a linear utility function. The
problem of online incentive mechanism design for crowd-
sourcing with strict budget constraints has been studied in
[20]. The algorithms proposed in [20] are shown to be truthful,
and performance guarantees have been provided for non-
negative sub-modular utility functions under some additional
assumptions on the user arrival process.

One way to ensure that the auction remains truthful is
the VCG mechanism proposed in [9]. In a forward auction,
the VCG mechanism charges each individual the harm it
causes to other bidders in terms of the social welfare utility,

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

978-3-9018-8273-9/15/ ©2015 IFIP 403

while in a reverse auction, it pays each user an amount
equal to the value contributed by the user to the auction
[9]. However, the task for finding the winning set of users
in a VCG mechanism is a combinatorial problem, and has
exponential complexity as discussed in [10]. Therefore, for
a computationally feasible operation like smart-phone crowd-
sourcing, the VCG mechanism cannot be employed. Variations
of VCG mechanism have been proposed [11], [12].

For the online smart-phone crowd-sourcing problem, we
take motivation from the online k-secretary problem [16], [17].
In the online k-secretary problem, N secretaries with arbitrary
ranks arrive in a uniformly random order and the problem is
to select the k best ranked secretaries in an online manner.
The best known algorithms for solving the online k-secretary
problem reject the first m = N/e secretaries, and generate a
threshold set from the first m secretaries, which is then used
to select the k best secretaries among the remaining N −m
secretaries.

B. Contributions

1) We propose an online algorithm called SMART which
improves on M-Sensing, and uses techniques from the
VCG mechanism and the optimal solution to k-secretary
problem, and prove that it satisfies the four desired
properties, i.e., computational efficiency, individual ra-
tionality, profitability, and truthfulness.

2) The performance of an online algorithm is characterized
by its competitive ratio [18], which is defined to be
the ratio of the utility obtained by the online algorithm
to that obtained by the optimal offline algorithm. We
present extensive simulations results to characterize the
competitive ratio of SMART as a function of various
system parameters.

II. SYSTEM MODEL

We model the problem of smartphone crowd-sourcing as
a reverse auction. The platform declares a set of tasks
Γ = {t1, t2, t3, . . . , tm}, where the value of a task tk to the
platform is denoted by χ(tk) (or χk for the sake of brevity).
The cumulative value of the set of tasks τ ⊆ Γ is χ(τ), where
χ is any arbitrary combinatorial function.

The set of users is denoted by U , such that |U | = n.
Users arrive one at a time and submit their profiles to the
platform, where its profile contains a list of task the user can
perform (τi), and the user’s bid (bi). The platform must decide
immediately whether to accept or reject the user and how much
to pay the user. If chosen, the payment of user i (denoted by
pi) should not be less than its bid.

Without loss of generality, we assume that every user in U ,
is such that the total value of all tasks it can perform (vi) is
greater than its bid.1 We also assume that the user does not
know its time of arrival with reference to the time of arrival
of the other users. For a set of users S ⊆ U , the set of tasks
performed by them are denoted by τ(S) =

⋃
i∈S τi, and the

1If an incoming user has vi < bi, then it is rejected immediately and does
not count as a user in U .

value of S ⊆ U is v(S) = χ(τ(S)). The marginal value of a
user i with respect to a set S ⊆ U is denoted by vi(S), where,
vi(S) = v(S ∪ {i}) − v(S). The marginal utility of user i is
equal to the difference between the marginal value of user i
and its payment, i.e., ui(S) = vi(S) − pi. The net marginal
utility of user i, is denoted by σi(S) = vi(S\{i}) − bi. The
personal utility of a user i is denoted by ωi. If selected, ωi =
pi − ci, where ci is the cost incurred by user i, and zero
otherwise. The utility of a set of users S to the platform is
denoted by u(S), where u(s) = v(S)−

∑
i∈S pi.

We define the problem of smartphone crowd-sourcing as:
Problem 1: Given a set U of users,

max
T⊆U

u(T),

subject to the four properties of an efficient auction, namely,
computational efficiency, individual rationality, profitability
and truthfulness.

III. OUR ALGORITHM: SMART

We propose an algorithm called Search for Marginal Ap-
propriate Replacement Tasks users (SMART). Motivated by
the k-secretary problem, SMART consists of two phases, the
observation phase (Phase I) and the winner selection phase
(Phase II).

In Phase I, i.e, the observation phase, the algorithm rejects
the first k = bnc c (where c is a constant chosen by the
platform) users on their arrival. It runs SMART-Phase I on
the bidding profiles of U [1 : k] and stores the output set of
winning users as a reference set R. The algorithm uses this
set R as a reference for selection of the n−k users remaining
users, i.e., U [n − k : n] in Phase II or the winner selection
phase.

A. SMART-Phase I: Algorithm Description

SMART-Phase I is inspired by the VCG mechanism,
which is known to be truthful, but computationally expensive.
SMART first shortlists the potential winners using an iterative
greedy procedure by picking the user with the best marginal
utility in each iteration. After the shortlisting process, each
user in the shortlist is retained or dropped or replaced depend-
ing on the marginal utility that user brings to the platform. At
a high level, the payment strategy of SMART is similar to
VCG mechanism, where each user is paid for the marginal
utility it brings to the platform.

SMART-Phase I consists of three sub-phases, the screening
sub-phase followed by the winner selection sub-phase and
finally the bad user removal sub-phase. In the winner selection
sub-phase, the payment made to each winning user is also
determined. We first describe the algorithm in words, followed
by its formal description.

1) Screening Sub-Phase: In the screening sub-phase, the
algorithm follows a greedy approach to select users. Start-
ing from an empty set S, the algorithm iterates through
U \ S and selects the user with the maximum difference in
marginal value and bid with respect to current set S, i.e.,
arg maxi∈U\S(vi(S) − bi). The selected user is added to S,

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

404

and the process is repeated as long as there are users with a
positive difference in marginal value and bid with respect to
S.

2) Winner-Selection Sub-phase: This sub-phase takes the
output of the screening sub-phase (S) as the input. Initially,
the set of winning users T is set as S, and the algorithm
iterates through T in the order in which users entered S in
the screening phase.

Recall that vi(T \{i}) is the marginal value of user i given
T \{i}, and bi is the bid of user i, i.e., the minimum payment
to be given to user i if user i is selected. By definition,
the maximum possible marginal contribution of user i to the
overall utility is at most σi(T) = vi(T \ {i})− bi.
Case I: Negative marginal utility (σi(T) < 0).

– Remove User i.
For user i ∈ S, if σi(T) < 0, the overall utility increases
by removing i from T . Therefore, user i is removed from
the set of winning users, i.e., T is updated to T \ {i}.

– Replace.
To find a replacement for user i, the algorithm finds the
user with the maximum marginal net utility, currently not
in T , i.e., j = arg maxk∈U\T vk(T)− bk. If σj(T) > 0,
i.e., the overall utility can be increased by adding j to T ,
j is added to the set of winning users, i.e., T is updated
to T ∪{j}. The payment of user j (pj) is fixed to vj(T).

Case II: Positive marginal utility (σi(T) ≥ 0).
If σi(T) ≥ 0, the algorithm checks if there is a user j 6=
i, currently not in T , such that replacing user i with user j
increases overall utility. The candidate for replacing user i is
the user with the maximum marginal net utility, currently not
in T , i.e., user j such that j = arg maxk∈U\T vk(T \{i})−bk.

– Case II.a: Replace user i with user j.
User i is replaced with user j if the following two
conditions are satisfied.
C1: σj(T) > 0: Overall utility increases by adding user

j to T \ {i}.
C2: σj(T) < σi(T): This condition implies that bi >

vi(T \ {i}) − σj(T), i.e., the bid of user i is high
enough to ensure that replacing user i with user j
will lead to an increase in overall utility.

If user j satisfies both C1 and C2, replacing user i with j
will increase overall utility. In this case, user i is removed
from the set of winning users and replaced with user j,
i.e., T is updated to (T \ {i}) ∪ {j}. To determine the
payment for user j, the algorithm finds user j∗ such that
j∗ = arg maxk∈U\T vk(T \ {j})− bk. If vj∗(T \ {j})−
bj∗ > 0, the payment of user j, pj = vj(T \ {j}) −
vj∗(T \ {j}) + bj∗ ; else pj = vj(T \ {j}).

– Case II.b: Retain user i.
If C1 is not satisfied, i.e., if σj(T) < 0 for all j /∈ T ,
the overall utility cannot be increased by adding any user
currently not in T to T \ {i}.
If C2 is not satisfied, bi < vi(T \ {i})− σj(T), i.e., the
bid of user i is low enough to ensure that replacing user i
with user j will not lead to an increase in overall utility.

SMART-Phase I
1 // Screening Sub-Phase
2 S ← ∅, P ← {p1, p2, p3, . . . , pn}
3 i← argmaxj∈U (vj(S)− bj)
4 while vi(S) > bi and S 6= U do
5 S ← S ∪ {i}
6 i← argmaxj∈U (vj(S)− bj)
7 endwhile
8 for each i ∈ U do
9 pi ← 0

10 endfor
11 // Winner-Selection Sub-Phase
12 T ← S
13 for i = 1, 2, . . . , |T | do
14 (j, γi, βj)← Next Best User (i, U, T)
15 σi(T)← vi(T\{i})− bi
16 βi ← User Entry Payment(U, i)
17 // Case I - Positive marginal utility
18 if σi(T) > 0 then
19 // Pay next best user’s bid
20 if γi − bi ≥ 0 and γi ≤ βi and γi 6=∞
21 pi ← γi
22 // Replace with next best user
23 else if γi < bi and γi ≤ βi and γi 6=∞
24 (T, pj)← Replace User (U, T, i, j)
25 // Pay marginal value in S
26 else if γi > βi or γi =∞
27 pi ← min(σi(T) + bi, βi)
28 endif
29 // Case 2 - Negative marginal utility
30 else if σi(T) ≤ 0 and γi 6=∞
31 (T, pj)← Replace User (U, T, i, j)
32 else if σi(T) ≤ 0 and γi =∞
33 T ← T\{i}
34 endif
35 endfor
36 // Bad-User Removal Sub-Phase
37 for each i in T do
38 if ui(T\{i}) ≤ 0 then
39 T ← T\{i}
40 pi ← 0
41 endif
42 endfor
43 Return (T, P)

Next Best User (i, U, T)
1 j ← argmaxk∈U\T vk(T\{i})− bk , βj ←∞
2 if vj(T\{i})− bj > 0 then
3 γi ← vi(T\{i})− vj(T\{i}) + bj
4 else
5 j ← −1, γi ←∞
6 endif
7 Return (j, γi, βj)

Therefore, if either C1 or C2 is not satisfied, user i is
retained in T . The payment of user i (pi) is fixed to
min{vi(T), βi}, where βi is the minimum value of the
bid of user i such that user i enters the screening set S.

3) Bad User Removal Sub-phase: After the Winner-
Selection sub-phase, the algorithm iterates through all ele-
ments of T , and users ∈ T with non-positive marginal utility
with respect to T are removed from T . This ensures that only
users with positive marginal utility are retained.

This marks the end of SMART-Phase I. At this point, the
reference set R, which is used as a guideline in the next phase,
i.e., Phase II, is initialized to T .

Remark 3.1: As mentioned before, SMART-Phase I, rejects
the first k users and determines the set of winning users among

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

405

Replace User (U, T, i, j)
1 T ← (T\{i}) ∪ {j}
2 (k, γj , βk)← Next Best User (j, U, T)
3 if γj < vj(T\{j}) then
4 pj = γj
5 else if γj ≥ vj(T\{j})
6 pj = vj(T\{j})
7 endif
8 Return (T, pj)

User Entry Payment (U, i)
1 Si ← ∅, βi ← 0, j ← argmaxk∈U\{i}(vk(S)− bk)
2 while vi(Si) > bi and Si 6= U\{i} do
3 βi ← max(βi, vi(Si)− vj(Si) + bj)
4 Si ← Si ∪ {j};
5 j ← argmaxk∈U\{i}(vk(S)− bk)
6 endwhile
7 Return βi

the first k users in an offline manner. This set of winning users
is used as a reference set for future decisions. The allocation
(set of winning users and their payments) obtained on the first
k users by SMART-Phase I satisfies the following properties.
P1: SMART-Phase I is computationally efficient.
P2: SMART-Phase I is individually rational.
P3: SMART-Phase I is profitable.
P4: SMART-Phase I is truthful.

The proofs of the first two properties are straightforward
and are omitted due to space constraints. The proofs of P3
and P4 are discussed in the Appendix.

B. SMART-Phase II: Algorithm Description

The algorithm uses the output of Phase I, i.e., the set of
winning users (R) as a reference for selection of users among
the remaining n − k users, denoted by U [n − k : n]. In the
beginning of Phase II, i.e., the set of final winners (W) is
empty, and users are processed as they arrive. We first describe
the algorithm in words followed by a formal description. For
each user i ∈ U [n− k : n]:
Case I: |R| < m, where m = |Γ|

– Case I.a: Positive marginal utility (vi(R)− bi > 0)
The overall utility can be increased by selecting user i.
The algorithm adds user i to both R and W and makes
a payment pi = vi(R).

– Case I.b: Negative marginal utility (vi(R)− bi ≤ 0)
The algorithm determines if it is profitable to replace a
user j ∈ R with user i.
If there exists a user j ∈ R, such that, bi < v((R\{j})∪
{i}) − v(R) + bj , replacing user j with user i in R
increases the overall utility of the set R. Therefore, user
j is replaced with user i in R, i.e., R is updated to
R\{j}∪{i}. User i is added to the set of winners W , and
the payment of user i, pi = vi((R\{j})∪{i})−v(R)+bj .
If no user j ∈ R can be replaced profitably, user i is
rejected.

Case II: |R| = m = |Γ|
The presence of m selected users implies that at least m, i.e.
all tasks can be completed by the current set of winning users.

SMART-Phase II
1 // Initialization
2 W ← ∅, R← ∅
3 P ↔ {p1, p2, . . . pn}
4 n = |U |, k = bn/cc
5 // Initialize Reference Set
6 R← set of winning users from Phase I
7 p1, p2, . . . pn ← 0
8 // Online Winner Selection
9 for each i = k + 1, k + 2, . . . , n and |W | ≤ m do

10 if |R| < m then
11 if vi(R)− bi > 0 then
12 (R,W,P)← Add User (R, i)
13 else
14 (R,W,P)← Try To Replace (R, i)
15 end if
16 else if |R| = m
17 (R,W,P)← Try To Replace (R, i)
18 end if
19 R← Remove Bad Users (R,W)
20 endfor
21 Return (W,P)

Add User (R, i)
1 pi ← vi(R)
2 R← R ∪ {i}, W ←W ∪ {i}
3 Return (R,W,P)

As a result, adding any more users to R can only decrease the
marginal utility of R.
Therefore, as in Case 1.b, the algorithm determines if any user
j ∈ R can be replaced by the current user. If no user can be
replaced profitably, user i is rejected.

Between the arrival of two users in Phase II, the algo-
rithm iterates through R\W , and removes any user i with
vi(R\{i}) − bi ≤ 0. This ensures that all users in R have a
positive difference in marginal value and bid, and consequently
form a “good” reference for the incoming users. The algorithm
terminates when either all users in U have arrived or when
|W | = m.

Remark 3.2: SMART satisfies the following properties.

P1: SMART is computationally efficient.
P2: SMART is individually rational.
P3: SMART is profitable.
P4: SMART is truthful.

The proofs are presented in the Appendix.

Try To Replace (R, i)

1 j = argmaxk∈R\W

(
v(R\{k}) ∪ {i})− v(R) + bk − bi

)
2 if v((R\{j}) ∪ {i})− v(R) + bj > bi then
3 pi ← v((R\{j}) ∪ {i})− v(R) + bj
4 R← (R\{j}) ∪ {i} and W ←W ∪ {i}
5 end if
6 Return (R,W,P)

Remove Bad Reference Users (R,W)
1 for each j ∈ R\W do
2 if v(R) < v(R\{j}) + bj then
3 R← R\{j}
4 end if
5 endfor
6 Return R

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

406

C. Discussion

SMART works by initially rejecting a few users, whose
profiles are used by the SMART-Phase I algorithm to generate
a reference set that is used to select/reject future users and to
decide their respective payments. The reference set allows the
platform to select users with positive marginal utility. Also,
since in the online scenario we assumed that each user does
not know when it arrives in relation to other users, SMART
ensures truthfulness.

In general, the “goodness” of any online algorithm is
measured by its competitive ratio, i.e. the ratio of the utility of
the online algorithm with the utility of the offline algorithm.
For the k-secretary problem, the competitive ratio is known to
be 1−1/e, where the first 1/e users are rejected, assuming that
users arrive uniformly randomly. Analytically characterizing
the competitive ratio of the SMART is very challenging, since
one can compare the users that are selected with SMART and
any offline algorithm, but not their payments, as SMART have
to ensure user truthfulness. This does not allow any tractable
analytical solution for finding the competitive ratio of SMART,
and to understand its behavior with respect to any offline
algorithm, we turn to extensive numerical simulations. Not
surprisingly, it turns out it is optimal to approximately reject
the first k = 1/3 users (similar to k-secretary problem), to get
the best competitive ratio.

IV. SIMULATION RESULTS

In this section, we compare the performance of SMART
to the performance obtained by running SMART-Phase I on
the entire arrival sequence in an offline manner in order to
characterize the competitive ratio of SMART.

In Figure 1, we plot the competitive ratio of the SMART
as a function of the fraction of users observed in Phase I, i.e.,
k. We fix the number of users n = 100, and each user bids
for 25% of the tasks randomly. Each bid is a random variable,
uniformly distributed between 5 and 50. The number of tasks
m = 30 and the value of each task is a random variable,
uniformly distributed between 0 and 40. Figure 1 indicates that
for this set of system parameters, observing 32% (around 1/e)
of the total number of users, and using their profiles to form
a reference set maximizes the competitive ratio of SMART.

Next, we study the variation in the competitive ratio of
SMART as a function of the fraction of tasks each user
can complete on average. The larger the fraction, the larger
is the overlap in the tasks completed by different users.
Consequently, users arriving in the first phase, i.e., the ob-
servation phase, have a lot of common tasks with the users
arriving in selection phase, thereby allowing SMART to make
“good” user selections. It is reasonable to expect that the
competitive ratio would increase as the average number of
tasks that each user completes increases. This hypothesis is
confirmed via simulations, as shown in Figure 2. We plot the
competitive ratio of SMART as a function of the fraction
of tasks completed by each user. For each data-point, we
empirically optimize the value of k, and plot the maximum
competitive ratio.

0.15

0.2

0.25

0.3

0.1 0.3 0.5 0.7 0.9

C
om

pe
tit

iv
e

R
at

io

Fraction of Users Observed

Fig. 1. Variation of the competitve ratio with the fraction of users observed.

0.25

0.50

0.75

1.00

0.1 0.3 0.5 0.7 0.9

M
ax

 C
om

pe
tit

ve
 R

at
io

Average Fraction of Tasks per User

Fig. 2. Variation of the competitive ratio with the fraction of total tasks
completed by the average user

Next, the question we try to answer is: given that we know
that each user completes a certain fraction of tasks on average,
what fraction of users should SMART observe, i.e., when
should the observation phase end in order to maximize the
competitive ratio. In Figure 3, for each value of the fraction of
tasks each user can complete on average, we plot the fraction
of users observed by SMART which leads to the maximum
competitive ratio.

In Figure 3, we observe that the fraction of users that need
to be observed by SMART has its maximum when each user
can complete 30% of the total tasks on average. This behavior
is quite intuitive since, while choosing a certain fraction of
users to observe, there is a tradeoff between the quality of
the reference set and the number of users left for selection.
If the fraction of users observed is low, the reference set
formed in observation phase will be of low quality and hence,
the selection of winning users based on the reference set by
SMART will be poor. If the fraction of users observed is high,
the reference set formed in the observation phase will be of
high quality, however, there will be very few users left for
selection.

REFERENCES

[1] “Nericell,” in http://research.microsoft.com/en-us/projects/nericell/.
[2] “Sensorly,” in www.sensorly.com.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

407

0.09

0.27

0.45

0.63

0.1 0.3 0.5 0.7 0.9Be
st

 F
rc

at
io

n
of

 U
se

rs
 O

bs
er

ve
d

Fraction of Tasks Completed by the Average User

Fig. 3. Variation of the fraction of users in the observation phase with the
fraction of total tasks completed by an average user

[3] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakr-
ishnan, “The pothole patrol: using a mobile sensor network for road
surface monitoring,” in Proceedings of the 6th international conference
on Mobile systems, applications, and services. 2008, pp. 29–39.

[4] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu,
“Ear-phone: an end-to-end participatory urban noise mapping system,”
in Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks. 2010, pp. 105–116.

[5] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner, “mcrowd:
a platform for mobile crowdsourcing,” in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems. 2009, pp. 347–
348.

[6] X. Sheng, J. Tang, and W. Zhang, “Energy-efficient collaborative sensing
with mobile phones,” in Proceedings of IEEE INFOCOM, 2012. 2012,
pp. 1916–1924.

[7] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. Walrand,
“Incentive mechanisms for smartphone collaboration in data acquisition
and distributed computing,” in Proceedings of IEEE INFOCOM, 2012.
2012, pp. 1701–1709.

[8] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing,” in Proceedings
of the 18th ACM Annual International Conference on Mobile Computing
and Networking. 2012, pp. 173–184.

[9] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of Finance, vol. 16, no. 1, pp.
8–37, 1961. [Online]. Available: http://dx.doi.org/10.1111/j.1540-
6261.1961.tb02789.x

[10] V. Conitzer and T. Sandholm, “Failures of the vcg mechanism in
combinatorial auctions and exchanges,” in Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems. 2006, pp. 521–528.

[11] D. Parkes and S. Singh, “An mdp-based approach to online mechanism
design,” in Advances in neural information processing systems, 2003, p.
None.

[12] S. De Vries and R. V. Vohra, “Combinatorial auctions: A survey,”
INFORMS Journal on computing, vol. 15, no. 3, pp. 284–309, 2003.

[13] D. Garg, Y. Narahari, and S. Gujar, “Foundations of mechanism de-
sign: A tutorial part 1-key concepts and classical results,” in Sadhana
(Academy Proceedings in Engineering Sciences), vol. 33, no. 2. Indian
Academy of Sciences, 2008, pp. 83–130.

[14] ——, “Foundations of mechanism design: A tutorial part 2-advanced
concepts and results,” Sadhana, vol. 33, no. 2, pp. 131–174, 2008.

[15] K. Han, C. Zhang, and J. Luo, “Truthful Scheduling Mechanisms for
Powering Mobile Crowdsensing,” ArXiv e-prints, Aug. 2013.

[16] R. Kleinberg, “A multiple-choice secretary algorithm with applications
to online auctions,” in Proceedings of the sixteenth annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2005, pp. 630–631.

[17] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “A knapsack
secretary problem with applications,” Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pp. 16–28,
2007.

[18] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[19] R. B. Myerson, “Optimal auction design,” Mathematics of operations
research, vol. 6, no. 1, pp. 58–73, 1981.

[20] D. Zhao and X. Li and H Ma. ”How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,” in Proceedings of IEEE INFOCOM, 2012

APPENDIX

A. Properties of SMART-Phase I

To show that SMART-Phase I is profitable, we first show
that the utility of SMART-Phase I is at least as much as that
of M-Sensing, and the result follows since M-Sensing [8] is
profitable.

Lemma 1: The utility of SMART-Phase I is greater than or
equal to the utility of M-Sensing [8].

Proof: The output set S of the screening phase of
SMART-Phase I is equal to the final selection set of M-
Sensing. SMART-Phase 1 then refines S further through the
Winner Selection sub-phase and the Bad User Removal sub-
phase. In the winner selection sub-phase, SMART-Phase I
initially sets the set of winning users T to be equal to S
and then iteratively updates T . Moreover, note that with M-
Sensing, and SMART-Phase 1, the payment for each user
i ∈ S, is βi, and pi = min{γi, σi(T) + bi, viβi}, respectively.
Thus, pi ≤ βi.

So initially, v(S) −
∑

l∈S βl = v(T) −
∑

l∈T βl, since
T = S. In each iteration of the winner selection sub-phase of
SMART-Phase 1 the current user, say user i is either retained,
removed or replaced.

If the current user i is retained there is no change in T , and
still T = S, however, since pi ≤ βi,

v(S)−
∑
l∈S

βl ≤ v(T)− pi −
∑

l∈S\{i}

βl. (1)

The current user i is removed if and only if σi(T) −
bi ≤ 0. Therefore, vi(T\{i}) − bi ≤ 0, which implies
v(T)−v(T\{i})− bi ≤ 0, and finally, v(T\{i}) ≥ v(T)− bi.

Since M-Sensing is rational, βi ≥ bi, we have v(T\{i}) ≥
v(T)− βi.

Therefore, after removing user i, with T ← T\{i},

v(S)−
∑
l∈S

βl ≤ v(T)−
∑
l∈T

βl. (2)

The replacement of the current user i can occur at two points
in the SMART-Phase I algorithm, in lines 23, 24 and in lines
30, 31. In both cases, the Replace User function is called to
replace user i with another user say user j ∈ U\T . Let the
set of winning users be Told before replacement and Tnew after
replacement. Tnew = (Told\{i}) ∪ {j}.

Consider the replacement done in lines 23 and 24. In this
situation γi ≤ bi, γi ≤ βi and γi 6= ∞. The Replace User
function first performs replacement and then calls the Next
Best User function with inputs as {j, U, Tnew}. The Next Best
User function finds k = arg maxm∈U\Tnew vm(Tnew\{j})−bm
and returns γj = vj(Tnew\{j}) − vk(Tnew\{j}) + bk. Since
i ∈ U\Tnew, therefore, vk(Tnew\{j})−bk ≥ vi(Tnew\{j})−bi.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

408

This implies that in the worst case, the replacement user
k is same as user i. Therefore, in the worst case γj =
vj(Tnew\{j}) − vi(Tnew\{j}) + bi. Since the payment made
in the Replace User function is pj = min(γj , vj(Tnew\{j})),
pj ≤ γj . Therefore,
pj ≤ vj(Tnew\{j})−vi(Tnew\{j}) + bi, which on rearrang-

ing, vi(Tnew\{j})−bi ≤ vj(Tnew\{j})−pj . Since Tnew\{j} =
Told\{i}, it follows that vi(Told\{i})−bi ≤ vj(Tnew\{j})−pj .

As M-Sensing is individually rational, βi ≥ bi, therefore,
vi(Told\{i})− βi ≤ vj(Tnew\{j})− pj .

Consider the replacement done in lines 30 and 31. In
this situation σi(Told) ≤ 0 and γi 6= ∞. Since, γi 6= ∞,
vj(Told\{i})−bj ≥ 0. Since, σi(Told) ≤ 0, vi(Told\{i})−bi ≤
0. As M-Sensing is individually rational, βi ≥ bi therefore,
vi(Told\{i})− βi ≤ 0.

Also, since the payment made in the replace user function
pj = min(γj , vj(Tnew\{j})), pj ≤ vj(Tnew\{j}). Hence,
vj(Tnew\{j})− pj ≥ 0.

Therefore, vi(Told\{i})− βi ≤ vj(Tnew\{j})− pj .
Consider the first iteration of SMART-Phase 1 in the

winner selection phase for replacement. Here, S = Told
and Tnew\{j} = S\{i}. Therefore, vi(S\{i}) − βi ≤
vj(Tnew\{j}) − pj , which implies v(S) − v(S\{i}) − βi ≤
v(Tnew)− v(Tnew\{j})− pj . Since v(Tnew\{j}) = v(S\{i}),
v(S) − βi ≤ v(Tnew) − pj . Subtracting

∑
l∈S\{i} βl to both

sides, we get

v(S)−
∑
l∈S

βl ≤ v(Tnew)− pj −
∑

l∈S\{i}

βl. (3)

Now consider the situation when nth replacement occurs.
Let the set of winning users before replacement be Toldn
and let the set of winning users after replacement be Tnewn .
Therefore,

Toldn = (S\{i1, . . . , in−1}) ∪ {j1, . . . , jn−1}), (4)
Tnewn

= (S\{i1, . . . , in}) ∪ {j1, . . . , jn}). (5)

Generalizing (3) at the nth iteration, we get, v(S)−
∑

l∈S βl

≤ v(Tnewn)−
∑

m∈{j1,...,jn}

pj −
∑

l∈S\{i1,...,in}

βl. (6)

Let (6) hold true. Lets analyze the n+ 1th iteration.

Toldn+1
= (S\{i1, . . . , in}) ∪ {j1, . . . , jn}), (7)

Tnewn+1
= (S\{i1, . . . , in+1}) ∪ {j1, . . . , jn+1}) (8)

At the n+ 1th replacement,

vin+1
(Toldn+1

\{in+1})− βi ≤ vjn+1
(Tnewn+1

\{jn+1})− pj .

Therefore, v(Toldn+1) − v(Toldn+1\{in+1}) − βi ≤
v(Tnewn+1) − v(Tnewn+1\{jn+1}) − pj . Since,
Toldn+1

\{in+1} = Tnewn+1
\{jn+1}, v(Toldn+1

) − βi ≤
v(Tnewn+1

)− pj .
From (5) and (7), we note that Toldn+1 = Tnewn . Substituting

for Tnewn from (6), we get, v(S) −
∑

l∈S βl − βin+1 ≤

v(Tnewn+1) − pjn+1 −
∑

m∈{j1,...,jn} pj −
∑

l∈S\{i1,...,in} βl.
Hence, v(S)−

∑
l∈S βl

≤ v(Tnewn+1
)−

∑
m∈{j1,...,jn+1}

pj −
∑

l∈S\{i1,...,in+1}

βl. (9)

Therefore, from (3), (6), and (9), using induction we get
that, v(S)−

∑
l∈S βl

≤ v(Tnewn
)−

∑
m∈{j1,...,jn}

pj −
∑

l∈S\{i1,...,in}

βl, (10)

is true for any arbitrary n.
In the winner selection sub-phase, SMART-Phase 1 iterates

through all the elements of S in a sequential manner. Using
(1), (2), and, (10), we can conclude that at the end of the
winner selection phase, v(S) −

∑
l∈S βl ≤ v(T) −

∑
l∈T pl,

where the LHS represents the utility of M-Sensing and the
RHS represents the utility of SMART-Phase 1, since the Bad
User Removal function does not decrease the utility.
Next, we show the most important property of SMART-Phase
I, its truthfulness. Towards that end we will use the Myerson’s
Theorem [19].

Theorem 1: [19] A reverse auction is considered truthful
if and only if
• The selection rule is monotone. If a user i wins the

auction by bidding bi, it would also win the auction by
bidding an amount b′i, where b′i < bi.

• Each winner is paid a critical amount. If a winning user
submits a bid greater than this critical value, it will not
get selected.

Lemma 2: SMART-Phase I is truthful.
Proof: We prove this lemma by showing that SMART-

Phase I satisfies the two properties of Theorem 1.
Monotonicity of SMART-Phase I: Consider a user i that is
selected by SMART-Phase I with bid bi, i.e., i ∈ T . Let user i
change its bid to b′i, where b′i < bi. Let σ′i(T) = vi(T\{i})−
b′i. Now we look at two cases where the user i with bid bi
could have entered T .

a) Assume that user i ∈ S, in the user screening phase, with
bid bi, and was then retained in T . By the definition of the User
Screening phase, if i ∈ S, then i = arg maxk∈U\S vk(S)− bk
at some iteration ri, where user i entered S. If user i instead
bid b′i < bi, then again user i enters S at iteration ri or
earlier. Since user i is retained in T with bid bi, by definition
of SMART-Phase 1, we have σi(T) > 0 and γi > bi.
Consequently, σ′i(T) > 0 and γi > b′i. Thus, even if user
i bid b′i, both Cond. 1 and Cond. 1.1 in the Winner Selection
phase are satisfied, and therefore user i is retained in T .

b) If user i entered into T by replacing some user j ∈ T ,
then user i has to satisfy i = arg maxk∈U\T vk(T\{j})− bk
in the Next Best User function when called from Line 14 of
the SMART-Phase 1. Therefore, should user i decrease its bid
to b′i it would still replace user j ∈ T and enter T .

Existence of a Critical Bid Amount with SMART-Phase 1:
We claim that the payment pi made by SMART-Phase 1 is
critical, i.e., if any user i bids in excess of its critical amount

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

409

pi, then SMART-Phase 1 will not select it. Two possible
conditions exist with SMART-Phase 1,

Case I: A winning user i ∈ S, i ∈ T receives pi =
min(vi(T\{i}), βi, γi), where S is the set of screened users.
Let’s assume that pi = vi(T\{i}), and if user i changes its bid
to b′i, b

′
i > vi(T\{i}), then σ′i(T) = vi(T\{i})−b′i < 0. From

Cond 2 of SMART-Phase 1, we conclude that user i would be
replaced by another user j if possible in T or removed from
T . If pi = βi and b′i > βi, then by the definition of the User
Entry Payment function, user i will not enter the screening set
S in the User Screening phase. Therefore, user i will not enter
T . Finally, if pi = γi and b′i > γi, then from Cond 1.2 user i
will be replaced by some user j in U\T .

Case II: A winning user i ∈ T and i /∈ S receives pi =
min(vi(T\{i}), γi). Such a user does not belong to T at the
beginning of the Winner Selection Phase and is a replacement
user. Note that, replacement users are paid inside the Replace
User Function. In the function a replacement user say j /∈ S
replaces a user i ∈ T . Let T before the replacement be Told,
and after the replacement be Tnew = T ∪{j}\{i}. The Replace
User function calls the Next Best User function to compute
γj for user j. This function returns both the second best user
to user j, user k and the value of γj .

Lets assume that user j is paid an amount equal to γj .
From the Next Best User Function γj = vj(Tnew\{j}) −
vk(Tnew\{j}) + bk. If user j bids an amount b′j > γj , then
the following happens. Since Tnew\{j} = Told\{i} from line
1 of the Next Best User function we can conclude that user k
would take user j’s place as a replacement user at line 14 of
SMART-Phase 1.

Consider the alternate case when user j is paid an amount
equal to vj(Tnew\{j}). Note that user j was selected as a
replacement for user i, through the Next Best User function
call made in line 14 of SMART-Phase 1 for the computation
of γi for user i. At this point the set of winning users is
Told. If user j bids b′j > vj(Tnew\{j}), then since Tnew\{j} =
Told\{i}, vj(Told\{i}) = vj(Tnew\{j}), then from line 2 of the
Next Best User function called at line 14 of SMART-Phase 1,
since b′j > vj(Tnew\{j}), the Next Best User function either
returns some other user k as a replacement for user i or if
the user j is the maximizer in line 1 of the Next Best User
function, then j = −1 is returned. In conclusion, user j does
not replace user i if b′j > vj(Tnew\{j}).

B. Properties of SMART

Lemma 3: SMART is computationally efficient.
Proof: It can be shown that the computational complex-

ity associated with SMART is O(nm3). Hence, SMART is
computationally efficient.

Lemma 4: SMART is individually rational.
Proof: To prove that SMART is individually rational, it is

sufficient to prove that ∀i∈W pi ≥ bi. In Phase II, a user enters
the final winner’s set W through either the Add User function
or the Try To Replace function. The Add User function is
called when the incoming user i has vi(R) > bi. Since the Add
User function pays user i, pi = vi(R), pi > bi. An incoming

user i replaces an existing user j ∈ R\T through the Try To
Replace function if and only if v((R\{j})∪{i})−v(R)+bj−
bi > 0. Since the payment made in the Try To Replace function
to such a selected user i is pi = v((R\{j})∪{i})−v(R)+bj ,
therefore pi > bi.

Lemma 5: SMART is profitable.
Proof: An incoming user i ∈ U [k + 1 : n] enters W

through either the Add User function or the Try To Replace
function.

Let user i enter W through the Add User function. At any
point in the algorithm the set of winning users (W) is always
a subset of the reference set (R), that is W ⊆ R. This implies
that for a user i ∈ U\R, the marginal tasks with respect to R
are always a subset of the marginal tasks with respect to W ,
i.e. τi(R) ⊆ τi(W). Therefore, χ(τi(R)) ≤ χ(τi(W)). The
payment made to user i is pi = vi(R) = χ(τi(R)). Hence,
vi(W)− pi = χ(τi(W))−χ(τi(R)) ≥ 0. The platform utility
of W ∪{i} is u(W ∪{i}) = v(W)+vi(W)−pi−

∑
j∈W pi =

u(W)+vi(W)−pi. Therefore ui(W) = u(W∪{i})−u(W) ≥
0, i.e. the incremental utility change is always non-negative.

Let user i enter W through the Try To Replace function.
The payment made to user i is pi = v((R\{j})∪{i})−v(R)+
bj = χ(τi(R\{j})) + v(R\{j})− v(R) + bj . The increase in
the utility of the platform is u(W ∪ {i}) − u(W) = ui(W),
where ui(W) = vi(W) − pi = χ(τi(W)) − χ(τi(R\{j})) +
v(R) − v(R\{j}) − bj . Since user j ∈ R\W , W ⊆ R\{j}.
Therefore, χ(τi(W))−χ(τi(R\{j})) ≥ 0. Further the Remove
Bad Reference Users function ensures that for any j ∈ R,
v(R)− v(R\{j})− bj ≥ 0. Therefore ui(W) ≥ 0.

Since at the start of the Selection phase u(W) = 0 and the
addition of a user i to W through the Add User function or the
Replace User function yields ui(W) ≥ 0, ONLINE-SMART
is profitable.

Lemma 6: SMART is truthful.
Proof: We use Theorem 1, to prove this Lemma. Let us

assume that user i enters the final winners set W with bid bi.
Let user i change its bid to b′i with b′i < bi. If user i entered

W through the Add User function, then vi(R) − bi > 0.
Since vi(R) − b′i > 0 user i enters W . If user i entered W
through the Try To Replace Function then for some j ∈ R\W ,
v((R\{j})∪{i})−v(R)+bj−bi > 0. Further user i replaces
user j in R. Since v((R\{j})∪{i})−v(R)+bj−bi > 0, user
i still replaces user j in R and enters W . Hence the selection
rule of SMART-Phase II is monotone.

Let user i change its bid to b′i with b′i > pi. If user i entered
W through the Add User function then pi = vi(R). Since
b′i > vi(R), vi(R)− b′i < 0 and user i no longer enters W . If
user i entered W through the Try To Replace Function, then it
replaces some j ∈ R\W and is paid pi = v((R\{j})∪{i})−
v(R) + bj . Since v((R\{j}) ∪ {i}) − v(R) + bj − b′i < 0,
user i no longer replaces user j in R and consequently it does
not enter W . Hence the payment made by SMART-Phase II
is critical.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

410

