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Abstract—In this paper, a dense Internet of Things (IoT)
monitoring system for computational intensive applications is
studied in which a large number of devices with computing
capability pre-process the collected raw status information into
update packets and contend for transmitting them to the corre-
sponding receivers, using a carrier sense multiple access (CSMA)
scheme. Depending on whether the pre-processing operation
completes when each device senses a channel, two policies
are considered: pre-process-then-Sense policy (PtS) and pre-
processing-while-Sensing policy (PwS). Particularly, under policy
PtS, each device must complete the pre-processing operation
before sensing a channel; while under policy PwS, it performs
the pre-processing operation and senses a channel concurrently.
Here, for policy PwS, if the pre-processing operation is incom-
plete while a sensed channel is available to be used, then each
device will still occupy the channel by sending dummy bits.
For both policies, the closed-form expressions of the average
age of information (AoI) are characterized. Then, a mean-field
approximation framework with guaranteed accuracy is devel-
oped to study the asymptotic performance for the considered
system in the large population regime. Simulation results validate
the analytical results and show that the proposed mean-field
approximation under policy PtS is accurate even for a small
number of devices. It is also observed that policy PtS achieves
a smaller average AoI than policy PwS, revealing that it is
unnecessary for each device to occupy the channel before the
pre-processing operation completes.

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) de-
vices with advanced computing capabilities has significantly
boosted the development of various real-world IoT applica-
tions, such as autonomous driving, smart surveillance, and
predictive maintenance [1]. For these real-time applications,
the time-sensitive status packet (e.g., an image) of the un-
derlying physical process of interest collected by the IoT
device requires certain computation-intensive data processing
operations (e.g., image recognition) to extract the embedded
status information. Thus, to maintain the freshness of the
status information of the physical process at the destination for
effective monitoring and control, it is imperative to take into
account the data processing operations of the status packets.

Recently, there has been increasing attention on the anal-
ysis and optimization of the freshness of status information
for computation-intensive IoT applications [2]–[9]. In these
works, such freshness is quantified using the concept of the
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age of information (AoI), which is defined as the time elapsed
since the generation of the most recently status information
received at the destination [10], [11]. In particular, the works
in [2]–[4] analyze the AoI performance for computation-
intensive status update systems with one device and one
destination. The authors in [5] derive the moment generation
function of the AoI for a computation-intensive status update
system with two sources and one destination. The work in
[6] proposes an optimal sampling and processing offload-
ing policy to minimize the average age of processing for
computation-intensive IoT monitoring system with one device
and one destination. In [7], the authors analyze and minimize
the average peak AoI for a computing-enabled IoT system
with one data aggregator equipped with multiple sources, and
one destination. The works in [8] and [9] study the average
AoI for timely cloud computing, where the status packets
collected by one device must be first processed at cloud
servers and then sent back to the device.

In the existing literature on the analysis and optimization
of the AoI for computation-intensive IoT applications, e.g.
[2]–[9], there is either one source (one device or one data
aggregator) or two sources. Note that, as next generation
IoTs will encompass a large number of IoT devices [12],
it is of great importance to investigate the AoI performance
for ultra-dense computation-intensive IoT systems. The key
challenges for such analysis involve the characterization of the
complex temporal evolution of the AoI under data processing
operations and the strong coupling among a large number
of devices while accessing the channels and processing the
status packets. Although a few works have studied the AoI
in large-scale IoTs, e.g., [13]–[17], they did not consider data
processing operations for the status packets, and, thus, are
not applicable for computation-intensive IoT systems. To date,
the AoI performance remains unknown for ultra-dense IoT
systems for computation-intensive applications.

The main contribution of this work is, thus, a rigorous
analytical characterization of the average AoI for an ultra-
dense computation-intensive IoT system under a carrier sense
multiple access (CSMA) type random access scheme. In
particular, each device with computing capability needs to
pre-process the collected raw status information to extract
the embedded information into an update packet. Depending
on whether an update packet is available when the device
senses a channel under CSMA, we consider two policies:
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pre-process-then-Sense policy (PtS) and pre-processing-while-
Sensing policy (PwS). Under policy PtS, each device must
complete the pre-processing operation to obtain an update
packet before sensing a channel, while under policy PwS, each
device can perform the pre-processing operation and sense
a channel at the same time. Here, under policy PwS, if the
pre-processing operation is not completed when the sensed
channel is available to be used, the device will still occupy
the channel and send dummy bits.

By using the technique of stochastic hybrid systems (SHS)
[18], we characterize the closed-form expressions of the aver-
age AoI of each device for policies PtS and PwS under a given
stationary distribution of the system. Then, we analyze the
asymptotic performance of the two policies for our system in
the large population regime using a mean-field approximation
[19]–[21]. Simulation results validate our analytical results
and show that the proposed mean-field approximation is very
accurate for policy PtS even for a small number of devices.
Moreover, we observe that policy PtS achieves a smaller
average AoI compared with policy PwS. This indicates that it
is not necessary to occupy the channel before the embedded
information is extracted from the raw data.

II. SYSTEM MODEL

As illustrated in Fig. 1, consider a real-time ultra-dense IoT
monitoring systems for computation-intensive applications,
composed of N pairs of identical IoT devices with computing
capability and the associated receivers, and M identical wire-
less orthogonal channels. Let γ ≜ N/M ≥ 1. Each IoT device
monitors the real-time status of the associated underlying
physical process, for which the sensed raw status information
requires certain pre-processing operations (e.g. initial feature
extraction and pre-classification) before being transmitted to
the receiver. Thus, we consider that each device encompasses
a computation server to first pre-process the sensed raw data
(referred to as a computation packet) and a transmitter to
send the processed packet (referred to as an update packet)
to the corresponding receiver afterwards. We consider that
the computation packet of each underlying physical process
arrives randomly at each device, following a Poisson process
of rate λ. As in [5], we adopt a blocking packet management
scheme, under which when the device is busy either pre-
processing or transmitting, any arriving computation packets
will be blocked and dropped.1 We assume that for each
device, the pre-processing time for each computation packet is
exponentially distributed with mean 1/p, as commonly done
in prior art [3]–[5]. We further assume that each device can at
most occupy one channel and the transmission time for each
update packet over each channel is exponentially distributed
with mean 1/µ.

We consider a CSMA-type random access scheme, under
which each device senses the channels before transmitting
its update packets. Note that, each device needs to first pre-
process the computation packet and then transmit the update

1The schemes with preemption in computation and/or transmission are left
for future work.

Fig. 1: Illustration of a real-time IoT monitoring system with N pairs
of IoT devices with computing capability and their corresponding
receivers, and M orthogonal wireless channels.

packet. Depending on whether an update packet is available
when a device senses a channel, we consider two policies:
pre-process-then-Sense policy (PtS) and pre-processing-while-
Sensing policy (PwS). In particular, under policy PtS, each
device can only sense a channel when the pre-processing
operation is completed; and under policy PwS, each device
can sense a channel and pre-process the computation packet
concurrently.

A. CSMA-Type Random Access for Policy PtS

Under policy PtS, for each device, there are four possible
states: Idle (I), proprocessing (P), waiting (W), and trans-
mitting (T). In particular, for a device in state I, if there is
an arriving computation packet, then this device will move
to state P to pre-process the computation packet so as to
obtain an update packet. Then, prior to transmitting the update
packet immediately (i.e., going to state T), as in [14]–[16],
each device will randomly sense one of the channels to check
whether it is occupied or not and move to state W. If the
channel is sensed to be occupied, then the device remains
silent; otherwise, the device still needs to wait for a random
period of time, that is exponentially distributed with rate w.
While waiting, the device keeps sensing the channel to identify
any conflicting transmissions. If any such transmission is
spotted, the device will stop its waiting timer and resume it
when the channel is sensed idle. We adopt idealized CSMA
assumptions, i.e., channel sensing is instantaneous and there
are no hidden nodes, as commonly done in the literature [17],
[22], [23]. Thus, the probability that multiple devices transmit
their packets over any given channel concurrently is zero.

Next, we describe the state transitions of each device under
policy PtS. Let Dn(t) ∈ D ≜ {I,P,W,T} be the state of
device n at time t. Then, let Xd(t) ≜ 1

N

∑N
n=1 1 (Dn(t) = d)

be the fraction of devices in state d ∈ D at t, where 1(·)
is the indicator function. Let X(t) ≜ (Xd(t))d∈D. Note
that, as all devices are exchangeable, we have E[Xd(t)] =
1
N

∑N
n=1 Pr[Dn(t) = d] = Pr[Dn(t) = d] [19].

Under policy PtS, the state dynamics {Dn(t)} of each
device will be a continuous-time Markov chain (CTMC), as
illustrate in Fig. 2(a). In particular, the device moves from state

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

               ISBN 978-3-903176-37-9 © 2021 IFIP



(a) (b)
Fig. 2: Illustration of the state transition diagram of the CTMC of
each device. (a) Policy PtS. k = w(1 − γXT(t)). (b) Policy PwS.
k = w(1− γ(XT(t) +XP(t))).

I to state P when there is an arriving computation packet,
which occurs with rate λ, and moves from state P to state
W when the pre-process operation completes which occurs
with rate p. When the device is in state W, the probability
of finding an idle channel is 1 − 1

MNXT(t) = 1 − γXT(t).
Thus, the transmission rate from from state W to state T is
w(1 − γXT(t)), which is referred to as the effective rate k.
Finally, the device moves from state T to state I with rate µ
if it completes the transmission of one update packet.

B. CSMA-Type Random Access for Policy PwS

Under policy PwS, if a new computation packet arrives
at an idle device, then the device starts to concurrently pre-
process the computation packet and senses the channels in
the same manner to that under policy PtS. When the device
finishes the waiting period and successfully finds an idle
channel, we consider that the device will immediately occupy
the channel regardless whether the pre-processing operation is
completed or not. Particularly, if the pre-processing operation
is completed, then the device will transmit the obtained update
packet; otherwise, the device keeps sending dummy bits until
the pre-processing operation completes and an update packet
is available. Here, the use of dummy bits is commonly adopted
in the literature of CSMA (e.g., [17], [23] and [24]), which
guarantees that the transmission over this particular channel
can be identified by other devices so as to avoid transmission
collisions. We can see that, under policy PwS, there are also
four possible states for each device: idle (I), waiting while pre-
processing (W), pre-processing while transmitting dummy bits
(P), and transmitting the update packet (T).

Next, we describe the state transitions of each device under
policy PwS. With abuse of notation, let Dn(t) and Xd(t)
be the state of each device at t and the fraction of devices
in state d ∈ D ≜ {I,W,P,T} at t, respectively. Under
policy PwS, the state dynamics {Dn(t)} of each device is
a CTMC, as illustrated in Fig. 2(b). In particular, the device
moves from state I to state W when there is an arriving
computation packet, which occurs with rate λ. When the
device is in state W, the probability of finding an idle channel
is 1 − 1

MN(XT(t) + XP(t)) = 1 − γ(XT(t) + XP(t)). Let
Ψ be the event that the pre-processing operation completes
within the waiting period and Ψ̄ be its complement event.
Note that, the waiting time Tw and the pre-processing time Tp

are independently, exponentially distributed with parameters
k ≜ w(1−γ(XT(t)+XP(t))) and p, respectively. Then, we can

obtain the probabilities of the events Ψ and Ψ̄, respectively,
given by, Pr[Ψ] = Pr[Tw > Tp] =

p
k+p and Pr[Ψ̄] = k

k+p .
Thus, the device moves from state W to state T and to state P,
with rates kPr[Ψ] = kp

k+p and kPr[Ψ̄] = k2

k+p , respectively.
When the device is in state P, if the pre-processing operation
completes, then it goes to state T with rate p. Finally, the
device moves from state T to state I with rate µ.

C. Average AoI Metric

The status information carried in the computation packet
starts aging as soon as the packet enters the computation
server of each device. In this work, we adopt the AoI as
the performance metric to quantify the freshness of the status
information at the associated receiver of each device. At time
t, if the most recently received update packet is timestamped
u(t), then the instantaneous AoI at the receiver is defined as
∆(t) = t−u(t) [10]. We are interested in deriving the average
AoI of each device, given by ∆̄ ≜ limτ→∞

1
τ

∫ τ

0
∆(t), for the

considered large-scale IoT system in the stationary regime un-
der policies PtS and PwS. Let π ≜ (πd)d∈D be the stationary
distribution of the CTMC of each device. From Fig. 2, it can
be seen that the CTMCs are non-homogeneous with time-
varying transition rates, for which it is generally impossible
to calculate each corresponding stationary distribution. Thus,
in the following, we will first analyze the average AoI of each
device for both policies under a given stationary distribution,
and then develop a mean-field approach to characterize the
stationary distributions under the two policies for our system
with a large number of devices.

III. AVERAGE AOI ANALYSIS

In this section, we derive the expressions of the average
AoI of each device under a given stationary distribution π
for policies PtS and PwS. Note that, the traditional graphical
approach for calculating the average AoI involves evaluating
the correlations between the system times and the inter-arrival
or inter-departure times. However, such a approach would
be very challenging for the considered complex system in
which the packets need to be pre-processed and wait before
being transmitted. To avoid the challenge, we apply the SHS
approach [18] to calculate the average AoI of each device.
Next, we first briefly present the idea of the SHS approach
for AoI analysis and the details can be found in [18].

A. Preliminaries of the SHS Approach

For AoI analysis, the SHS is modeled as a hybrid state
(q(t), z(t)), where q(t) ∈ Q = {0, · · · , Q} is a finite-
state CTMC that describes the occupancy of the system and
z(t) = [z0(t) · · · zn(t)] ∈ R1×(n+1) describes the continuous-
time evolution of age-related processes in the system. The
CTMC q(t) can be represented as a graph (Q,L) where
each state q ∈ Q is a node and each transition l ∈ L is a
directed edge ≜ (ql, q

′
l) with transition rate λ(l)δql,q(t). Here

the Kronecker delta function δql,q(t) ensures that transition
l occurs only when q(t) = ql. When transition l occurs,
the discrete state ql jumps to q′l and the continuous state z
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is reset to z′ = zAl, where Al ∈ {0, 1}(n+1)×(n+1) is a
binary transition reset map matrix. With each discrete state q,
the continuous state z(t) evolves as the differential equation
ż(t) = bq . Here, bq ≜ [bq,0 · · · bq,n] ∈ {0, 1}1×(n+1) is a
binary vector where bq,j equals to 1 if zj(t) grows at a unit
rate in state q and bq,j equals to 0 if zj(t) is irrelevant in state
q and does not need to be tracked.

Let L′
q ≜ {l ∈ L : q′l = q} and Lq ≜ {l ∈ L : ql = q} be,

respectively, the set of incoming and outgoing transitions for
each state q. According to [18, Theorem 4], if the CTMC q(t)
is ergodic with stationary distribution π ≜ [π0 · · ·πQ] and we
can find a non-negative vector v ≜ [v0 · · ·vQ] such that

vq

∑
l∈Lq

λ(l) = bqπq +
∑
l∈L′

q

λ(l)vqlAl,∀q ∈ Q, (1)

then the average AoI is given by

∆̄ =
∑
q∈Q

vq0. (2)

B. Characterization of Average AoI
We now use the SHS approach to derive the expressions

of the average AoI of each device for our considered system
under a given stationary distribution for policies PtS and PwS.

1) Policy PtS: We begin with policy PtS. To use the SHS
approach, we model the state of each device of our system un-
der policy PtS with the discrete state q(t) ∈ Q = {0, 1, 2, 3},
where 0, 1, 2, and 3 indicate states I, P, W, and T, respectively.
The continuous state for this system is z(t) = [z0(t) z1(t)],
where z0(t) is the current AoI ∆(t) at the associated receiver
for the device and z1(t) is the age of the packet at the
device, when there is either a computation packet being
pre-processed or an update packet in waiting or in service,
otherwise z1(t) is irrelevant and is set to 0. Here, we would
like to emphasize that there is no need to differentiate the age
of the computation packet and the age of the update packet,
and, thus, the calculations for using the SHS approach can be
greatly reduced. With abuse of notation, let k = w(1− γπT)
be the effective waiting rate under the stationary distribution
π for policy PtS. We illustrate the SHS Markov chain of q(t)
in Fig. 3 and summarize the corresponding transitions in Table
I, which are further explained in the following.

• l = 1: A computation packet arrives at the device in state
I, which occurs with rate λ. With this arrival, z′0 = z0
remains unchanged as it does not yield an AoI reduction
at the receiver. Since the arriving arriving computation
packet is fresh and its age is zero, we have z′1 = 0.

• l = 2: The device completes the pre-processing operation
of the computation packet at a rate of p and starts to
sense one of the channels. In this transition, the AoI at
the receiver remains the same, i.e., z′0 = z0. Although the
computation packet becomes the update packet, the age
of the packet currently at the device remains the same.

• l = 3: The device finds an idle channel and finishes the
waiting period with rate k. This does not change the AoI
at the receiver nor the age of the device’s current packet.
Thus, we have z′0 = z0 and z′1 = z1.

Fig. 3: Illustration of the SHS Markov chain under policy PtS.

• l = 4: The device completes its transmission service at
a rate of µ. With this transition, the AoI at the receiver
is reset to the age of the packet at the device that is
delivered, i.e., z′0 = z1. Since there is no packet at the
device, z′1 is irrelevant, and, thus, is set to zero.

For the differential equation governing the evolution of the
age-related processes z(t), it can be seen that the AoI at the
receiver ∆(t) = z0(t) always increases at a unit rate with time
t in all the discrete states, i.e., ż0(t) = 1,∀q ∈ Q. On the
contrary, the age of the packet at the device z1(t) increases
at a unit rate in state q = 1, 2, 3 in which there is either a
computation packet or an update packet at the device. Thus,
the evolution of z(t) depends on the discrete state q(t). In
particular, when q(t) = q, we have

ż(t) = bq =

{
[1 0], if q = 0,

[1 1], if q = 1, 2, 3.
(3)

From Fig. 3, the stationary distribution π of q(t) satisfies
the following detailed balance equations:

λπ0 = pπ1 = kπ2 = µπ3, (4a)
π0 + π1 + π2 + π3 = 1. (4b)

Then, we have:

π = [π0 π1 π2 π3] =
1

1
λ + 1

p + 1
k + 1

µ

[
1

λ

1

p

1

k

1

µ

]
. (5)

Next, we calculate v = [v00 v01 v10 v11 v20 v21 v30 v31] in
(1). By Table I and (3), we have

λ[v00 v01] = π0[1 0] + µ[v31 0], (6a)
p[v10 v11] = π1[1 1] + λ[v00 0], (6b)
k[v20 v21] = π2[1 1] + p[v10 v11], (6c)
µ[v30 v31] = π3[1 1] + k[v20 v21]. (6d)

According to (2), after complex calculations of (6), we can
obtain the closed-form expression of the average AoI of each
device for our system under the stationary distribution π for
policy PtS, given by ∆̄PtS = v00 + v01 + v11.

2) Policy PwS: Following the SHS approach for policy PtS,
we next derive the expression of the average AoI of each
device for our considered system under π for policy PwS.
Similarly, to model the system under policy PwS using the
SHS approach, the discrete state is q(t) ∈ Q = {0, 1, 2, 3},
where 0, 1, 2, and 3 indicate states I, W, P, and T, respectively,
and the continuous state is z(t) = [z0(t) z1(t)], which is
the same to that for policy PtS. With abuse of notation, let
k = w(1 − γ(πT(t) + πP(t))) be the corresponding effective
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TABLE I: Transitions for the SHS Markov chain under policy PtS
in Fig. 3.

l ql → q′l λ(l) z′ = zAl Al vqlAl

1 0 → 1 λ
[
z0 0

] [
1 0
0 0

] [
v̄00 0

]
2 1 → 2 p

[
z0 z1

] [
1 0
0 1

] [
v̄10 v̄11

]
3 2 → 3 k

[
z0 z1

] [
1 0
0 1

] [
v̄20 v̄21

]
4 3 → 0 µ

[
z1 0

] [
0 0
1 0

] [
v̄31 0

]

Fig. 4: Illustration of the SHS Markov chain under policy PwS.

waiting rate under π. Then, the SHS Markov chain of q(t)
is illustrated in Fig. 3 and the corresponding transitions are
summarized in Table I and explained below.

• l = 1: A computation packet arrives at the device in
state I, which occurs with rate λ, and the device moves
from state I to W. In this transition, z′0 = z0 remains
unchanged and z′1 = 0 because the packet is fresh.

• l = 2: The device finishes the waiting period and goes
to state P if the processing operation is not completed,
which occurs with rate k2

k+p . In this transition, the AoI
at the receiver remains unchanged, i.e., z′0 = z0. As
the device is still pre-processing the computation packet,
no age reduction occurs for the packet currently at the
device, i.e., z′1 = z1.

• l = 3: The device finishes the waiting period and goes to
state T if the processing operation is completed, which
occurs with rate kp

k+p . This does not change the AoI at
the receiver, i.e., z′0 = z0. Although the computation
packet becomes the update packet, the age of the packet
currently at the device remains unchanged, i.e., z′1 = z1.

• l = 4: The device completes the pre-processing operation
of the computation packet at a rate of p and starts to
transmit the update packet instead of the dummy bits.
However, this does not change the AoI at the receiver
nor the age of the device’s current packet.

• l = 5: The device completes its transmission with rate µ.
The AoI at the receiver is reset to the age of the packet
at the device that is delivered, i.e., z′0 = z1. As there is
no packet at the device, z′1 is set to zero.

It can be easily seen that, the evolution of z(t) under policy
PwS is governed by the same differential equations as in (3).
By Fig. 4 and Table II, the stationary distribution π of q(t)
satisfies the following system of linear equations:

λπ0 = (
k2

k + p
+

kp

k + p
)π1 = µπ3, (7a)

k2

k + p
π1 = pπ2, (7b)

TABLE II: Transitions for the SHS Markov chain under policy PwS
in Fig. 4.

l ql → q′l λ(l) z′ = zAl Al vqlAl

1 0 → 1 λ
[
z0 0

] [
1 0
0 0

] [
v̄00 0

]
2 1 → 2 k2

k+p

[
z0 z1

] [
1 0
0 1

] [
v̄10 v̄11

]
3 1 → 3 kp

k+p

[
z0 z1

] [
1 0
0 1

] [
v̄10 v̄11

]
4 2 → 3 p

[
z0 z1

] [
1 0
0 1

] [
v̄20 v̄21

]
5 3 → 0 µ

[
z1 0

] [
0 0
1 0

] [
v̄31 0

]
kp

k + p
π1 + pπ2 = µπ3, (7c)

π0 + π1 + π2 + π3 = 1. (7d)

Then, we have:

π = [π0 π1 π2 π3]

=
1

1
λ + k

(k+p)p + 1
k + 1

µ

[
1

λ

1

k

k

(k + p)p

1

µ

]
. (8)

Then, according to (2), we can calculate the average AoI of
each device under π for policy PwS as ∆̄PwS = v00+v01+v11,
where v00, v01 and v11 satisfy the following linear system of
equations by (1):

λ[v00 v01] = π0[1 0] + µ[v31 0], (9a)

(
k2

k + p
+

kp

k + p
)[v10 v11] = π1[1 1] + λ[v00 0], (9b)

p[v20 v21] = π2[1 1] +
k2

k + p
[v10 v11], (9c)

µ[v30 v31] = π3[1 1] +
kp

k + p
[v10 v11] + p[v20 v21]. (9d)

Next, we summarize the closed-form expressions of the
average AoI of each device for policies PtS and PwS.2

Theorem 1: Under the stationary distribution π, for each
device, the average AoI under policies PtS and PwS are,
respectively, given as follows:

∆̄PtS =
1

λ
+

1

k
+

2

µ
+

1

p

+
1

1
λ + 1

p + 1
k + 1

µ

(
1

p2
+

1

k2
+

1

pk
− 1

λµ

)
, (10)

∆̄PwS =
1

λ
+

1

k
+

2

µ
+

k

p(k + p)
+

1
1
λ + k

(k+p)p + 1
k + 1

µ

×(
1

k2
+

1

p(k + p)
+

k

p2(k + p)
− 1

λµ

)
. (11)

From Theorem 1, we can see that in the limiting case with
both the computation rate p and the effective waiting rate k
going to infinity (i.e., the device can obtain an update packet
and transmit it upon immediately upon a new computation
packet arrives), the average AoI for both polices are given by

lim
p,k→∞

∆̄PtS = lim
p,k→∞

∆̄PwS =
1

λ
+

2

µ
− 1

λ+ µ
, (12)

2All proofs are omitted due to space limitations.
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which is the same to the average AoI in an FCFS M/M/1/1
queue [25]. Moreover, in the limiting case with the compu-
tation rate p going to infinity, we can see that policy PtS is
equivalent to policy PwS with the same average AoI. Note
that, we cannot directly compare the average AoI between
policies PtS and PwS, based on the closed-form expressions
under a given stationary distribution in Theorem 1. This is
because that the stationary distributions of the two policies
would be different under the same system parameters, which
can be seen from the CTMCs in Figs. 2(a) and 2(b). We
will compare the average AoI for the two policies in the
simulations. Theorem 1 provides rigorous analytical charac-
terizations of the average AoI of each device for policies PtS
and PwS under a given stationary distribution π. Next, we
analyze π under the two policies for our system in an ultra-
dense regime with a large number of devices by a mean-field
approximation [19]–[21].

IV. MEAN-FIELD ANALYSIS FOR DENSE IOTS

As mentioned earlier, it is generally impossible to calculate
the stationary distribution π of the CTMCs in Fig. 2 for the
considered system with a large number of devices, because of
the resulting large state space, and the non-linear and time-
varying transition rates [26]. Consequently, we adopt a mean-
field approach to characterize π under policies PtS and PwS
for our system in the mean-field regime in which, the number
of the devices N goes to infinity and the number of channels
M scales with N according to M = N/γ.

A. Mean-Field Analysis for Policy PtS

Under policy PtS, recall that X(t) ≜ (Xd(t))d∈D is the
fraction of devices in each state d ∈ D at t. Then, by Fig. 2(a),
the random process {X(t), t ≥ 0} for a finite N is a Markov
process with the state space {0, 1

N , · · · , N−1
N , 1}4 and the

following transition rates:

X 7→ X +
1

N
(−1, 1, 0, 0) at rate NλXI,

X 7→ X +
1

N
(0,−1, 1, 0) at rate NpXP,

X 7→ X +
1

N
(0, 0,−1, 1) at rate Nw(1− γXT)XW,

X 7→ X +
1

N
(1, 0, 0,−1) at rate NµXT.

(13)

The form of the transitions in (13) indicates that {X(t), t ≥
0} is a density-dependent population process [19] and the cor-
responding mean-field model (N → ∞) can be characterized
by the following ordinary differential equation (ODE):

ẋ = f(x) = lim
dt→0

E[X(t+ dt)−X(t) | X(t) = x]

dt
, (14)

where x ≜ (xI, xP, xW, xT). From (13), we have
ẋI = −λxI + µxT,

ẋP = λxI − pxP,

ẋW = pxP − w(1− γxT)xW,

ẋT = w(1− γxT)xW − µxT.

(15)

Then, by proving that the function f(x) is Lipschitz continu-
ous, and the mean-field model in (15) is locally exponentially

stable and globally asymptotically stable, we can show the
following theorem.

Theorem 2: Under policy PtS, the mean-field model in (15)
is accurate for the considered system in both the transient and
stationary regimes.

1) For the transient regime with a finite time horizon [0, T ],
if the initial state X(0) → x0 ∈ [0, 1]4 as N → ∞
almost surely, then for any T > 0, we have

lim
N→∞

sup
t≤T

∥X(t)− x(t)∥ = 0, almost surely, (16)

where x(t) is the solution to the ODE in (15) with
x(0) = x0.

2) For the stationary regime with T → ∞, the stationary
distribution π of the CTMC {X(t), t ≥ 0} converges
weakly to x∗ as N → ∞ with the rate of convergence:

|E[π]− x∗| = O(
1

N
), (17)

where x∗ is the unique equilibrium point of the mean-
field model in (14) and is given by:

x∗
I =

µ

λ
x∗

T , x∗
P =

µ

p
x∗

T , x∗
W =

µx∗
T

w(1− γx∗
T)

,

x∗
T =

1

2wγ( 1
µ
+ 1

λ
+ 1

p
)

(
w(

1 + γ

µ
+

1

λ
+

1

p
) + 1

−

√(
w(

1 + γ

µ
+

1

λ
+

1

p
) + 1

)2 − 4w2γ

µ
(
1

µ
+

1

λ
+

1

p
)

)
.

Moreover, the average AoI ∆̄PtS(π) converges weakly to
∆̄PtS(x

∗) with the rate of convergence:∣∣E[∆̄PtS(π)]− ∆̄PtS(x
∗)
∣∣ = O(

1

N
). (19)

In (17) and (19), the expectation is taken over the
stationary distribution π for the system with finite N .

B. Mean-Field Analysis for Policy PwS

Similar to that for policy PtS, by Fig. 2(b), we know that,
for a finite N , the CTMC {X(t), t ≥ 0} under policy PwS
is a density-dependent population process with the following
transition rates:

X 7→ X +
1

N
(−1, 1, 0, 0) at rate NλXI,

X 7→ X +
1

N
(0,−1, 1, 0) at rate

N
w2(1− γ(XP +XT))

2

w(1− γ(XP +XT)) + p
XW,

X 7→ X +
1

N
(0,−1, 0, 1) at rate

N
w(1− γ(XP +XT))p

w(1− γ(XP +XT)) + p
XW,

X 7→ X +
1

N
(0, 0,−1, 1) at rate NpXP,

X 7→ X +
1

N
(1, 0, 0,−1) at rate NµXT.

(20)
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Fig. 5: Average AoI versus the computation rate p under a given
stationary distribution. λ = 1, µ = 1, and k = 2.

Then, we can characterize the corresponding mean-field model
(N → ∞) by ẋ = f(x), where x ≜ (xI, xW, xP, xT) and

ẋI = −λxI + µxT,

ẋW = λxI − w(1− γ(xP + xT))xW,

ẋP =
w2(1− γ(xP + xT))

2

w(1− γ(xP + xT)) + p
xW − pxP,

ẋT =
w(1− γ(xP + xT))p

w(1− γ(xP + xT)) + p
xW + pxP − µxT.

(21)

Next, by proving that the function f(x) is Lipschitz contin-
uous, we show that the mean-field model in (21) is accurate
for our system under policy PwS in the transient regime.

Theorem 3: Under policy PwS, if the initial state X(0) →
x0 ∈ [0, 1]4 as N → ∞ almost surely, then for any T > 0,
we have

lim
N→∞

sup
t≤T

∥X(t)− x(t)∥ = 0, almost surely, (22)

where x(t) is the solution to the ODE in (21) with x(0) = x0.
Note that, for policy PwS, due to the complex terms in (21),

we are not able to prove the locally exponentially stability
and globally asymptotically stability of the mean-field model.
Thus, the convergence results for the stationary regime as in
Theorem 2 could not be shown theoretically for policy PwS.

V. SIMULATION RESULTS AND ANALYSIS

We now present numerical results to illustrate the average
AoI for policies PtS and PwS under a given stationary
distribution in Theorem 1, the accuracy of the mean-field
approximation in Theorems 2 and 3, and the average AoI
achieved by the two policies in the mean-field limit.

In Fig. 5, we provide the analytical results obtained in
Theorem 1 and the simulation results obtained by averaging
over 50,000 computation packet arrivals, for the average AoI
under policies PtS and PwS. We observe that the simulation
results agree closely with the analytical results thus validating
the closed-form expressions of the average AoI derived in
Theorem 1. We also observe that, for a given effective waiting
rate k, policy PwS achieves a smaller average AoI than policy
PtS. However, this does not hold for the case in which the
effective waiting rate k is not fixed and depends on the system
parameters, as will be shown next.
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Fig. 6: The evolutions of the fraction of IoT devices in state I for
the CTMC X(t) under policy PtS with various numbers of devices
N . λ = 0.8, µ = 1.5, w = 2, γ = 5, and p = 0.8. (a) N = 10. (b)
N = 100. (c) N = 1000.
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Fig. 7: The evolutions of the fraction of IoT devices in state I for
the CTMC X(t) under policy PwS with various numbers of devices
N . λ = 0.8, µ = 1.5, w = 2, γ = 5, and p = 0.8.

Then, we simulate the considered system for population
sizes of N = 10, N = 100, and N = 1000 of devices and
illustrate the evolution of the fraction of devices in state I
under policies PtS and PwS in Figs. 6 and 7, respectively.
Each subfigure contains three curves: one simulation trajectory
XI(t), the average of 10,000 runs of simulation trajecto-
ries E[XI(t)], and the mean-field approximation xI(t). From
Figs. 6 and 7, we can see that the simulation results of one
trajectory converges XI(t) to the mean-field approximation
xI(t) as N increases, under both polices PtS and PwS.
Moreover, under policy PtS, from Fig. 6, we observe that
the averaged simulation result E[XI(t)] is very close to the
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Fig. 8: Performance comparison between policies PtS and PwS in
the mean-field limit under varying arrival rates λ. µ = 1.5, w = 2,
γ = 5, and p = 0.8. (a) The average AoI. (b) The fraction of devices
occupying the channels.

mean-field approximation xI(t), even when N = 10.
Finally, in Fig. 8, we show the average AoI and the fraction

of devices occupying the channels achieved by policies PtS
and PwS with difference arrival rates in the mean-field limit.
From Fig. 8(a), surprisingly, we obverse that policy PtS
achieves a smaller average AoI compared with policy PwS.
This indicates that it is not necessary to occupy the channel
before the pre-processing operation completes. The reason
is that, under policy PwS, although the fraction of devices
xP + xT that are occupying the channels (i.e., transmitting
dummy bits in state P or update packet in state T) is higher
than xT under policy PtS, there are fewer devices that are
transmitting update packets compared with policy PtS, as
shown in Fig. 8(b). Moreover, we observe that, for both
policies, the average AoI first decreases and then increases
with the arrival rate λ. This is because as λ increases, the
effective waiting rate k decreases as there will be more devices
occupying the channels.

VI. CONCLUSION

In this paper, we have studied the average AoI performance
for a ultra-dense computation-intensive IoT monitoring system
under a CSMA-type random access scheme. Depending on
whether the pre-processing operation completes when sensing
a channel under CSMA, we have considered two polices, i.e.,
policies PtS and PwS. For each policy, we have characterized
the closed-form expressions of the average AoI of each device
for a given stationary distribution of the system. Then, we have
proposed a mean-field approximation approach to investigate
the asymptotic performance of our considered system with
a large number of devices. Simulation results corroborate
the correctness of the derived expressions of the average
AoI and shown that the mean-filed approximation is very
accurate under policy PtS even for a small number of devices.
Moreover, the results show that policy PtS achieves a smaller
average AoI than policy PwS, indicating that it is unnecessary
for a device to occupy a channel before completing the pre-
processing operation.
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