
Effects of Storage Heterogeneity
in Distributed Cache Systems

Kota Srinivas Reddy, Sharayu Moharir and Nikhil Karamchandani
Department of Electrical Engineering, Indian Institute of Technology Bombay

Email: ksreddy@ee.iitb.ac.in, sharayum@ee.iitb.ac.in, nikhilk@ee.iitb.ac.in

Abstract—In this work, we focus on distributed cache systems
with non-uniform storage capacity across caches. We compare
the performance of our system with the performance of a system
with the same cumulative storage distributed evenly across the
caches. We characterize the extent to which the performance
of the distributed cache system deteriorates due to storage
heterogeneity. The key takeaway from this work is that the effects
of heterogeneity in the storage capabilities depend heavily on the
popularity profile of the contents being cached and delivered.
We analytically show that compared to the case where contents
popularity is comparable across contents, lopsided popularity
profiles are more tolerant to heterogeneity in storage capabilities.
We validate our theoretical results via simulations.

I. INTRODUCTION

Recent Internet usage patterns show that Video on De-
mand (VoD) services, e.g., YouTube [1] and Netflix [2],
account for ever-increasing fractions of Internet traffic [3].
To meet the increasing demand, most popular VoD services
use content delivery networks (CDNs). We focus on multiple
geographically co-located caches, each with limited storage
and service capabilities, deployed to serve users in that area.
The motivation behind deploying local caches is to serve most
user requests locally. Requests that can’t be served locally are
served by a central server (which stores the entire content
catalog) via a root node, see Figure 1. This setting, also studied
in [4], models networks where, (i) the ISP (root node) uses
local caches to reduce the load on the network backbone or
(ii) this geographically co-located cache cluster is a part of a
larger tree network [5].

Most VoD service offer catalogs consisting of a large num-
ber of contents and serve a large number of users. Motivated
by this, we study a time-slotted setting where a batch of
requests arrive in each time-slot and every cache can serve
at most one request in a batch. Requests that cannot be served
locally by the caches are assigned to the central server. Storage
and service policies are designed to minimize the number of
contents which need to be fetched from the central server to
serve all the requests in a batch.

The existing body of work in this space considers the setting
where storage capabilities are uniform across caches [4], [6].

This work was supported in part by the Bharti Centre for Communication
at IIT Bombay. The work of Sharayu Moharir and Nikhil Karamchandani
was supported in part by seed grants from IIT Bombay and an Indo-French
grant on “Machine Learning for Network Analytics”. The work of Nikhil
Karamchandani was also supported in part by the INSPIRE Faculty Fellowship
from the Govt. of India.

Central
Server

Root
Node

Caches

Users

Content delivery using the central server via the root node
Content delivery using caches

Fig. 1. An illustration of a cache cluster consisting of three caches serving two
users. The first cache has more storage than the other two. Each user can either
be served by the caches or by the central server via the root node.

In this work, we study the effects of heterogeneity in storage
across caches on the performance of the system. The key
takeaway of this work is that the effect of heterogeneity in
storage capabilities across caches depends on the popularity
profile of the contents. We show that as content popularity
becomes more lopsided, the system can handle more hetero-
geneity in cache storage capabilities, i.e., for the same amount
of cumulative memory, the performance of the heterogeneous
system remains comparable to the performance of a system
with uniform storage across caches.

Intuitively our results can be explained as follows. Increas-
ing the number of contents stored on a cache increases the
utility of that cache as it can be used to serve a request for
any one of the stored contents. When content popularity is
comparable across contents, the fraction of requests in a batch
for any particular content is small. As a result, for a cache with
limited storage, it is likely that none of the stored contents are
requested, thus leaving the cache unutilized. This increases
the number of requests that have to be served via the central
server. In contrast, when content popularity is lopsided, the
caches with limited storage can be used to store and serve
requests for popular contents and the caches with large storage
can store a mixture of some popular and a larger number of
unpopular contents. This ensures that most caches are utilized,
thus reducing the number of requests served centrally.

The main focus of this work is to study the impact of
heterogeneity in storage sizes on the performance of a single-
layer distributed caching system with a central server. This

aspect has been addressed in some other settings as well. [7]
models a caching network as a graph with a cache at each
vertex and explores sizing the individual caches according
to various vertex centrality metrics. [8] studies a multi-tier
caching network, with a possibly different cache size at
each layer. The setting where each user is pre-matched to
a server and the central server communicates with the users
via an error-free broadcast link has been studied recently
under the moniker ‘coded caching’ in [9] and the impact of
heterogeneity in cache sizes in this setting has been explored
in [10]–[12].

A. Contributions

The main contributions of this work can be summarized as
follows:

1) We first consider the case where the content popularity
distribution follows the Zipf distribution (defined in Sec-
tion II-B) with parameter less than 1, which corresponds
to the case where the popularity is comparable across
contents. We show that even if a constant fraction of
the caches are restricted to have small memory size as
compared to the remaining caches, the required expected
server transmission rate can be much larger than a
homogeneous system with the same cumulative memory.

2) Next, we consider the case where the content popularity
distribution follows the Zipf distribution with parameter
larger than 1 and as a result, the content popularity is
more lopsided. Unlike the previous case, even if all the
memory is concentrated in only a vanishing fraction of
the caches, the performance of the system will be similar
to a homogeneous system with the same cumulative
memory.

The above results suggest that caching systems are more
tolerant to heterogeneity in storage under content popularity
distributions which are more lopsided than when popularity is
comparable across contents.

II. SETTING

We study a system consisting of a central server, and
m co-located caches, each with limited storage and service
capabilities. The central server stores n files2 of equal size
(say 1 unit = b bits), where n = Θ(mγ), for some γ ≥ 1.
Users make requests for these files, and the user requests are
served using the caches and the central server.

The system operates in two phases: the first phase is the
placement phase, in which each cache stores content related
to the n files and the next phase is the delivery phase, in
which a batch of requests arrives and are served by the caches
and the central server. While files can be split for storage
and transmission, this work is restricted to uncoded policies
during the placement and the delivery phases. We study the
asymptotic performance of the system as n, m →∞.

2We use the terms ‘content’ and ‘file’ interchangeably.

Central
Server

Root
Node

Caches Users

Content delivery using the central server via the root node
Content delivery using caches

a b c d e f g h

a b

c d

e f g

g

h

g g

g

h

Fig. 2. An illustration of a system consisting of four caches serving three
users. The catalog consists of eight files {a, b, c, d, e, f, g, h}. The first user
requests file h, while the other two request file g. The first user is served by
the first cache. The other two users are served by the central server. Since both
users request for the same file g, the central server sends file g to the root node,
therefore, the transmission rate in this example is one.

A. Storage Model

Cache i has the capacity to store ki units of data. Let M =∑m
i=1 ki denote the cumulative cache memory. Without loss

of generality, we assume caches are arranged in decreasing
order of storage capacity, i.e., if i < j, then ki ≥ kj .

B. Request Model

We assume a time-slotted system. In each time-slot, a
batch of m̃ = ρm (for some ρ < 1) requests arrive from
users according to an i.i.d. distribution. Files are indexed in
decreasing order of popularity.

Numerous empirical studies have shown that content popu-
larity in VoD services follows the Zipf’s law [13]–[16]. Zipf’s
law states that the popularity of the ith most popular content
is proportional to i−β , where β is a positive constant known
as the Zipf parameter. Small values of β imply that content
popularity is comparable across contents while larger values
of β correspond to lopsided popularity distributions. Typical
values of β lie between 0.6 and 2.

C. Service Model

We assume a delay-intolerant uncoded service system, i.e.,
all user requests in a given time slot have to be served
jointly by the caches and the central server in that time-slot
without queuing and coding. To begin with, depending on user
requests, we match users with the caches such that no cache is
matched3 to more than 1 user. Depending on the user requests
and the matching between the users and the caches, the central
server then transmits a message to the root node which then
relays it directly to the users. Using the data received from
the assigned caches and the central server message, each user
should be able to reconstruct the requested file. Refer to Figure
2 for an example.

3The more general setting where each cache can serve upto a ≥ 1 requests
simultaneously has been analyzed in [6] for the case of homogeneous cache
sizes. A similar analysis can be attempted for the case of heterogeneous cache
sizes, however we do not pursue that direction in this paper.

D. Goal

The reason for deploying local caches is that they can help
reduce the load on the bottleneck link between the central
server and the root node. The goal in such systems is to design
efficient storage and service policies to reduce the expected
transmission rate required from the central server to satisfy
all user requests, where the expectation is with respect to the
file popularity distribution. Note that if a content needs to be
delivered by the central server to multiple users in a time-
slot, the central server transmits it to the root node only once.
Our storage and service policies depend on the file popularity
distribution.

In a departure from the existing body of work on content
caching/delivery policies, we characterize the performance
of various caching policies for the setting where storage is
heterogeneous across caches.

III. MAIN RESULTS AND DISCUSSION

In this section, we state and discuss our main results. Proofs
are given in Section V.

We study distributed cache systems characterized as fol-
lows:

Assumption 1 (Distributed Cache System):
– m caches.
– n = mγ files for γ ≥ 1.
– All files are of equal size, normalized to one unit.
– File popularity: Zipf distribution with parameter β.
– Cumulative cache memory is M units, where M = mµ

for µ ≥ 1.
– Each cache can store at least one full file, i.e., ki ≥ 1
∀ i.

– Requests are received in batches of m̃ = ρm, where
ρ < 1. Each request is generated i.i.d. according to the
popularity distribution.

– At most one request in a batch can be allocated to each
cache.

A. Zipf distribution with β ∈ [0, 1)

We first characterize the performance of a distributed cache
system when file popularity follows the Zipf distribution with
parameter β ∈ [0, 1).

In addition to understanding the fundamental limit on the
performance of any policy, we also evaluate the performance
of a policy called Proportional Placement and Maximum
Matching (PPMM) proposed in [17]. [6, Theorem 1] character-
izes the performance of the PPMM policy for a homogeneous
cache system with the number of caches scaling linearly with
the number of files. In the PPMM policy, the number of caches
that store copies of a file are proportional to its popularity.
File copies are stored on caches such that no cache stores the
same file multiple times. Once a batch of requests is revealed,
a bipartite graph G(V1, V2, E) is created, where V1 is the set
of requests, V2 is the set of caches, and E is the set of edges.
There is an edge between v1 ∈ V1 and v2 ∈ V2 if Cache v2 can
serve request v1, i.e., if it stores a copy of the requested file.
Once the bipartite graph is created, the maximum cardinality

matching between the set of requests (V1) and the set of
caches (V2) is found. All the matched requests are served by
the corresponding caches and all the unmatched requests are
served by the central server via the root-node. Note that this
policy satisfies our service constraint that no cache is allocated
more than one request in a batch.

The following result is a straightforward generalization of
[6, Theorem 1] and characterizes the performance of the
PPMM policy for a homogeneous cache system, i.e., a system
where all caches have the same storage capabilities.

Theorem 1: Consider a homogeneous distributed cache
system satisfying Assumption 1 where all caches have equal
storage capacity of M/m units and file popularity follows the
Zipf distribution with parameter β ∈ [0, 1). For this system, let
RPPMM
z[0,1)

be the central server’s transmission rate for the PPMM
policy described above. Then, we have that,

E
[
RPPMM
z[0,1)

]
=

{
O(m) if M < (1− ε)n, ε > 0,

O
(
m2e−

M
n

)
if M ≥ n.

We use this result to characterize the amount of memory
needed in a homogeneous system to ensure that for the PPMM
policy, the expected transmission rate of the central server goes
to zero as the system size m scales.

Corollary 1: Consider a homogeneous distributed cache
system satisfying Assumption 1 where all caches have equal
storage capacity of M/m units and file popularity follows the
Zipf distribution with parameter β ∈ [0, 1). For this system,
let RPPMM

z[0,1)
be the central server’s transmission rate for the

PPMM policy described above. If M ≥ 3n lnm = Ω
(
n lnm

)
,

E
[
RPPMM
z[0,1)

]
= o(1).

We thus conclude that, for a homogeneous distributed cache
system and the PPMM policy, a cumulative cache memory
of M = Ω(n lnm) is sufficient to ensure that the expected
transmission rate of the central server goes to zero as the
system size m scales.

Our next result focuses on a heterogeneous distributed
cache system, i.e., a distributed cache system where storage is
non-uniform across caches. It characterizes the fundamental
limit on the performance of any policy and evaluates the
performance of the PPMM policy for such a system.

Theorem 2: Consider a heterogeneous distributed cache
system satisfying Assumption 1 where file popularity follows
the Zipf distribution with parameter β ∈ [0, 1).

(a) Lower bound on transmission rate: Let R̃∗z[0,1) be the
central server’s transmission rate for optimal policy.
There exists an α(ρ) ∈ (0, 1) such that if a fraction
of the m caches, say m2 = α ·m caches, have at most
O
(
n/m

1
1−β
)

units of memory, then, E
[
R̃∗z[0,1)

]
= ω(1).

(b) Performance of PPMM: Let R̃PPMM
z[0,1)

be the central
server’s transmission rate for the PPMM policy de-
scribed above. Then for any c > 0 and δ < 1, if
a fraction of the m caches, say m1 = (ρ + c)m
caches, have at least Ω(n/mδ) units of memory, then,
E
[
R̃PPMM
z[0,1)

]
= o(1).

Intuitively, the lower bound on the transmission rate for any
policy can be explained as follows. Increasing the number of
contents stored on a cache increases the potential utility of
that cache as it can be used to serve a request for any one
of the stored contents. When storage is non-uniform across
caches and content popularity is comparable across files, the
utility of caches with limited storage capabilities is small since
content popularity being comparable across files ensures that
the fraction of requests for any particular content is small. A
consequence of this is that it is very likely that many caches
with limited memory go unutilized when serving a batch of
requests. A large number of unutilized caches is equivalent to
a large number of requests being served via the central server,
thus increasing its transmission rate.

In the next result, we use Theorem 2(a) and Corollary 1 to
highlight the difference between homogeneous and heteroge-
neous cache systems with the same cumulative memory.

Corollary 2: Let α ∈ (0, 1) be as defined in Theorem 2(a)
and δ > 0. Consider distributed caching systems satisfying
Assumption 1 where file popularity follows the Zipf distri-
bution with parameter β ∈ [0, 1). Consider a heterogeneous
system such that α ·m caches each have at most O

(
n/m

1
1−β
)

units of memory and the remaining (1 − α)m caches each
have memory Θ

(
n/m1−δ). Then, E

[
R̃∗z[0,1)

]
= ω(1).

On the other hand, for a homogeneous system with the
same cumulative cache memory M = Θ

(
n ·mδ

)
as the above

heterogeneous system, we have E
[
RPPMM
z[0,1)

]
= o(1).

B. Zipf distribution with β > 1

We now compare the performances of homogeneous and
heterogeneous systems when file popularity follows the Zipf
distribution with parameter β > 1. The next result provides
lower bounds on the expected transmission rate for a system
with cumulative cache storage of M units.

Theorem 3: Consider a distributed cache system satisfying
Assumption 1 where file popularity follows the Zipf distri-
bution with parameter β > 1. Let R̃∗z>1

denote the optimal
transmission rate for any uncoded storage/service policy.

– If γ ≤ 1

β − 1
,

E
[
R̃∗z>1

]
=

{
Ω
(
m1−µ(β−1)) if M ≤ (1− ε)n, ε > 0,

Ω
(
m

2−µβ
β

)
if M = n,

E
[
R̃∗z>1

]
≥ 0 if M ≥ (1 + ε)n, ε > 0.

– If γ >
1

β − 1
,

E
[
R̃∗z>1

]
= Ω

(
m1−µ(β−1)

)
if M = o

(
m

1
β−1

)
,

E
[
R̃∗z>1

]
≥ 0 if M = Ω

(
m

1
β−1

)
.

Remark 1: Note that this result only depends on the cumu-
lative cache memory and is valid for all storage profiles with
the same amount of cumulative cache memory. This result is a
generalization of a result in [4] which holds only if the number
of files scales linearly with the number of caches, i.e., γ = 1.

C. Knapasack Storage + Match Least Popular Policy

Next, we analyze the performance of a policy called
Knapsack Storage + Match Least Popular policy (KS+MLP),
proposed in [4]. In [4], it was shown that the KS+MLP
policy is orderwise optimal for the homogeneous setting if
the number of caches scales linearly with the number of
files. We first make suitable modifications to the policy to
incorporate heterogeneity in memory across caches and an-
alyze its performance for more general storage profiles. We
describe the modified KS+MLP policy in detail for the sake
of completeness.

The KS+MLP policy comprises of two phases: the place-
ment phase and the delivery phase.

1) Placement Phase: In the placement phase, the goal is to
determine what to store on each cache. This task is completed
in two steps.
Knapsack Storage: Part 1 – In this part, we decide how many
caches store copies of each content by solving a Fractional
Knapsack problem. In the Fractional Knapsack problem, each
object has two attributes, namely, a weight and a value, and
the knapsack has a finite weight capacity. The goal is to
determine which objects should be added to the knapsack to
maximize their cumulative value while the weight constraint
of the knapsack is not violated. In the KS+MLP policy, each
file corresponds to an object. The weight of an object/file
corresponds to the number of caches on which it will be
replicated if selected. The weights are chosen such that with
high probability, all requests for that file can be served using
the caches. More specifically, if file popularity follows the
Zipf distribution with parameter β > 1, the weight of File i,
denoted by wi is assigned the following values.

wi =


m, if i = 1⌈(

1 + p1
2

)
m̃pi

⌉
, if 1 < i ≤ n1,⌈

4p1(logm)2
⌉
, if n1 < i ≤ n2,⌈

1
δ + 1

⌉
, if n2 < i ≤ n,

(1)

where n1 = (m̃p1)
1
β

(logm)
2
β

, and n2 = m
1+δ
β for some δ > 0. The

value of File i is the probability that it is requested at least
once in a batch of requests. The weight capacity of the cache
system is equal to the cumulative cache memory. Using these
parameter values, we solve the following Fractional Knapsack
problem:

max

n∑
i=1

xi(1− (1− pi)m̃)

s.t.
n∑
i=1

xiwi ≤M,

0 ≤ xi ≤ 1, ∀i.

If the solution to the above Knapsack problem gives xi = 1,
we store wi copies of File i else we don’t store File i.

Knapsack Storage: Part 2 – The previous step determines
how many copies of each file will be stored on the caches. The
next task is to store the copies of files on caches. File copies

are sorted in increasing order of the corresponding file index.
For example, consider a system consisting of five caches with
k1 = 3, k2 = 2, k3 = 2, k4 = 1, k5 = 1 units of memory. Say
the solution for Knapsack Storage: Part 1 gives x1 = x2 =
x3 = x4 = x5 = 1 and 0 otherwise, and w1 = 4, w2 = 2,
w3 = w4 = w5 = 1. The sorted list of file copies is illustrated
in Figure 3. Recall that caches are indexed in decreasing order
of memory. The sorted list of file copies is stored on the caches
in a round robin manner, i.e., the next file copy is placed on
the next cache which has a memory slot available, see Figure
3 for an illustration.

Sorted S:
1 1 1 1 2 2 3 4 5

Storage:

Fig. 3. Illustration of Knapsack Storage: Part 2 for a system with five caches.

2) Delivery Phase: In the delivery phase, requests are
allocated to caches for service using the Match Least Popular
policy (MLP), such that each cache is matched to at most one
request. All the matched requests are served by the correspond-
ing caches and all the unmatched requests are assigned to the
central server. As the name suggests, the Match Least Popular
policy matches requests for unpopular files before matching
requests for popular files to caches. Refer to Figure 4 for a
formal definition.

1: initialize i = n, set of idle caches = {1, 2, ...,m}.
2: if the number of requests for File i is more than the

number of idle caches storing File i, then
3: goto Step 8.
4: else
5: match requests for File i to idle caches storing File i,

chosen uniformly at random.
6: update the set of idle caches.
7: end if
8: i = i− 1, goto Step 2.

Fig. 4. Match Least Popular – Matches requests to caches.

The next theorem evaluates the performance of the
KS+MLP policy for a particular sub-class of heterogeneous
distributed cache systems.

Theorem 4: Consider a distributed cache system satisfying
Assumption 1 where file popularity follows the Zipf distribu-
tion with parameter β > 1 and the top (largest) Ω(m2−β+δ)
caches, for any δ > 0 have the same storage size. We have no
restrictions on the storage sizes of the other (smaller) caches.
Let E

[
R̃KS
z>1

]
denote the expected transmission rate of the

KS+MLP policy for this system.

– If γ ≤ 1

β − 1

E
[
R̃KS
z>1

]
=


O
(
m1−µ(β−1)) if M ≤ (1− ε)n, 0 < ε < 1,

O
(
m

2−µβ
β

)
if M = n

O (1) if M ≥ (1 + ε)n, ε > 0.

– If γ >
1

β − 1

E
[
R̃KS
z>1

]
=

O
(
m1−µ(β−1)) if M = o

(
m

1
β−1

)
,

O (1) if M = Ω
(
m

1
β−1

)
.

Remark 2: The key takeaways from this result are:
– If the top Ω(m2−β+δ) caches, for any δ > 0 have

the same memory size, then KS+MLP results match
orderwise with the lower bounds in Theorem 3. Hence,
in this case, the KS+MLP policy is orderwise optimal.

– Homogeneous systems have all caches with equal mem-
ory, and thus Theorem 4 also holds for homogeneous
systems.

Combining Theorems 3 and 4 we have the following result.
Corollary 3: Consider a distributed cache system satisfying

Assumption 1 where file popularity follows the Zipf distribu-
tion with parameter β > 1. If the top Ω(m2−β+δ) caches,
for any δ > 0 have the same memory size, the performances
of the optimal schemes for heterogeneous and homogeneous
systems are orderwise equal.

Compare the above result with Corollary 2 for β < 1,
which considers a heterogeneous cache system that divides a
cumulative cache memory of M = Θ(n ·mδ), δ > 0, amongst
two classes of caches: ‘rich’ caches with larger storage size
and ‘poor’ caches with smaller storage. Corollary 2 shows that
even if only a constant fraction of the caches are restricted
to be poor, it can cause significant disparity between the
performances of heterogeneous and homogeneous systems. On
the other hand, in the same setting for β > 1, Corollary 3
shows that even if as many as m − Ω(m2−β+δ) caches are
restricted to be poor with only one unit of memory, the
performance of the system will be orderwise the same as the
homogeneous system. This suggests that caching systems are
more tolerant to heterogeneity in storage under Zipf distribu-
tions with parameter β > 1 than under Zipf distributions with
parameter β < 1.

Intuitively, this difference can be explained as follows.
When content popularity is lopsided (β > 1), under the
KS+MLP policy, caches with limited storage are used to serve
requests for popular contents and the caches with large storage
which store a mixture of some popular and a large number of
unpopular contents typically are allocated to serve requests for
unpopular contents. This ensures that the low storage caches
are also utilized, unlike the case when content popularity is
comparable across files. Since most caches are utilized, the
number of requests served by the central server is small. As a
result, the effect of storage heterogeneity is lower for lopsided

content popularity distributions as compared to distributions
where it is comparable across files.

Corollary 3 describes a sufficient condition under which the
performances of the homogeneous and heterogeneous systems
remain comparable. Our next result characterizes a degree
of heterogeneity sufficient to ensure that the performance of
the heterogeneous system is orderwise inferior to that of a
homogeneous system with the same amount of cumulative
cache memory.

Theorem 5: Consider a distributed cache system satisfying
Assumption 1 where file popularity follows the Zipf distri-
bution with parameter β > 1. Let R̃∗z>1

denote the optimal
transmission rate for any uncoded storage/service policy. If ∃
a subset S of caches with cumulative memory |MS | such that

– |S| ≥ m−m1−µ(β−1)−δ, for any δ > 0 and
– |MS | ≤ (1− ε)n, for any ε > 0,

then, E[R̃∗z>1
] ≥ Ω

(
m1−µ(β−1)).

We thus conclude that if there is a large enough set of caches
(with cardinality m − m1−µ(β−1)−δ, for any δ > 0) with
cumulative storage less than a constant fraction of the catalog
size, the expected transmission rate can’t be made arbitrarily
small, irrespective of the total cache memory in the system.

Example: Consider a heterogeneous distributed cache sys-
tem with m caches and n = cm (c > 1) files with content
popularity following the Zipf distribution with β > 1. We have
two classes of caches: ‘rich’ and ‘poor’. Let the total cumula-
tive memory in the system be M = (1 + ε)n = (1 + ε)cm for
some ε > 0. Let m1 denote the number of rich caches, each
of which has k � 1 units of memory. The remaining m−m1

poor caches each have 1 unit of memory, see Figure 5 for an
illustration. Thus, we have m−m1 +m1k = M = (1 + ε)n.
For some small δ > 0, Figure 5 depicts two systems with the
same total cumulative memory, in which the number of rich
caches is m1 = m2−β−δ and m1 = m2−β+δ respectively. For
the former system which has fewer number of rich caches,
the expected rate grows as Ω(m2−β) from Theorem 5. On the
other hand, for the latter system which has more rich caches,
Corollary 3 shows that the KS+MLP policy achieves o(1) rate.
So for some small δ, modifying the storage profile to change
the number of rich caches from m2−β−δ to m2−β+δ can have
a dramatic impact on the server transmission rate.

IV. SIMULATION RESULTS

In Section III, we presented asymptotic results as the
system size m grows, which compare the effects of storage
heterogeneity on the server transmission rate as a function of
β (or as a function of the popularity profile). In this section,
we simulate finite size cache systems and empirically validate
some of our theoretical findings.

First, we consider a system which consists of m caches with
total memory M units, n = m files with popularity following
the Zipf distribution with β = 0.3, and m̃ = 0.97m requests.
Similar to the example in the previous section, we consider
two classes of caches: ‘rich’ and ‘poor’, i.e., out of the m
caches, m1 caches (rich caches) each have k units of memory

Fig. 5. Impact of storage heterogeneity on server transmission rates

and the remaining m − m1 caches (poor caches) each have
only 1 unit of memory. As the value of m1 decreases, the
memory is concentrated among fewer caches. For this system,
we simulate the PPMM policy as described in Section III-A
and consider the server transmission rate, averaged over 100
experiments.

Number of files (n)
100 150 200 250 300 350 400 450 500

E[
tra

ns
m

is
si

on
 ra

te
]

0

50

100

150

200
m1=m
m1=m/2
m1=m/10
m1=m/20

Fig. 6. Plot of the average transmission rate vs the number of files (n) for
PPMM policy with m1 = {m, m

2
, m
10
, m
20
}, for a system where the number

of caches (m) = n, the number of requests (m̃) = 0.97n, the Zipf parameter
(β) = 0.3, and the total memory (M) = 3n.

In Figure 6, we fix the total memory to M = m1k +m−
m1 = 3m units and plot the average transmission rate as a
function of number of files n for various values of m1. As
expected, (i) the transmission rate increases with n, and (ii) for
any fixed value of n, the transmission rate increases drastically
as the number of rich caches m1 decreases. As our result in
Corollary 2 suggests, there is significant difference between
the homogeneous and heterogeneous cases.

In Figure 7, we fix m = n = 400 and plot the average server
transmission rate as a function of the cache size k of each of
the m1 rich caches, for various values of m1. As we increase
k, we expect the transmission rate to decrease initially until
all the rich caches serve one request each, and remain constant
thereafter since the storage capacity of the poor caches is fixed
throughout to 1 unit. As expected, (i) for the homogeneous
case, the average transmission rate decreases exponentially
with k until it reaches 0, and (ii) for the heterogeneous case,

Size of each rich cache (k)
1 2 3 4 5 6 7 8 9 10

E[
tra

ns
m

is
si

on
 ra

te
]

0

50

100

150

m1=m
m1=m/2
m1=m/4
m1=m/8

Fig. 7. Plot of the mean transmission rate vs cache size (k) of each of the
m1 rich caches for PPMM policy with m1 = {m, m

2
, m

4
, m

8
}, for a system

where the number of caches (m) = the number of files (n) = 400, the number
of requests (m̃) = 0.97n, and the Zipf parameter (β) = 0.3.

the average transmission rate decreases initially and remains
constant after a certain k, depending upon the heterogeneity
level (m1).

Next, we consider a system which consists of m caches with
total memory M units, n = 5m files with popularity following
the Zipf distribution with β = 1.2, and m̃ = 0.97m requests.
As before, we consider m1 rich caches and m − m1 poor
caches. For this system, we simulate the KS+MLP policy as
described in Section III-B and consider the server transmission
rate, averaged over 100 iterations.

Number of files (n)
1000 1500 2000 2500 3000 3500 4000 4500 5000

E[
tra

ns
m

is
si

on
 ra

te
]

0

50

100

150

200
m1=m
m1=m/10
m1=m/20
m1=m/40

Fig. 8. Plot of the average transmission rate vs the number of files (n)
for KS+MLP policy with m1 = {m, m

10
, m
20
, m
40
}, for a system where the

number of caches (m) = n
5

, the number of requests (m̃) = 0.97n, the Zipf
parameter (β) = 1.2, and the total memory (M) = 3n.

In Figure 8, we fix the total memory to M = m1k +m−
m1 = 3m units and plot the average transmission rate as a
function of number of files n for various values of m1. As
expected, (i) the transmission rate increases with n, and (ii)
for any fixed value of n, unlike the β = 0.3 case (plotted in
Figure 6), the change in transmission rate for different values
of m1 is small. This is in line with our result in Corollary 3,
which suggests that the performances of the homogeneous and
heterogeneous systems are similar.

V. PROOFS

In this section, we prove some of the results stated in
Section III. Refer to [18] for the remaining proofs. 4 Note
that we are interested in orderwise results. In the rest of this
section, we will use ci, where i ∈ N, to represent positive
constants.

4Proofs for homogeneous distributed caches systems are given in [4], [6].

A. Proof of Theorem 1

We analyze the performance of PPMM policy discussed
in Section III for β ∈ [0, 1) using ideas from the proof
of Proposition 1 in [17] which looks at the setting where
the request arrival process is Poisson and γ = 1. We first
show that with high probability, there exists a fractional
matching between the set of requests and the set of caches.
By the total unimodularity of adjacency matrix, the existence
of a fractional matching implies the existence of an integral
matching [17]. Please refer to [18] for the details.

B. Proof of Theorem 2

We use the following lemmas to prove Theorem 2.
Lemma 1: For a Binomial random variable X with mean

µ, for all 0 ≤ δ ≤ 1,

P(X ≤ (1 + δ)µ) ≤ e−δ
2µ/3.

Lemma 2: For a content delivery system satifying Assump-
tion 1 with file popularity following the Zipf distribution with
parameter β ∈ [0, 1), let di represents the number of requests
for File i in a batch. Then, for any δ > 0,

P
(
di ≤ 2mmax{0,1−µ(1−β)}+δ) = O

(
e−m

max{0,1−µ(1−β)}+δ
)
.

Proof: The popularity of File 1 is p1 = 1∑n
i=1 i

−β ≤ 1
n1−β

for large n. Under Assumption 1, the number of requests for
File 1 is Bin(m̃, p1) and the expected number of requests is
≤ m1−γ(1−β). Consider a new Binomial random variable X
with mean mmax{0,1−γ(1−β)}+δ . By Lemma 1,

P
(
di ≤ 2mmax{0,1−γ(1−β)}+δ)

≤ P
(
X ≤ 2mmax{0,1−γ(1−β)}+δ)

= O
(
e−m

max{0,1−γ(1−β)}+δ
)
.

We now prove Theorem 2 which evaluates the performance
of a heterogeneous distributed cache system for β ∈ [0, 1).

Proof: (Theorem 2 – Lower bound on transmission rate)
If a cache stores k units of data, the probability of the

cache being idle is ≥
(
1 − (kn)1−β

)m̃
. If (kn)1−β = 1

c1m
,

i.e., k = Θ(mγ− 1
1−β), and c2m caches have memory less

than k units, then the expected number of idle caches is
≥ c2me−

ρ
c1 . Hence, the expected number of unserved requests

is ≥ m̃ − m + c2me
− ρ
c1 . If c2 > 1−ρ

e
− ρ
c1

, then the number

of unserved requests is Θ(m). From Lemma 2, no file is
requested more than mmax{0,1−γ(1−β)}+δ times for any δ > 0.
Hence, the expected transmission rate between the central
server and the root-node is Ω

(
m

mmax{0,1−γ(1−β)}+δ

)
= ω(1).

Proof: (Theorem 2 – Performance of PPMM)
Consider a new system (System B) by ignoring low memory

(ki < mγ−δ) caches, i.e., System B contains m′ = (ρ +

c3)m caches, n = (m′

ρ+c3
)
γ

files, total memory is M = m′ ∗
mγ−δ , and receives m̃′ = ρ

ρ+c3
m′ requests. Let E[RB] is

expected transmission rate in System B. System B satisfies
the conditions of Corollary 1. Therefore,

E
[
R̃PPMM
z[0,1)

]
≤ E[RB] = o(1).

C. Proof of Theorem 3
We use Proposition 1 in [4] to prove this theorem. The

proof involves evaluating the lower bound characterized in
Proposition 1 in [4] for a system which satisfies Assumption
1. Refer to [18] for the details.

D. Proof of Theorem 4
We use the following lemmas to prove Theorem 4. Please

refer to [18] for the proofs of the lemmas.
The first lemma states that with high probability, all the

requests for files stored by the Knapsack Storage policy are
served by the caches.

Lemma 3: Let R = {i : xi = 1}, where xi is the solution
of the fraction knapsack problem solved in Knapsack Storage:
Part 1. Let E2 be the event that if the top (largest) ω(m2−β+δ)
caches, for any δ > 0, have the same storage size, the Match
Least Popular policy matches all requests for all contents in
R to caches. Then, we have

P(E2) = 1−O(ne−(logm)2).

The next lemma evaluates the performance of the Knapsack
Storage + Match Least Popular (KS+MLP) policy for the case
where content popularity follows the Zipf distribution.

Lemma 4: Consider a distributed content delivery system
satisfying Assumption 1, and the top (largest) ω(m2−β+δ)
caches, for any δ > 0 have the same storage size. Let RKS+MLP
be the transmission rate for the Knapsack Storage + Match
Least Popular policy when content popularity follows the Zipf
distribution with Zipf parameter β > 1. Then for m large
enough, we have

E[RKS+MLP] ≤
∑
i/∈R

1−
(

1− p1
iβ

)m̃
+ O(mne−(logm)2),

where p1 =
(∑n

i=1 i
−β)−1, R = {i : xi = 1}, such that

xi is the solution of the fraction knapsack problem solved in
Knapsack Storage: Part 1.

Proof: (Theorem 4)
Case 1: M ≤ (1− ε)n, 0 < ε < 1
From Lemma 3, if we store File i on wi caches and employ

the Knapsack Storage Policy: Part 2, all the requests for File
i in a batch are served locally with high probability. Consider
an alternative storage policy which starts storing files 2, 3, . . . ,
each on wi caches respectively until the cache memory is
exhausted. This policy stores Files 2, 3, . . . , M−(1−

p1
2)m

d 1δ+1e . Let
E[R] be the expected transmission rate for this policy. By the
definition of fractional knapsack problem, E

[
R̃KSz>1

]
≤ E[R].

Therefore,

E
[
R̃KSz>1

]
= O

(
m1−µ(β−1)

)
.

Case 2: M = n – Refer to [18] for the details.
Case 3: M ≥ (1 + ε)n, ε > 0 – Refer to [18] for the

details.

E. Proof of Theorem 5
Proof: In our system, assume that the cumulative memory

of m − c4m1−µ(β−1)−δ caches (say low memory caches) is
≤ (1− ε)n. Consider a new system with m+ c4m

1−µ(β−1)−δ

caches, such that m caches are similar to our system and the
remaining c4m

1−µ(β−1)−δ caches (say new caches), have n
m

units of memory each. From Theorem 3 Case 1, new caches
+ low memory caches can serve at most m̃ − m1−µ(β−1)

requests, and the remaining c4m1−µ(β−1)−δ caches can serve
at most c4m1−µ(β−1)−δ requests. Hence,

E[R̃∗z>1
] ≥ Ω

(
m1−µ(β−1)).

REFERENCES

[1] YouTube: http://www.youtube.com.
[2] Netflix: www.netflix.com.
[3] Cisco Whitepaper: http://www.cisco.com/c/en/us/

solutions/collateral/service-provider/ip-ngn-
ip-next-generation-network/white_paper_c11-
481360.html.

[4] S. Moharir and N. Karamchandani, “Content replication in large dis-
tributed caches,” arXiv preprint arXiv:1603.09153, 2016.

[5] S. Borst, V. Gupt, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in IEEE INFOCOM, 2010, pp. 1–9.

[6] K. S. Reddy, S. Moharir, and N. Karamchandani, “Resource pooling in
large-scale content delivery systems,” in Communications (NCC), 2017
Twenty-third National Conference on. IEEE, 2017, pp. 1–6.

[7] D. Rossi and G. Rossini, “On sizing ccn content stores by exploiting
topological information,” in Computer Communications Workshops (IN-
FOCOM WKSHPS), 2012 IEEE Conference on. IEEE, 2012, pp. 280–
285.

[8] M. A. Abd-Elmagid, O. Ercetin, and T. ElBatt, “Cache-aided het-
erogeneous networks: Coverage and delay analysis,” arXiv preprint
arXiv:1701.06735, 2017.

[9] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867,
2014.

[10] S. Wang, W. Li, X. Tian, and H. Liu, “Coded caching with heterogenous
cache sizes,” arXiv preprint arXiv:1504.01123, 2015.

[11] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Centralized coded caching
with heterogeneous cache sizes,” in Wireless Communications and
Networking Conference (WCNC), 2017 IEEE. IEEE, 2017, pp. 1–6.

[12] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Transactions on Information The-
ory, vol. 62, no. 6, pp. 3212–3229, 2016.

[13] Y. Liu, F. Li, L. Guo, B. Shen, S. Chen, and Y. Lan, “Measurement
and analysis of an internet streaming service to mobile devices,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 11, pp.
2240–2250, 2013.

[14] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in IEEE INFOCOM,
1999, pp. 126–134.

[15] H. Yu, D. Zheng, B. Zhao, and W. Zheng., “Understanding user behavior
in large scale video-on-demand systems,” in EuroSys, 2006.

[16] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2012,
pp. 310–315.

[17] M. Leconte, M. Lelarge, and L. Massoulie, “Bipartite graph structures
for efficient balancing of heterogeneous loads,” in ACM SIGMETRICS,
2012, pp. 41–52.

[18] K. S. Reddy, S. Moharir, and N. Karamchandani, “Effects
of storage heterogeneity in distributed cache systems,” 2018,
https://www.dropbox.com/s/qoz2q17sh2lmsmh/heterogeneous

