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Abstract—The Least Recently Used (LRU) policy is widely used
in caching, since it is computationally inexpensive and can be
implemented ‘on-the-fly.’ However, existing analyses of content-
wise hit-rates under LRU have expressions whose complexity
grows rapidly with the buffer size. In this paper, we derive a
simple yet accurate approximation for the LRU content-wise hit-
rates under Zipf-distributed requests, in the regime of a large
content population. To this end, we map the characteristic time
of a content in the LRU policy to the classical Coupon Collector’s
Problem (CCP). We justify the accuracy of these approximations
by showing analytically that the characteristic time concentrates
sharply around its mean. Our bounds highlight and quantify the
impact of cache-size scaling as well as the variations in content
popularity on the accuracy of the hit-rate estimates. Specifically,
we show that these estimates become more accurate with a
decrease in Zipf parameter β or an increase in the cache-size
scaling. Finally, our analysis of the CCP with Zipf-distributed
coupons could be of independent interest.

Index Terms—Sensor networks, hit-rate, Zipf’s law, LRU,
characteristic time, Coupon Collector’s Problem (CCP), Chernoff
bound.

I. INTRODUCTION

D ISTRIBUTED content caching has been employed in

networks on a large scale owing to its well-known

advantages [1]. Caching contents close to the end-users in a

network serves to minimize the load on the network back-end

by transferring it towards the network end-nodes. Moreover,

the reduction in the back-end traffic saves precious network

bandwidth and decreases content-delivery latency. However,

owing to physical resource constraints, caches are capable of

storing only a small fraction of the entire content catalogue.

This is further exacerbated by the ever-increasing content pop-

ulation. Hence, optimal cache replacement strategies aimed at

minimizing the number of deferred requests must be devised.

It is a well-established fact in literature that, given a fixed

cache-size, caching the most popular contents is optimal [2].

However, this optimality is achieved at the cost of a large

memory1 (equal to number of content types). This memory

requirement arises from the need to estimate content popu-

larities from the incoming content requests so that contents

with higher popularity can be accomodated in the cache.

Least Frequently Used (LFU) being the most basic among

1Memory refers to the amount of resources required for the execution of
these caching algorithms, i.e., their space complexity.

such policies, replaces cached contents based on frequency

measurements of past requests2. On the other hand, the Least

Recently Used (LRU) policy, while sub-optimal [7], is widely

used owing to certain desirable properties. Specifically, LRU

does not require the popularity estimates of content requests,

and is hence computationally inexpensive. Also, it requires a

much smaller memory, equal in size to the cache.

The probability that a particular content is available in the

cache upon request, referred to as that content’s hit-rate, is an

important quantity in understanding the caching performance.

Exact hit-rates for the LRU policy were derived in [7] and [8];

however the complexity involved in computing these hit-rates

grows exponentially in the number of objects and cache-size.

As a result, finding approximate hit-rate expressions that have

significantly lower computational complexity while maintain-

ing reasonable accuracy has received significant attention in

the literature [9]–[11]. Moreover, these performance estimates

have been used in the recent literature to simplify the analyses

of complex hierarchical caching topologies [12].

In this paper, we propose an accurate approximation for the

content-wise hit-rates of LRU policy under Zipf distributed

requests, in the regime of a large object population. Our

analysis is based on relating the characteristic time [12]

of a content in the LRU policy to the classical Coupon

Collector’s Problem (CCP) [13]. We show analytically that

the characteristic time enjoys a tight concentration about its

mean, thereby justifying as well as quantifying the accuracy

of such approximations. Further, we show that the accuracy

of the hit-rate estimate improves with a decrease in the Zipf

parameter β or an increase in the cache-size scaling.

We believe that our analysis of the CCP with Zipf-

distributed coupons is of independent interest, since the CCP

is a classical problem with applications in several areas of

engineering, linguistics and biology.

A. Related Work

Several studies, using empirical data from traces of web

proxy caches, have shown that content request distributions

strongly follow the Zipf’s law with varying exponents [14],

2Several methods have been proposed in the literature to estimate the
content popularity at lower costs [3]–[6].
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[15]. Works by [6] and [16] exploit this Zipfian nature

of requests to propose design rules for the sizing of web

caches that implement LFU policy to achieve the desired hit-

rate requirements. Our study, on the other hand, focuses on

providing accurate hit-rate estimates under Zipf requests for

the much simpler to implement LRU policy in a cache of

fixed size. Subsequent to the analyses by [7] and [8] that

provided exact hit-rates for the LRU policy, Dan et al. [9]

obtained approximate hit-rates with much lower computational

complexity.

Fagin [10] introduced a useful approximation for LRU under

the independent reference model (IRM) which was that in the

asymptotic sense, LRU hit-rate converges to that of a time-

to-live (TTL) cache with its timer set to a time for which the

expected working set size equals the cache-size. Che et al. [12]

furthered this work by proposing a simple approach to estimate

LRU hit-rates using certain approximations and by coming up

with the notion of a characteristic time of the cache. The

accuracy of the hit-rates and the scope of this approximation

were further investigated in [17]. Our approximate hit-rates

could be considered as a discrete time equivalent of Che’s

approximation given in [12], [17] with results that prove

asymptotic accuracy and provide the associated convergence

rates under Zipf requests. Similar to our approach, the expres-

sions in [10], [12], [17] also relate to the expected waiting

time for the CCP. However, unlike these prior works, along

with providing approximate hit-rates for the LRU policy under

Zipf requests, we also provide concentration bounds on the

waiting time, which serve to quantify the accuracy of these

approximations.

More recently, a closely related work [18] extends the LRU

approximation beyond the IRM to multiple content request

flows that form independent stationary and ergodic processes.

They prove asymptotic accuracy given a fixed cache-size

scaling for a large class of popularity distributions. However,

owing to this generality in distribution, the effect of varying

the cache-size scaling on the convergence rate of the hit-rate

estimate is not well understood. Whereas our work, although

being restricted to power law (Zipf) popularities, explicitly

shows how varying the fractional cache-size and the power

law exponent affect the convergence rate.

An interesting work by [19] provides asymptotic hit-rates

when multiple flows of requests for varying data item sizes

are served by a shared LRU cache space. It considers requests

belonging to a broad class of power-law distributions (includ-

ing Zipf and Weibull) and presents conditions when cache

space pooling is preferred over splitting. Another work by [20]

considers requests served by an LRU cache for contents that

are divided into two classes, with uniform popularity within

each class; we instead consider power law popularities that

seem more realistic from empirical evidence.

Studies in [21]–[26] address the notion of freshness by con-

sidering that a content entering the cache has a limited lifetime

beyond which it expires, i.e., it is no longer relevant to the end-

user as a new updated version of that content is available in

the back-end. Whereas our model does not consider version

m

Cache

Access Point

(Front-end Server)

Sensor Network

(Back-end)

Request arrival process

Xk Xk+1

1 2

n

Fig. 1: Content delivery to incoming requests through a front-

end server equipped with finite caching resources.

updates and the same content is available from the source upon

request. In contrast to [21] which considers infinite cache, we

obtain hit-rates under finite caching resources. Lastly, the work

by [27] derives approximate LRU hit-rate, but does not provide

justification for the approximation. Our work, in addition,

provides insights on the regimes where the approximation is

justified.

B. Organisation

The remainder of the paper is organized as follows. Firstly,

we describe our system model in Section II. Metrics for

evaluation of cache performance are defined and the policy

that achieves optimal performance is described in Section

III. We analyse hit-rates under the LRU policy and propose

hit-rate estimates for Zipf distributed requests in Section IV.

Analytical arguments that establish the accuracy of these hit-

rate estimates are provided in Section V. We present the

simulation results in Section VI. Proofs outlines of the main

results obtained in this paper are provided in Section VII,

and the detailed proofs are deferred to [28]. We present our

conclusions in Section VIII.

II. SYSTEM MODEL

In our model depicted in Figure 1, we consider a front-end

server with a finite cache. It serves incoming client requests

with contents fetched from a back-end.

A. Server and storage model

The system consists of an Access Point (AP) equipped

with a cache of length m. The AP fetches contents from

a population of n content-generating objects indexed by

{1, 2, . . . , n} and stores them in the cache in order to serve

future requests. The object population could constitute a sensor

grid where several smart-devices connect wirelessly to the

AP. Each content fetched from the objects is of unit size and

occupies unit space in the cache. Owing to practical resource

constraints, typically m ≪ n. The AP acts as a front-end

server and is assigned the task of serving incoming content

requests either from its cache or by fetching contents from

the back-end.

B. Request arrival model

We adopt the Independent Reference Model (IRM) which is

known to be a well suited abstraction for independent requests

generated from a large population of users [14], [7], [29].
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The request arrival process is modeled as an infinite sequence

of independent and identically distributed random variables

{X1, X2, . . .}, where Xk = i denotes that the kth request is

for content type i ∈ {1, 2, . . . , n}. We denote popularity of

content i by pi , P(Xk = i) and assume that the content

requests are Zipf distributed. Under the Zipf’s law, pi ∝ i−β ,

where the exponent β ≥ 0 is known as the Zipf parameter3.

C. Service model

The server serves the incoming requests in the following

manner:

• If the content corresponding to a request is not present

in the cache, a cache miss occurs.

• If the requested content is present in the cache, a cache

hit occurs and the request is served.

• In the event of a cache miss, the server has to fetch the

content from the back-end and serve the request. At this

point, if the cache is full, the server has to decide whether

or not to replace an existing content in the cache with

this fetched content. This strategy is referred to as the

replacement or caching policy.

Remark 1. A content fetch is initiated if and only if there is

a cache miss.

III. SYSTEM PERFORMANCE METRICS

The hit-rate or hit-ratio of object i at time t, HA(i, t) is

the ratio of the number of cache hits to the total number of

requests for object i received till time t under a policy A ∈ A.

Here, A is the set of all replacement policies. The steady-state

hit-rate hA(i) = lim
t→∞

HA(i, t)
4 is the steady-state probability

that content i is present in the cache, simply referred to as the

hit rate of object i under policy A. This follows from the fact

that the caching process is ergodic5.

However, the overall cache performance is quantified by

the total probability of a cache hit in the steady state, simply

referred to as the hit probability. Let Y i
k denote the event that

content i is present in the cache in the kth time-slot. Then, the

hit probability in a discrete time slot for a policy A ∈ A is

given by

PA(hit) ,

n
∑

i=1

P
(

cache hit |Xk = i
)

P(Xk = i)

(a)
=

n
∑

i=1

P
(

Y i
k |Xk = i

)

P(Xk = i)

(b)
=

n
∑

i=1

P(Y i
k ) P(Xk = i) =

n
∑

i=1

hA(i) pi. (1)

Step (a) holds due to the fact that, under the condition that

content i is requested, a cache hit is analogous to content i

being present in the cache. Step (b) follows from the fact that,

3Typical values for β reported by empirical studies conducted on a variety
of networks are: 0.64 to 0.83 [14] and 1 to 2.07 [30].

4The limit exists since the caching process constitutes an ergodic Markov
chain, that is, it is irreducible and aperiodic.

5A process whose time average converges to its ensemble average.

in the kth time-slot, the presence of a content in the cache is

independent of any ensuing request for it.

Now, given a finite cache of size m, let I{i∈cache} denote

the indicator r.v. that indicates the presence of content i in the

cache in steady-state, under a policy A. Hence, P
(

I{i∈cache} =
1
)

= hA(i). Further, as there can be atmost m fresh contents

in the cache at any given time, it follows that

n
∑

i=1

I{i∈cache} ≤ m ⇒
n
∑

i=1

hA(i) ≤ m, ∀ A ∈ A. (2)

Without loss of generality, let the n objects be indexed in the

decreasing order of their popularities, i.e, p1 ≥ p2 ≥ . . . ≥
pn. Then, subject to the constraint given by inequality (2),

the optimal policy would be the one to achieve the hit-rates:

h∗(i) = 1, for i ∈ {1, 2, . . . ,m}, and 0 otherwise. Simply

put, the optimal policy is to only retain the m most popular

contents in the cache, as has been stated in the literature.

IV. HIT-RATE ANALYSIS OF THE LRU POLICY

The LRU policy replaces the least recently requested content

from the cache with the fetched content. Let {X1, X2, . . .} be

the request stream, Ci refer to content i and LUT(Ci) refer to

its last used time-slot. Then, the LRU policy is implemented

as per Algorithm 1.

Algorithm 1 LRU policy implementation.

1: k ← 1.

2: loop

3: if CXk
∈ cache then ⊲ cache hit

4: serve the request

5: else ⊲ cache miss

6: Fetch content type CXk
from back-end

7: Serve the request

8: Replace CLRU with CXk
; where

9: LRU , argmini{LUT (Ci) : Ci ∈ cache}
10: end if

11: LUT (CXk
)← k

12: k ← k + 1
13: end loop

Now, the hit-rate of any content i ∈ {1, 2, . . . , n} is closely

related to its sojourn time in the cache. Once content i arrives

in the cache upon a request (clearly due to a cache miss), it

could subsequently be evicted out of the cache before being

requested again. This time duration spent in the cache is of

particular interest for obtaining the hit-rates and is defined as

follows:

A. Characteristic time of content i, Tc(i)

Denote by Tc(i), the number of time slots by which m

distinct contents other than Ci are requested at least once. We

refer to Tc(i) as the characteristic time of content i.
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Content ‘i’ requested

Tc(i) slots

Content ‘i’ replaced

t = 0

Fig. 2: It takes Tc(i) time slots for content i to become the

least recently used amongst cached contents.

Suppose that Ci is requested in the present slot (t = 0).

Assuming that the contents in the cache are ordered as most

recently used first, Ci currently occupies the top position. In

the ensuing time, it takes m distinct requests apart from Ci for

Ci to shuffle to the bottom of the cache and get evicted. This is

true provided Ci is not requested again before getting evicted.

Under this condition, Tc(i) denotes the number of time slots

for which Ci stays in the cache before getting replaced. Hence,

quantifying Tc(i) becomes important for calculating the hit-

rate of Ci under the LRU policy. The characteristic time Tc(i)
can be mapped to the celebrated Coupon Collector’s Problem

described below.

Coupon Collector’s Problem (CCP): Given a collection C =
{1, 2, . . . , n} of n coupons with pi being the probability of

drawing coupon i, determine the number of independent draws

(with replacement) from C to first obtain a collection of m

different coupons.

In context of the above problem, let Tm denote the required

number of draws referred to as the waiting time for the Coupon

Collector’s Problem. The expected number of draws has been

shown to satisfy the following equation in [8]:

E(Tm) =

m−1
∑

q=0

(−1)m−1−q

(

n− q − 1

n−m

)

∑

|J|=q

1

1− PJ

, (3)

where PJ =
∑

i∈J

pi.

In the context of the LRU policy with a cache of size m,

Tc(i) is analogous to the waiting time Tm for the Coupon

Collector’s Problem. In particular, the request for a content Ck

in the former corresponds to a coupon k being drawn from the

collection C in the latter. However, the only difference is that

unlike Tm, Tc(i) denotes the number of coupons drawn until

the mth distinct coupon excluding i is observed. That is, the

drawing of coupon i is equivalent to a blank draw. We now

make approximations for calculating Tc(i) which are similar

in spirit to those of Che et al. [12] and [17].

B. Approximations for calculating Tc(i)

Let T c denote the number of time-slots until m+1 distinct

contents are requested. Let X1 denote the first request. Now,

if the first request is for content i, i.e., X1 = i, then Tc(i) =
T c − 1. Using this as the basis yields the following result:

E(T c) = 1 +

n
∑

i=1

E
(

Tc(i)
)

P(X1 = i). (4)

Approximation 1: The dependence of E(Tc(i)) on i can be

ignored, i.e., E(Tc(i)) ≈ tc ∀ i.

This is a reasonable and widely-used [12], [17] approx-

imation when the individual popularities are relatively in-

significant to their sum, and becomes exact if the requests

are equiprobable. We support this claim for Zipf distributed

requests using numerical simulations provided in Sub-section

VI-A. We notice that the error in approximating E(Tc(i)) with

tc reduces with decreasing values of β, with increasing values

of the m
n

ratio and also as n→∞ for a fixed m
n

ratio. Using

this approximation in (4), we get

E(Tc(i)) ≈ tc , E(T c)− 1, ∀ i ∈ {1, 2, . . . , n}. (5)

Note that Approximation 1 could be widely off in the setting

where one or a small number of contents correspond to a large

fraction of requests.

Approximation 2: We assume that for large n, the random

variable Tc(i) is well approximated by its expected value (i.e.,

it is nearly deterministic).

In Section V-B, we provide analytical justifications for

the above approximation under Zipf distributed requests with

parameter β ∈ [0,∞). Using this approximation in equation

(5), we get Tc(i) ≈ tc, ∀ i ∈ {1, 2, . . . , n}. In the works

by [12] and [17], tc is referred to as the characteristic time

of the cache. Finally, from the definition of Tc, it follows that

Tc = Tm+1. Hence, E(Tc) can be calculated from equation

(3), which is then used in equation (5) to compute tc.

C. Hit-rate for LRU policy

As depicted in Figure 2, the duration for which content i

resides in the cache, since its last request, is limited by its

characteristic time Tc(i). Let τi denote the inter-arrival time

between requests for content i under the IRM; τi ∼ Geom(pi).
For a content i requested in the present slot, a request after

τi slots will result in a cache hit if and only if τi < Tc(i).
Therefore, the hit-rate is given by hLRU (i) = P(τi < Tc(i)) ≈
P(τi < tc) after applying the approximations from Section

IV-B. This yields the following aproximate hit-rate expression

for content i ∈ {1, 2, . . . , n} under the LRU policy.

hLRU (i) ≈ 1− (1 − pi)
tc−1. (6)

And the hit probability denoted by PLRU (hit) can then be

obtained using the above estimates in (1).

In the subsequent sections, we provide analytical results as

well as illustrate using numerical simulations that: under Zipf

distributed requests and for a fairly large object population

relative to the size of the cache, the above approximation is

generally quite accurate.

V. ASYMPTOTIC ANALYSIS OF CHARACTERISTIC TIME

UNDER ZIPF REQUESTS

In this section, we provide analytical results to justify our

approximation that Tc(i) is nearly deterministic for large

n under Zipf distributed requests (Approximation 2). As

mentioned earlier, the characteristic time Tc(i) of the LRU

policy is analogous to the waiting time Tm for the Coupon

Collector’s Problem. Hence, in the rest of this section, we

use the parlance of the Coupon Collector’s Problem. Since
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the asymptotic behaviour of Tm and Tc(i) are identical, we

characterize Tm instead of Tc(i) to simplify the analysis.

A. Limit Theorems for the Convergence of Tm to m

In the following, we provide a limit theorem for the case

where the coupon draws obey the Zipf’s law with Zipf parame-

ter β ∈ [0, 1). Note that the Zipf’s law generalises the uniform

coupon draw case for which, the asymptotic distribution for

the waiting time has been investigated in the works by [31],

[32] and [33].

Theorem 1. Consider the coupon draws being sampled from

a Zipf distribution with parameter β ∈ [0, 1), such that the n

coupons are indexed in the decreasing order of popularity. If

m = o
(

n
1−β

2−β

)

, then Tm
i.p→ m.

In context of the LRU policy, the above theorem implies

that if the cache-size m scales slower than n
1−β

2−β , then

asymptotically, Tc(i) converges to m in probability. Refer to

Section VII for a proof outline. The study by [32] provided

limiting distributions for Tm depending on how m scales

with n as n → ∞. In particular, for the uniform case, they

derived sufficient conditions on the scaling of m under which

Tm
i.p→ m. This result becomes a corollary to Theorem 1 for

β = 0 and is stated below.

Corollary 1.1. Consider the coupon draws being equiproba-

ble. If m = o(
√
n), then Tm

i.p→ m.

In addition to justifying Approximation 2, Theorem 1 also

provides a much simpler approximation to Tm that could

simplify the analysis of LRU caching in inter-connected cache

networks. However, the result is restricted to the regime β < 1

and m = o
(

n
1−β

2−β

)

.

B. Concentration Bounds on the Deviations of Tm from its

Expected Value

In this section, we derive tail bounds for the δ-deviations of
Tm

E(Tm) about unity. Further, we show that these concentration

bounds are asymptotically tight in n thereby implying that
Tm

E(Tm) converges in probability to 1 as n → ∞. This analyt-

ically validates our assumption that for large n, the random

variable Tc(i) is well approximated by its expected value.

Note that the qualitative behaviour of Zipf distribution as

n → ∞ varies with the value of the Zipf parameter β. More

specifically, given the Zipf distribution with pi ∝ i−β , the

normalizing factor
∑n

i=1 i
−β known as the Riemann’s zeta

function ζ(β) is finite only if β > 1. Hence, we conduct

separate analyses for three regions of the Zipf parameter space,

namely; β < 1 (which includes β = 0 (uniform) as a special

case), β = 1 and β > 1. We present the results obtained from

these analyses in the form of separate theorems as follows.

1) β < 1:

Theorem 2. Consider the coupon draws being Zipf distributed

with β < 1. If m = o(n), then for any δ > 0,

P

(

Tm

E(Tm)
< (1− δ)

)

≤ exp
(

−m

16
δ2
)

and P

(

Tm

E(Tm)
> (1 + δ)

)

≤ exp
(

−n 1−β

2 m
1+β

2 δ
3
2

)

.

Corollary 2.1. Consider the coupon draws being equiproba-

ble. If m = o(n), then for any δ > 0,

P

(

Tm

E(Tm)
< (1− δ)

)

≤ exp
(

−m

16
δ2
)

and P

(

Tm

E(Tm)
> (1 + δ)

)

≤ exp
(

−
√
nm δ

3
2

)

.

2) β = 1:

Theorem 3. Consider the coupon draws being Zipf distributed

with β = 1. If lnm = o(lnn), then for any δ > 0,

P

(

Tm

E(Tm)
< (1− δ)

)

≤ exp
(

−m

16
δ2
)

and P

(

Tm

E(Tm)
> (1 + δ)

)

≤ exp

(

−m
√

lnn

lnm
δ

3
2

)

.

3) β > 1:

Theorem 4. Consider the coupon draws being Zipf distributed

with β > 1. If m = o(n), then for any δ > 0,

P

(

Tm

E(Tm)
< (1 − δ)

)

≤ exp
(

−m

8
δ2
)

and P

(

Tm

E(Tm)
> (1 + δ)

)

≤ exp
(

−n 1−β
2 m

1+β
2 δ

)

.

For proving the above theorems, we first express the waiting

time as Tm =
∑m

k=1 Nk where Nk denotes the number of

draws to obtain the kth distinct coupon having obtained a set

of k − 1 distinct coupons. Next, we use the Chernoff bound

technique for the sum of independent r.v’s on Tm which in turn

requires the m.g.f of Nk, E(eλNk). This m.g.f has a simple

expression for β = 0. However, for β 6= 0, the m.g.f has

to be expressed combinatorially. In order to circumvent this

issue, we apply conditional m.g.f arguments to appropriately

bound the m.g.f. of Nk. A proof outline of Theorems 2 and 3 is

provided in Section VII. The proof for Theorem 4 has the same

underlying intuition and proceeds mostly in a similar manner.

We provide the detailed proofs in [28]. At this point, we state

an important result which directly follows from Theorems 2,

3 and 4.

Theorem 5. Consider the coupon draws being sampled from

a Zipf distribution with parameter β ∈ [0,∞), such that the

n coupons are indexed in the decreasing order of popularity.

Then,
Tm

E(Tm)

i.p→ 1 under the following sufficient conditions:
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• If m = ω(1) and m = o(n), for β < 1,

• If m = ω(1) and lnm = o(lnn), for β = 1, and

• If m = ω(n
β−1

β+1 ) and m = o(n), for β > 1.

In context of the LRU policy, for the case of Zipf distributed

requests with β < 1, the above theorem implies that Ap-

proximation 2 is justified for any sub-linear scaling of the

cache-size. Whereas for β > 1, the cache-size with a scaling

which is atleast faster than n
β−1

β+1 while still being sub-linear

in n guarantees the validity of Approximation 2. Note that

the condition: m = ω(1) and m = o(n) is a reasonable

assumption in practice and does not impose any significant

restrictions on caching systems. The reason being that, in order

to enhance the performance, the cache-size has to be increased

in response to the growing object population. However, this

scaling cannot be achieved in a linear fashion due to physical

resource constraints.

1

1 2 3 4 5

0

0

0
.5

Zipf parameter, β

k

Fig. 3: The blue shaded region denotes the sufficient condition

to be satisfied by (k, β) such that for m = ω
(

nk
)

,
Tm

E(Tm)

i.p→
1. The red shaded region denotes the sufficient condition to be

satisfied by (k, β) such that for m = o
(

nk
)

, Tm
i.p→ m.

The results obtained in Theorems 1 and 5 are summarized

in Figure 3. Note that Tm
i.p→ m is a stronger condition than

Tm

E(Tm)

i.p→ 1 for Approximation 2 to hold. Hence, for the case

of β < 1, it is evident from the shaded regions in Figure 3

that, in comparison to Theorem 1, Theorem 5 provides a much

milder condition on the cache-size scaling, thereby justifying

the approximation for a wider class of practical scenarios.

Lastly, it is evident from the expressions for the δ-deviation

bounds obtained in the above theorems that the rate of conver-

gence of these bounds is influenced by two factors, namely, the

Zipf-parameter β and the cache-size scaling. Correspondingly,

the following two trends in the rate of convergence of the con-

centration bounds are observed. First, the rate of convergence

becomes slower with an increase in Zipf parameter β. Second,

the rate of convergence becomes faster with an improvement

in the cache-size scaling. In conclusion, the approximation of

Tc(i) by its expected value becomes better with a decrease in

β and an increase in the cache-size scaling.

In the next section, we empirically show that the same

variations in the system parametrs, i.e., a decrease in β and an

increase in the cache-size scaling also make Approximation 1

better. Further, we demonstrate through simulations that by

using both Approximations 1 and 2, the hit-rate estimates

obtained in (6) are reasonably accurate.

VI. SIMULATION RESULTS

A. Simulations to validate Approximation 1

We first obtain E(Tc(i)) for all i ∈ {1, 2, . . . , n} and E(T c)
by averaging these quantities over sufficiently large number of

simulations. We then use E(T c) and obtain tc from equation

(5) to calculate the error in approximating E(Tc(i)). This error

denoted by µ is given by µ =
|E(Tc(i))− tc|

E(Tc(i))
.

0 500 1000

0

0.1

0.2

0 500 1000

0

0.025

0.05

0 500 1000

0

0.025

0.05

Fig. 4: Error in approximating E(Tc(i)) against the object

index i for values of Zipf parameter β = 0.5, 1, 1.5.
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0
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0.06
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0

0.05

0.1

0.15

Fig. 5: Asymptotic trend for the error in approximating

E(Tc(i)) as the number of objects, n→∞. Here, cache-size

m = 0.1n and β = 0.5, 1, 1.5.

In Figure 4, we plot the error against content index for a

total number of contents n = 1000. We consider different m
n

ratios and different values of β to obtain the plots. We notice

that the error in approximating E(Tc(i)) with tc reduces with

decreasing values of β and increasing values of the m
n

ratio.
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Fig. 6: Hit-rate against (a) Zipf parameter β for contents 1, 100 and 1000; n = 1000, m = 50 and (b) cache-size m for

contents 1, 100 and 1000; n = 1000 and β = 0.5. Content with lower index has higher hit-rate.

Further, in Figure 5, we plot the error against the number of

objects n for contents with indices 1, 0.1n and n denoted by

C1, C0.1n and Cn respectively. We fix values for β and m
n

and observe that the error decays to zero as n → ∞. From

this, we infer that Approximation 1 becomes better with an

increase in the number of objects.

B. Accuracy of proposed LRU hit-rates under Zipf distributed

requests

We depict the accuracy of the approximate LRU hit-rates

obtained in (6) for Zipf distributed requests over a wide range

of system parameters. The plots shown in Figures 6(a) and

6(b) correspond to hit-rate variations with respect to β and

m respectively for selected content indices: 1, 100 and 1000.

Hit-rates are obtained by simulating the caching process for

sufficiently long runs to ensure their high accuracy. Whereas,

approximate hit-rates are obtained from (6) which requires

the value of E(Tc) to be calculated from the expression for

the mean waiting time given in (3). Note that, although this

computation has an exponential complexity in n, we use the

methods provided by [8] and [34] wherein E(Tc) can be

computed with high accuracy in a time that is linear in n.

We do not elaborate on this method as efficient computation

of the waiting time is not the main focus of this paper. We infer

from Figure 6 that the theoretical approximation for the LRU

hit-rates provided in (6) matches the simulations reasonably

well.

VII. PROOF OF MAIN RESULTS

We present proof outlines for Theorems 1, 2 and 3 and defer

the detailed proofs to [28].

A. Proof Outline of Theorem 1

1. We express the waiting time as Tm =
∑m

k=1 Nk where

Nk denotes the number of draws to obtain the kth distinct

coupon having obtained a set of k − 1 distinct coupons.

2. To prove that Tm
i.p→ m, it is sufficient to show that

P(Tm = m) → 1. To do this, we obtain a lower bound

to P(Tm = m) and show that it converges to 1.
3. To get this lower bound, we use the fact that Tm = m

only if Nk = 1 for all k. We then find a lower bound for

P(Nk = 1) which results in a lower bound for P(Tm =
m).

B. Proof Outline of Theorems 2 and 3

1. We have Tm =
∑m

k=1 Nk as before (refer to the proof

of Theorem 1). To obtain the lower tail bound, we apply

Chernoff’s bound on Tm for a δ−deviation from its mean

which gives P
(

Tm < E(Tm)(1 − δ)
)

≤ exp
(

inf
λ>0

f(λ)
)

.

Here, f(λ) = dλ2− cλ with constants c, d > 0, which is

minimized by λmin = c
2d . This yields the required bound

on further simplification.

2. Similarly, we obtain an upper tail bound as P
(

Tm >

E(Tm)(1 + δ)
)

≤ exp
(

inf
λ>0

g(λ)
)

. Here, g(λ) = −aλ +

(eλ−1)b with constants a, b > 0, which is minimized by

λmin = ln a
b

. This yields the required bound on further

simplification.

3. λmin > 0 for the lower tail bound as c, d > 0 and hence

is within the λ > 0 range. However, for the upper tail

bound, λmin > 0 and is within the permissible range only

if a > b. We verify this for large n by substituting the

values for a and b.

VIII. CONCLUDING REMARKS

In this work, we analysed content-wise hit-rates under the

LRU policy based on the characteristic time of each content.

We obtained an accurate approximation for the LRU content-

wise hit-rates for large n, under Zipf distributed requests.

To achieve this, we associated the problem of estimating the

characteristic time of a content in the LRU policy with the

classical Coupon Collector’s Problem. Further, we provided

analytical results in the form of tight concentration bounds on
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the characteristic time about its mean to justify the accuracy of

our approximations. Our bounds explicitly relate the accuracy

of the proposed estimates to the cache-size scaling and the

Zipf parameter β that governs the popularity distribution of

the contents. In particular, we showed that the accuracy of

the hit-rate estimate improves with a decrease in β or an

increase in the cache-size scaling. The concentration bounds

derived herein for the waiting time in the CCP under Zipf

distributed coupon arrivals could be of independent interest,

as the CCP is a classical problem with applications in several

areas of engineering, for example, electrical fault detection,

node discovery in wireless networks, etc., as well as in the

fields of biology and linguistics.

A potential direction for future work is to move beyond

the Zipf distribution, and to further consider requests that are

correlated across time.

REFERENCES

[1] S. Melamed and Y. Bigio, “Bandwidth savings and qos improvement
for www sites by catching static and dynamic content on a distributed
network of caches,” Jul. 16 2001, uS Patent App. 10/332,842.

[2] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page
replacement,” Journal of the ACM (JACM), vol. 18, no. 1, pp. 80–93,
1971.

[3] I. J. Good, “The population frequencies of species and the estimation
of population parameters,” Biometrika, vol. 40, no. 3-4, pp. 237–264,
1953.

[4] D. A. McAllester and R. E. Schapire, “On the convergence rate of good-
turing estimators.” in COLT, 2000, pp. 1–6.

[5] G. Valiant and P. Valiant, “Estimating the unseen: an n/log (n)-sample
estimator for entropy and support size, shown optimal via new clts,”
in Proceedings of the forty-third annual ACM symposium on Theory of
computing. ACM, 2011, pp. 685–694.

[6] G. Karakostas and D. Serpanos, “Practical lfu implementation for web
caching,” Technical Report TR-622–00, 2000.

[7] W. King, “Analysis of paging algorithms,” In Proc. IFIP Congress, pp.
485–490, 1971.

[8] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete

Appl. Math., vol. 39, no. 3, pp. 207–229, Nov. 1992. [Online].
Available: http://dx.doi.org/10.1016/0166-218X(92)90177-C

[9] A. Dan and D. Towsley, “An approximate analysis of the lru
and fifo buffer replacement schemes,” SIGMETRICS Perform. Eval.
Rev., vol. 18, no. 1, pp. 143–152, Apr. 1990. [Online]. Available:
http://doi.acm.org/10.1145/98460.98525

[10] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222–250, 1977.

[11] C. Berthet, “Contributions to the generalized coupon collector and lru
problems,” arXiv preprint arXiv:1706.05250, 2017.

[12] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[13] M. Ferrante and M. Saltalamacchia, “The coupon collector’s problem,”
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