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Abstract

The numerical integration of phase-field equations is a delicate task which needs to

recover at the discrete level intrinsic properties of the solution such as energy dissipation

and maximum principle. Although the theory of energy dissipation for classical phase field

models is well established, the corresponding theory for time-fractional phase-field models

is still incomplete. In this article, we study certain nonlocal-in-time energies using the

first-order stabilized semi-implicit L1 scheme. In particular, we will establish a discrete

fractional energy law and a discrete weighted energy law. The extension for a (2−α)-order

L1 scalar auxiliary variable scheme will be investigated. Moreover, we demonstrate that

the energy bound is preserved for the L1 schemes with nonuniform time steps. Several

numerical experiments are carried to verify our theoretical analysis.
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1. Introduction

A fractional time derivative arises when the characteristic waiting time diverges, which

models situations involving memory. In recent years, to model memory effects and subdiffusive

regimes in applications such as transport theory, viscoelasticity, rheology and non-Markovian

stochastic processes, there has been an increasing interest in the study of time-fractional dif-

ferential equations, i.e. differential equations where the standard time derivative is replaced by

a fractional one, typically a Caputo or a Riemann-Liouville derivative. It has been reported

that the presence of nonlocal operators in time in the relevant governing equations may change

diffusive dynamics significantly, which can better describe certain fundamental relations be-

tween the processes of interest, see, e.g. [1, 4, 6, 18, 26]. It is also noted that an intensive effort
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has been put into investigations on time fractional phase-field models. For instance, phase-field

framework has been successfully employed to describe the evolution of structural damage and

fatigue [3], in which the damage is described by a variable order time fractional derivative.

Seeking numerical solutions of phase field problems has attracted a lot of recent attentions.

The numerical integration of phase-field equations can be a delicate task: it needs to recover at

the discrete level intrinsic properties of the solution (energy diminishing, maximum principle)

and the presence of small parameter ε > 0 (typically, the interphase length) can generate

practical difficulties. Numerical analysis and computation aiming to handle this task for the

classical phase field problems have attracted extensive attentions, see, e.g. [8,12,35,39] and the

references therein. On the other hand, it is natural to extend the relevant discrete level intrinsic

properties, i.e. the maximum principle and energy stability to handle the time-fractional phase-

field equations, see, e.g. [9, 21, 23, 24].

This work is concerned with numerical methods for time-fractional phase-field models with

the Caputo time-derivative. The time-fractional phase-field equation can be written in the

form of

∂αt φ = γ Gµ, (1.1a)

where α ∈ (0, 1), γ > 0 is the mobility constant, G is a nonpositive operator, and ∂αt is the

Caputo fractional derivative defined by

∂αt φ(t) :=
1

Γ(1− α)

∫ t

0

φ′(s)

(t− s)α
ds, t ∈ (0, T ) (1.1b)

with Γ(·) the gamma function. Choosing different G and µ, one derives different phase-field

models, such as the Allen-Cahn (AC) model and the Cahn-Hilliard (CH) model. In the AC

model and the CH model, G is taken to be −1 and ∆, respectively, while in both cases µ takes

the same form

µ = −ε2∆φ+ F ′(φ), (1.2)

where ε > 0 is the interface width parameter and F is a double-well potential functional,

commonly chosen as F (φ) = (1−φ2)2/4 so that F ′(φ) = φ3−φ. Moreover, the molecular-beam

epitaxy (MBE) model has two forms, with or without slope selection [43], where

G = −1, µ = ε2∆2φ+∇ · fm(∇φ) (1.3a)

with

fm(∇φ) =





∇φ− |∇φ|2∇φ with slope selection,

∇φ

1 + |∇φ|2
without slope selection.

(1.3b)

For sake of simplicity, we consider the periodic boundary condition for above time-fractional

phase-field problems.

The classical energy for the standard Allen-Cahn or Cahn-Hilliard equation (i.e. (1.2) with

α = 1) is

E(φ) =

∫

Ω

Å
ε2

2
|∇φ|2 + F (φ)

ã
dx, (1.4)

while for the MBE equation (1.3) is given by

E(φ) =

∫

Ω

Å
ε2

2
|∆φ|2 + Fm(∇φ)

ã
dx (1.5a)
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with

Fm(∇φ) =





1

4

(
1− |∇φ|2

)2
with slope selection,

−
1

2
ln
(
1 + |∇φ|2

)
without slope selection.

(1.5b)

Applying the definition (1.4) with the time-fractional problem (1.2) gives

d

dt
E(φ) =

1

γ

∫

Ω

∂tφ
(
G−1∂αt φ

)
dx, (1.6)

where G−1 is the inverse of G.

It is well known that when α = 1, the Allen-Cahn and Cahn-Hilliard models are gradient

flows: The energy associated with these models decays with respect to time, which is the so-

called energy dissipation law. This property has been used extensively as a nonlinear numerical

stability criterion. However, it is still unknown if such energy dissipation property holds in the

general case of 0 < α < 1. In a recent work [41], it is demonstrated that the classical energy

(1.1) is bounded above by the initial energy

E(t) ≤ E(0), ∀ 0 < t < T, (1.7)

which is the first work on the energy stability for time-fractional phase-field equations. Later,

Du et al. [9] proposed the fractional energy law based on numerical observations and proved

for the convex energy (not applicable to nonconvex phase-field models), i.e. the time-fractional

derivative of energy is nonpositive

∂αt E(t) ≤ 0, ∀ 0 < t < T. (1.8)

In [27], this fractional energy law was proved for general cases. Still in [27], it is shown that in

the continuous case a weighted energy decays with respect to time

∂tEω(t) ≤ 0, ∀ 0 < t < T, (1.9a)

where Eω is defined by

Eω(t) =
1

B(α, 1 − α)

∫ t

0

E(s)

s1−α(t− s)α
ds. (1.9b)

By using the transformation s = θt, we can obtain

Eω(t) =
1

B(α, 1 − α)

∫ 1

0

E(θt)

θ1−α(1− θ)α
dθ.

Taking derivative with respect to t and using the transformation θ = s/t yield

E′

ω(t) =
1

B(α, 1− α)t

∫ t

0

sαE′(s)

(t− s)α
ds. (1.10)

In other words, the fractional energy law of (1.8) and the weighted energy dissipation law

(1.9) are all associated with the Caputo fractional operator, i.e. the dissipation of certain

time-fractional form for energy

∂αt E(t) ∼

∫ t

0

E′(s)

(t− s)α
ds ≤ 0, E′

ω(t) ∼

∫ t

0

sαE′(s)

(t− s)α
ds ≤ 0. (1.11)
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This paper is concerned with the numerical implementation of the energy stability properties

(1.8) and (1.9) by using the first-order stabilized L1 scheme. From a numerical point view,

the essential step to study the fractional PDE is to approximate the time-fractional derivative

operator. The classical L1 method is naturally derived from the approximation of the fractional

integral as a Riemann sum and long known to be consistent (see, e.g. [21]). Moreover, L1

approximation scheme stands out by being able to preserve at the discrete level certain desirable

features of the original PDEs, such as maximum principle [11,16,41] and energy stability [9,15].

Our analysis will also be relevant to the convex-splitting schemes [5, 10, 42], the stabilization

schemes [36, 43], and the scalar auxiliary variable (SAV) schemes [34]. In particular, we will

establish the energy boundedness and the fractional energy law for a (2 − α)-order L1-SAV

scheme with uniform time steps. The energy boundedness under non-uniform time step will be

also investigated. All proofs are based on a special Cholesky decomposition proposed recently

by us in [27], which seems very useful for studying numerical approximations of time-fractional

phase-field equations.

We point out some recent comprehensive and interesting studies for the theory of time-

fractional gradient flows. Li et al. [20] present the well-posedness and regularity of solutions

to a fractional diffusion porous media equation with variable fractional order, and analyze the

convergence of a linearly implicit convolution quadrature method. Li and Ma [19] propose

an exponential convolution quadrature method for the nonlinear subdiffusion equation with

nonsmooth initial data, that has high-order convergence in time. Li and Salgado [21] introduce

the notion of energy solutions. The authors provide existence, uniqueness and certain regu-

larizing effects due to the Caputo derivative. The time-fractional phase-field models fit well

with the class of the fractional gradient flows. In addition, one can refer to a book by Jin

and Zhou [17], that provides a comprehensive survey on the ideas and methods of analysis for

solving time-fractional evolution equations.

The paper is organized as follows. Section 2 introduces the L1 approximation of the time-

fractional operator and a semi-implicit stabilization technique. We then establish the fractional

energy law (1.8) and the weighted energy dissipation law (1.9). In Section 3, we propose

a (2 − α)-order L1-SAV scheme, and establish the corresponding energy boundedness and the

fractional energy law. In Section 4, the first-order and (2 − α)-order L1 schemes are investi-

gated with nonuniform time-steps. Section 5 presents several numerical examples to verify our

theoretical results. Some concluding remarks are given in the final section.

2. First Order Stabilized L1 Scheme

We first introduce the discretization of the time fractional derivative. Let ∆t = T/N be the

time step size and tn = n∆t, 0 ≤ n ≤ N . The L1 approximation of the Caputo time-fractional

derivative (1.1b) is given by

∂̄αnφ :=
n∑

j=1

bn−j∂jφ, 1 ≤ n ≤ N, (2.1a)

where ∂
α

n denotes the discrete fractional derivative at tn,

bj =
∆t1−α

Γ(2− α)
[(j + 1)1−α − j1−α], j ≥ 0, (2.1b)
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and ∂k denotes the discrete first-order derivative at tk as follows:

∂kφ :=
φk − φk−1

∆t
. (2.1c)

One can refer to [37] for the analysis of the L1 approximation, where the truncation error of

order 2− α is derived. A useful reformulation of (2.1a) is

∂̄αnφ =
1

∆t

[
b0φ

n −

n−1∑

j=1

(bj−1 − bj)φ
n−j − bn−1φ

0

]
, 1 ≤ n ≤ N, (2.2)

where the following relationship holds:

bj−1 − bj > 0, bn−1 > 0,

n−1∑

j=1

(bj−1 − bj) + bn−1 = b0. (2.3)

We further decompose the energy by the quadratic-nonquadratic splitting as follows:

E(φ) =
1

2
〈φ,Lφ〉 + E1(φ), (2.4)

where 〈· , ·〉 denotes the L2 inner product over Ω, L is some symmetric nonnegative linear

operator (L = −ε2∆ for the AC/CH model and L = ε2∆2 for the MBE model), and E1 is the

remaining nonquadratic term. The stabilized L1 scheme for (1.1) is written as

∂̄αn+1φ = γ G
(
Lφn+1 + δφE1(φ

n) + L̃(φn+1 − φn)
)
, (2.5)

where L̃ is some linear operator in the following form:

L̃ =

{
S, AC or CH model,

−S∆, MBE without slope selection
(2.6)

with some positive constant S satisfying

S ≥





2, AC model,
L

2
, CH model,

1

16
, MBE without slope selection.

(2.7)

Here, L > 0 denotes the truncation parameter used for the CH model (see [2, 36]) such that

maxφ∈R |E
′′

1 (φ)| ≤ L.

In the classical case of α = 1, the following inequality holds for the scheme (2.5):

En+1 − En ≤
1

γ∆t
〈G−1(φn+1 − φn), φn+1 − φn〉 ≤ 0, (2.8)

since G−1 is nonpositive definite. Similarly, in the general case of 0 < α < 1, one can obtain the

following inequality characterizing the energy difference between two neighboring time steps.

Lemma 2.1. Assume that the initial data satisfies ‖φ0‖∞ ≤ 1. The energy of the stabilized L1

scheme (2.5) satisfies the following property:

En+1 − En ≤
1

γ

〈
G−1∂

α

n+1φ, φ
n+1 − φn

〉
, 0 ≤ n ≤ N − 1, (2.9)

where En = E(φn) denotes the classical energy at tn.
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Proof. The proof is quite similar to the classical case of α = 1 given by [41]. Here, we only

prove the specific case of AC model under the constraint S ≥ 2. In this case, (2.5) can be

rewritten as Å
b0
∆t

+ γS − γε2∆

ã
φn+1 = γ(S + 1)φn − γ(φn)3

+

n−1∑

j=0

(bj − bj+1)

∆t
φn−j +

bn
∆t

φ0. (2.10)

Since S ≥ 2, it is not difficult to verify that if ‖φn‖∞ ≤ 1 then

‖(S + 1)φn − (φn)3‖∞ ≤ S.

Further, it is known (see, e.g. [40]) that
∥∥∥∥
Å
b0
∆t

+ γS − γε2∆

ã−1 ∥∥∥∥
∞

≤

Å
b0
∆t

+ γS

ã−1

, (2.11)

which yields by induction that if ‖φ0‖∞ ≤ 1 then ‖φn‖∞ ≤ 1, i.e. the maximum bound is

preserved. As a consequence, we further obtain

1

γ

〈
G−1∂

α

n+1φ, φ
n+1 − φn

〉

=
〈
− ε2∆φn+1 + (φn)3 − φn + S(φn+1 − φn), φn+1 − φn

〉

=
ε2

2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2

)

+
〈
(φn)3 − φn + S(φn+1 − φn), φn+1 − φn

〉

≥
ε2

2

(
‖∇φn+1‖2 − ‖∇φn‖2

)
+

1

4

(
‖(φn+1)2 − 1‖2 − ‖(φn)2 − 1‖2

)

= En+1 − En, (2.12)

where the following inequality is used:

(b3 − b)(a− b) + (a− b)2 ≥
1

4

[
(a2 − 1)2 − (b2 − 1)2

]
, ∀ a, b ∈ [−1, 1].

This completes the proof of the lemma. �

We point out that when α = 1 (2.9) indicates that the discrete energy En decays with

respect to n. When 0 < α < 1, (2.9) will be useful in our later analysis for the fractional energy

law and the weighted energy dissipation law.

Note that the first-order convex-splitting scheme for (1.1) can be written as

∂̄αn+1φ = γ G
(
δφEc(φ

n+1)− δφEe(φ
n)
)
, (2.13)

where ∂̄αn is given by (2.1a), Ec and Ee are two convex functionals with respect to φ such that

E(φ) = Ec(φ)− Ee(φ). The first-order SAV scheme for (1.1) is given by (see, e.g. [35])

∂̄αn+1φ = γ Gµn+1, (2.14a)

µn+1 = Lφn+1 +
rn+1

√
E1(φn) + C0

δφE1(φ
n), (2.14b)

rn+1 − rn =
1

2
√
E1(φn) + C0

〈
δφE1(φ

n), φn+1 − φn
〉
, (2.14c)
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where C0 > 0 is some positive constant. It can be verified without difficulty that both schemes

still satisfy (2.9), implying that the fractional and weighted energy laws in Sections 2.1 and 2.2

also hold.

Before studying the discrete energy laws, we first recall a special Cholesky decomposition

result which provides a new way to determine positive definiteness of a symmetric positive

matrix.

Lemma 2.2 (A Special Cholesky Decomposition, [27]). Given an arbitrary symmetric

matrix S of size N ×N with positive elements, if S satisfies the following properties:

(P1) ∀ 1 ≤ j < i ≤ N , Si−1,j ≥ Si,j ,

(P2) ∀ 1 < j ≤ i ≤ N , Si,j−1 < Si,j ,

(P3) ∀ 1 < j < i ≤ N , Si−1,j−1 − Si,j−1 ≤ Si−1,j − Si,j,

then S is a positive definite matrix. Moreover, S has a Cholesky decomposition S = LLT,

where L is a lower triangular matrix satisfying

(Q1) ∀ 1 ≤ j ≤ i ≤ N , [L]ij > 0,

(Q2) ∀ 1 ≤ j < i ≤ N , [L]i−1,j ≥ [L]i,j .

Note that the property (P1) indicates that the matrix S is column decreasing, while (P2)

means that S is row increasing. The property (P3) is related to the second-order cross partial

derivative from the continuous point of view, see [27] for more details.

2.1. Fractional energy law

We state and prove the first discrete energy law, called the fractional energy law, proposed

by Du et al. [9]. Our proof is based on the following lemma.

Lemma 2.3. For any function u defined on Ω× [0, T ], the following inequality holds:

n∑

k=1

bn−k

〈
∂̄αk u, ∂̄ku

〉
≥ 0, ∀n ≥ 1. (2.15)

Proof. It is sufficient to prove that

B =




bn−1

bn−2

. . .

b1
b0







b0
b1 b0
...

...
. . .

bn−2 bn−3 · · · b0
bn−1 bn−2 · · · b1 b0




(2.16)

is positive definite, which is equivalent to prove that B + BT is positive definite. To do this,

we make a congruent transformation of B+BT as follows:

S = P (B+BT)PT, (2.17)
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where P is an anti-diagonal matrix given by

P =




b−1
0

b−1
1

. .
.

b−1
n−1


 . (2.18)

It is easy to verify that S can be written explicitly as

Sij =





2b0b
−1
i−1, if i = j,

bi−jb
−1
i−1, if i > j,

bj−ib
−1
j−1, if i < j.

(2.19)

With the above definition, it is not difficult to check that S satisfies (P1) and (P2) of Lemma 2.2.

We now prove that S also satisfies (P3). In the case of j = i − 1, it is trivial to see that the

property (P3) indeed holds. In the general case of 1 < j < i− 1, i ≥ 4, we need to show that

Si−1,j−1 − Si,j−1 ≤ Si−1,j − Si,j , (2.20)

that is equivalent to f(j − 1) ≤ f(j), where

f(x) =
(i − x)1−α − (i− x− 1)1−α

(i− 1)1−α − (i− 2)1−α
−

(i− x+ 1)1−α − (i− x)1−α

i1−α − (i − 1)1−α
.

Note that f(1) = 0. Then f ′(x) ≥ 0 for 1 < x ≤ i− 1 can ensure the desired inequality. Below

we will verify the positivity of f ′(x). By direct computation we can that f ′(x) ≥ 0 is equivalent

to, for 1 < x ≤ i− 1,

1− (i − x− 1)α(i− x)−α

(i− x− 1)α
(
(i− 1)1−α − (i− 2)1−α

) ≥
1− (i − x)α(i− x+ 1)−α

(i− x)α
(
i1−α − (i − 1)1−α

) . (2.21)

It is not difficult to see the order of the numerators above

1− (i− x− 1)α(i − x)−α ≥ 1− (i − x)α(i− x+ 1)−α.

To prove (2.21), it is now sufficient to show that

(i− x− 1)α
(
(i− 1)1−α − (i − 2)1−α

)
≤ (i− x)α

(
i1−α − (i− 1)1−α

)
. (2.22)

To show this, we consider the auxiliary function

p(y) = yα
(
(y + 1)1−α − y1−α

)
for y ∈ [0,∞).

It is easy to verify that

p′(y) = αy−(1−α)(y + 1)1−α + (1− α)yα(y + 1)−α − 1

= αz1−α + (1 − α)z−α − 1 ≥ 0,

where z = (y + 1)/y > 1. Therefore, we can obtain that p(i− 2) ≤ p(i− 1), i.e.

(i− 2)α
(
(i− 1)1−α − (i− 2)1−α

)
≤ (i− 1)α

(
i1−α − (i− 1)1−α

)
, i ≥ 4. (2.23)
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By multiplying (2.23) with the following obvious inequality:

Å
1−

x− 1

i− 2

ãα
≤

Å
1−

x− 1

i− 1

ãα
,

we obtain (2.22) and then (2.21). Therefore, f(x) is monotonically increasing.

In summary, S satisfies (P1)-(P3) in Lemma 2.2. We then claim that S is positive definite

and consequently, B is positive definite. �

Theorem 2.1 (Fractional Energy Law). For the stabilized L1 scheme (2.5) to the time-

fractional phase-field equations, the following fractional energy law holds:

∂
α

nE =

n∑

k=1

bn−k∂kE ≤ 0, ∀ 1 ≤ n ≤ N, (2.24)

where the discrete fractional derivative ∂
α

n is given by (2.1a), but now acts on En.

Proof. It follows from Lemma 2.1 and the definition of discrete fractional derivative that

∂
α

nE ≤
1

γ

n∑

k=1

bn−k

〈
G−1∂

α

kφ, ∂kφ
〉
= −

1

γ

n∑

k=1

bn−k

〈
∂
α

kψ, ∂kψ
〉
, (2.25)

where for any 1 ≤ k ≤ n,

∂kψ
k =

{
∂kφ, Allen-Cahn or MBE model,

∇(−∆)−1∂kφ, Cahn-Hilliard model.
(2.26)

According to Lemma 2.3, we then have ∂
α

nE ≤ 0. �

We point out that the energy boundedness obtained in [41] is a direct corollary of Theo-

rem 2.1.

Corollary 2.1 (Energy Boundedness). For the L1 scheme (2.5) of the time-fractional

phase-field models, the discrete energy at tn is bounded above by the initial energy

En ≤ E0, ∀ 1 ≤ n ≤ N. (2.27)

Proof. It follows from (2.24) in Theorem 2.1 that

En ≤
1

b0

n−1∑

k=1

(bn−k−1 − bn−k)E
k +

bn−1

b0
E0. (2.28)

When n = 1, this inequality gives E1 ≤ E0. By induction on n, it is easy to see that En ≤ E0

always holds. �

2.2. Weighted energy dissipation law

In [27], a weighted energy Eω(t) is proposed for time-fractional phase-field equations in the

form of

Eω(t) =
1

B(α, 1 − α)

∫ t

0

E(s)

s1−α(t− s)α
ds, (2.29)
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where B(α, 1−α) is the Beta function. It is proved that this weighted energy decays with time

on the continuous level, i.e.

E′

ω(t) ≤ 0. (2.30)

Before stating the discrete weighted energy law, we provide a useful lemma.

Lemma 2.4. For any function u defined on Ω× [0, T ], the following inequality holds:

n∑

k=1

tαk bn−k

〈
∂̄αk u, ∂̄ku

〉
≥ 0, ∀n ≥ 1. (2.31)

Proof. It is sufficient to prove that

B =




1αbn−1

2αbn−2

. . .

(n− 1)αb1
nαb0







b0
b1 b0
...

...
. . .

bn−2 bn−3 · · · b0
bn−1 bn−2 · · · b1 b0




is positive definite. It is sufficient to show that the symmetric matrix B + BT is positive

definite. Similar to the proof of Lemma 2.3, we make the following congruent transformation:

S = P (B + BT)PT, where the anti-diagonal matrix P is given by (2.18). Then, S can be

written explicitly as

Sij =





2(n− i+ 1)αb0b
−1
i−1, if i = j,

(n− j + 1)αbi−jb
−1
i−1, if i > j,

(n− i+ 1)αbj−ib
−1
j−1, if i < j.

(2.32)

To prove the positive definiteness of S, we need to show that S satisfies the three properties

(P1)-(P3) in Lemma 2.2.

We first check (P1). In fact, it is sufficient to show that for any fixed j, the following

inequality holds for all i ≥ j ≥ 1:

bi−j

bi−1
=

(i− j + 1)1−α − (i− j)1−α

i1−α − (i− 1)1−α

≥
bi−j+1

bi
=

(i− j + 2)1−α − (i − j + 1)1−α

(i + 1)
1−α

− i1−α
,

which is equivalent to

(i+ 1)
1−α

− i1−α

i1−α − (i− 1)1−α
≥

(i − j + 2)1−α − (i− j + 1)1−α

(i− j + 1)1−α − (i− j)1−α
. (2.33)

We consider the following function:

f(x) =
(x+ 1)

1−α
− x1−α

x1−α − (x − 1)1−α
, x ≥ 1.

It is easy to verify that

f ′(x) =
(1 − α)

(
2xα − (x− 1)α − (x+ 1)α

)

xα(x− 1)α(x+ 1)α
(
x1−α − (x− 1)1−α

)2 ≥ 0.
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Since j ≥ 1, we can then claim that f(i) ≥ f(i − j + 1). Hence (2.33) is true. Consequently,

S satisfies the property (P1).

We then check (P2). We shall prove that for any fixed i, the following inequality holds for

1 ≤ j < i ≤ n:

(n− j + 1)αbi−j ≤ (n− j)αbi−j−1,

which is equivalent to

(n− j + 1)α
(
(i− j + 1)1−α − (i − j)1−α

)

≤ (n− j)α
(
(i− j)1−α − (i− j − 1)1−α

)
.

Consider the auxiliary function

g(x) = (n− x+ 1)α
(
(i − x+ 1)1−α − (i − x)1−α

)
, 1 ≤ x < i.

Below we show that g′(x) ≥ 0. Straightforward computation gives

g′(x) = −
(1 − α)n+ αi− x+ 1

(n− x+ 1)1−α(i− x+ 1)α
+

(1 − α)n+ αi− x+ 1− α

(n− x+ 1)1−α(i − x)α
.

For any 1 ≤ x < i, g′(x) ≥ 0 is equivalent to

Å
i− x+ 1

i− x

ãα
≥

(1− α)n+ αi− x+ 1

(1− α)n+ αi − x+ 1− α
. (2.34)

Since i ≤ n, the right-hand side of (2.34) satisfies for 1 ≤ x < i,

(1− α)n+ αi − x+ 1

(1− α)n+ αi− x+ 1− α
≤

i− x+ 1

i− x+ 1− α
.

In order to obtain (2.34), it is sufficient to show the following inequality:

Å
i− x+ 1

i− x

ãα
≥

i− x+ 1

i− x+ 1− α
,

that is,

i− x+ 1− α ≥ (i− x+ 1)

Å
1−

1

i− x+ 1

ãα
. (2.35)

It can be easily verify by using Taylor expansion that

Å
1−

1

i− x+ 1

ãα
≤ 1−

α

i− x+ 1
, (2.36)

which yields (2.35). Consequently, (2.34) is true. Therefore, g′(x) ≥ 0 which verifies (P2).

Thirdly, we check (P3). In the case of j = i− 1, it is trivial to show that the property (P3)

holds according to (P1) and (P2). In the general case of 2 ≤ j ≤ i − 2 (hence, 4 ≤ i ≤ n), we

shall prove

Si−1,j−1 − Si,j−1 ≤ Si−1,j − Si,j , (2.37)

which is equivalent to h(j − 1) ≤ h(j), where

h(x) = (n− x+ 1)α
ï
(i− x)1−α − (i− x− 1)1−α

(i− 1)1−α − (i− 2)1−α
−

(i − x+ 1)1−α − (i− x)1−α

i1−α − (i− 1)1−α

ò
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with 2 ≤ x ≤ i − 2. Similar to the proof of positivity of f ′(x) and g′(x), we can prove that

h′(x) ≥ 0. Therefore, the property (P3) holds for S.

In summary, S satisfies (P1)-(P3) in Lemma 2.2. Consequently, S is positive definite and

therefore B is positive definite. �

Theorem 2.2 (Weighted Energy Dissipation). For any α ∈ (0, 1), the energy of the sta-

bilized L1 scheme (2.5) for the time-fractional phase-field equations satisfies

‹En ≤ ‹En−1, ∀ 1 ≤ n ≤ N, (2.38)

where ‹En denotes the following discrete weighted energy:

‹En = E0 +∆t
n∑

m=1

Dm, Dm =
1

Γ(α)tm

m∑

k=1

tαk bm−k ∂kE. (2.39)

Proof. Note that Dn is an approximation to the derivative of weighted energy in (2.30). To

derive (2.38), it is sufficient to prove Dn ≤ 0 for all 1 ≤ n ≤ N . According to (2.9), we have

the following inequality:

Γ(α)tnD
n =

n∑

k=1

tαk bn−k∂kE ≤
1

γ

n∑

k=1

tαk bn−k

〈
G−1∂

α

kφ, ∂kφ
〉

= −
1

γ

n∑

k=1

tαk bn−k

〈
∂
α

kψ, ∂kψ
〉
, (2.40)

where ψk is given by (2.26). Combining Lemma 2.4 and (2.40), we conclude that Dn ≤ 0. �

We point out that Corollary 2.1 can also be deduced from Theorem 2.2. Further, the

weighted energy dissipation law is even stronger than the fractional energy law result. In fact,

Theorems 2.1 and 2.2 state the following two inequalities respectively:

b0(E
n − E0) ≤

n−1∑

k=1

(bn−k−1 − bn−k)(E
k − E0), (2.41)

b0n
α(En − E0) ≤

n−1∑

k=1

[
(k + 1)αbn−k−1 − kαbn−k

]
(Ek − E0). (2.42)

We can show that (2.41) can be deduced from (2.42). This proof is technical and is omitted

here.

3. (2− α)-order L1-SAV Scheme

We have provided two discrete energy laws for the first-order stabilized L1 scheme, corre-

sponding to the energy property of the governing equation introduced in [9, 27]. We will show

in this section that Lemma 2.2 can also be used to analyze the energy stability of high order

scheme, i.e. the energy boundedness and the fractional energy law of a (2 − α)-order L1-SAV

scheme.
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Inspired by the extended SAV scheme in [14], we consider a semi-discrete implicit scheme

using the L1 approximation for the fractional derivative, the Crank-Nicolson discretization of

the Laplace term, and the SAV technique [35] for the nonlinear term

∂̄αn+ 1

2

φ = γGµn+ 1

2 , (3.1a)

µn+ 1

2 = Lφn+
1

2 +
rn+

1

2»
E1

(
φ̄n+

1

2

)
+ C0

δφE1

(
φ̄n+

1

2

)
, (3.1b)

rn+1 − rn =
1

2
»
E1

(
φ̄n+

1

2

)
+ C0

〈
δφE1

(
φ̄n+

1

2

)
, φn+1 − φn

〉
(3.1c)

with

φn+
1

2 =
1

2
(φn+1 + φn), rn+

1

2 =
1

2
(rn+1 + rn), φ̄n+

1

2 =
3

2
φn −

1

2
φn−1.

The discrete fractional derivative operator ∂̄αn+1/2 is given by (see [14])

∂̄αn+ 1

2

φ =

n∑

j=0

b̃n−j ∂̄j+1φ, (3.2)

where b̃0 = ∆t1−α2α−1/Γ(2− α) and

b̃j =
∆t1−α

Γ(2− α)

ñÅ
j +

1

2

ã1−α

−

Å
j −

1

2

ã1−α
ô
, j ≥ 1.

It is shown in [14] that the order of truncation error of ∂̄αn+1/2φ to ∂αt φ(tn+1/2) is 2−α. Hence,

the scheme (3.1) is (2− α)-order in time.

We now state two properties of the operator ∂̄αn+1/2, which ensures the energy boundedness

and the fractional energy law.

Lemma 3.1. For any function u defined on Ω× [0, T ], the following inequalities hold:

n∑

k=0

〈
∂̄αk+ 1

2

u, ∂̄k+1u
〉
≥ 0, ∀n ≥ 0, (3.3)

n∑

k=0

b̃n−k

〈
∂̄αk+ 1

2

u, ∂̄k+1u
〉
≥ 0, ∀n ≥ 0. (3.4)

Proof. We provide a brief schematic of the proof. Rewriting (3.3) into a quadratic form

(omitting details here), it is sufficient to prove that

A =




b̃0
b̃1 b̃0
...

...
. . .

b̃n−1 b̃n−2 · · · b̃0
b̃n b̃n−1 · · · b̃1 b̃0




(3.5)

is positive definite. Using the facts 2b̃0 > b̃1 and 2b̃0+ b̃2 > 2b̃1, it is easy to verify that A+AT

satisfies the three conditions in Lemma 2.2 and is therefore positive definite. Thus, A is positive

definite.
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Similarly, to prove (3.4) it is sufficient to prove that

B =




b̃n
b̃n−1

. . .

b̃1
b̃0







b̃0
b̃1 b̃0
...

...
. . .

b̃n−1 b̃n−2 · · · b̃0
b̃n b̃n−1 · · · b̃1 b̃0




(3.6)

is positive definite. We consider the following congruent transformation of B+BT:

S = P
(
B+BT

)
PT, (3.7)

where P is an anti-diagonal matrix

P =




b̃−1
0

b̃−1
1

. .
.

b̃−1
n



. (3.8)

Similar to the proof of Lemma 2.3, one can also verify that S satisfies the three conditions in

Lemma 2.2 and is therefore positive definite. In particular, we used the facts that

2b̃0b̃2 ≥ b̃21, b̃j−1b̃j+1 ≥ b̃2j for j ≥ 2,

which are useful in the verification. The details are omitted here. �

By taking the inner product of (3.1b) with ∆t∂̄n+1φ and multiplying (3.1c) with 2rn+1/2,

we can obtain

∂̄n+1E ≤
〈
µn+ 1

2 , ∂̄n+1φ
〉
, (3.9)

where

En =
1

2
〈Lφn, φn〉+ (rn)2

is the modified energy. Combining (3.1a), (3.3), (3.4), and (3.9), we then derive the energy

boundedness for the modified energy as stated below.

Theorem 3.1 (Energy Boundedness and Fractional Energy Law). For the (2−α)-or-

der L1-SAV scheme (3.1), the energy boundedness

En+1 ≤ E0, ∀n ≥ 0, (3.10)

and the fractional energy law

∂̄αn+ 1

2

E =
n∑

k=0

b̃n−k∂̄k+1E ≤ 0, ∀n ≥ 0, (3.11)

hold true, where En is the modified energy.

We point out that in the case of b̃0 ≥ b̃1, i.e. α ≥ ln3(3/2) ≈ 0.3691, the fractional energy

law (3.11) can lead directly to the energy boundedness (3.10) by induction.
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4. L1 Schemes with Nonuniform Time Steps

We will demonstrate in this section that Lemma 2.2 can be extended to handle L1 schemes

with nonuniform time steps. To this end, consider the general nonuniform time mesh in the

form

τj = tj − tj−1, 1 ≤ j ≤ N, (4.1)

where τj denotes the j-th time step. For the nonuniform time mesh (4.1), the corresponding

L1 approximation to ∂αt φ at tn and (tn+1 + tn)/2 becomes

Dα
nφ =

n∑

j=1

dn,jDjφ, Dα
n+ 1

2

φ =
n∑

j=0

d̄n,jDj+1φ, (4.2)

respectively, where

dn,j =
(tn − tj−1)

1−α − (tn − tj)
1−α

Γ(2− α)τj
, (4.3a)

d̄n,j =
(tn+1 + tn − 2tj)

1−α
− (tn+1 + tn − 2tj+1)

1−α

Γ(2− α)21−ατj+1
, (4.3b)

d̄n,n =
(tn+1 − tn)

1−α

Γ(2− α)21−ατn+1
, (4.3c)

and Djφ := φj − φj−1. Note that the notations Dα
nφ,D

α
n+1/2φ,Djφ, dn,j , d̄n,j correspond re-

spectively to the previous notations ∂
α

nφ, ∂̄
α
n+1/2φ, ∂jφ, bn−j , b̃n−j , but now for nonuniform time

meshes.

Lemma 4.1. For any function u defined on [0, T ]× Ω, the following properties hold:

n∑

k=1

〈
Dα

ku,Dku
〉
≥ 0, ∀n ≥ 1, (4.4)

n∑

k=0

〈
Dα

k+ 1

2

u,Dk+1u
〉
≥ 0, ∀n ≥ 0, (4.5)

where Dα
k and Dα

k+1/2 are given by (4.2) for nonuniform time steps.

Proof. To derive (4.4), we need to prove that

D =




d1,1
d2,1 d2,2
...

...
. . .

dn−1,1 dn−1,2 · · · dn−1,n−1

dn,1 dn,2 · · · dn,n−1 dn,n




(4.6)

is positive definite. Similarly, to derive (4.5) we need to show that

‹D =




d̄0,0
d̄1,0 d̄1,1
...

...
. . .

d̄n−1,0 d̄n−1,1 · · · d̄n−1,n−1

d̄n,0 d̄n,1 · · · d̄n,n−1 d̄n,n




(4.7)
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is positive definite. Without much difficulty, one can verify that D + DT and ‹D + ‹DT both

satisfy the three conditions in Lemma 2.2 and are therefore positive definite. Here, we show

details on the positive definiteness of S

Sij = Γ(2− α)(D +DT)ij

=





2τ−α
i , if i = j,

τ−1
j

[
(ti − tj−1)

1−α − (ti − tj)
1−α

]
, if i > j,

Sji, if i < j.

(4.8)

We focus on the lower triangular part of S, i.e. i ≥ j. Firstly, it is easy to see that Sij decreases

with respect to i, i.e. the property (P1) in Lemma 2.2. Secondly, we have

Sij = τ−1
j

[
(ti − tj−1)

1−α − (ti − tj)
1−α

]

=
1− α

tj − tj−1

∫ tj

tj−1

(ti − s)−α ds

= (1 − α)(ti − ξj)
−α, ξj ∈ (tj−1, tj), 1 ≤ j ≤ i− 1, (4.9)

implying that Sij increases with respect to j ∈ [1, i− 1]. Due to the convexity of (ti − s)−α, we

know ξj ∈ (tj−1, tj−1 + τj/2). Moreover,

Si,i−1 = (1 − α)(ti − ξi−1)
−α < Sii = 2τ−α

i . (4.10)

Therefore, the property (P2) in Lemma 2.2. Thirdly, from (4.9), we have

Si−1,j − Si,j =
1− α

tj − tj−1

∫ tj

tj−1

[
(ti−1 − s)−α − (ti − s)−α

]
ds

= (1−α)
[
(ti−1−ηj)

−α−(ti−ηj)
−α

]
, ηj ∈ (tj−1, tj), 1 ≤ j ≤ i− 2, (4.11)

implying that Si−1,j − Si,j increases with respect to j ∈ [1, i − 2], due to the monotonicity of

function (ti−1 − η)−α − (ti − η)−α. Using the fact

Si−1,i−1 = 2τ−α
i−1 =

2(1− α)

ti−1 − ti−2

∫ ti−1

ti−2

(ti−1 − s)−α ds, (4.12)

we then have

Si−1,i−1 − Si,i−1 ≥
1− α

ti−1 − ti−2

∫ ti−1

ti−2

[
(ti−1 − s)−α − (ti − s)−α

]
ds

= (1− α)
[
(ti−1 − ηi−1)

−α − (ti − ηi−1)
−α

]

≥ (1− α)
[
(ti−1 − ηi−2)

−α − (ti − ηi−2)
−α

]

= Si−1,i−2 − Si,i−2, (4.13)

where ηi−1 ∈ (ti−2, ti−1). Therefore, the property (P3) in Lemma 2.2 holds. In summary, S is

positive definite and consequently, D is positive definite.

Similar proof can be done for ‹D. We shall verify that S̃ = 21−αΓ(2−α)(‹D+‹DT) satisfies the

three conditions in Lemma 2.2. The proof is almost the same as before, except the verification of

S̃j,j − S̃j+1,j ≥ S̃j,j−1 − S̃j+1,j−1, ∀ j ≥ 2. (4.14)
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It can be verified that (4.14) is equivalent to

2τ−α
j+1 − τ−1

j+1

[
(τj+2 + 2τj+1)

1−α − τ1−α
j+2

]

≥ τ−1
j

[
(τj+1 + 2τj)

1−α − τ1−α
j+1

]

− τ−1
j

[
(τj+2 + 2τj+1 + 2τj)

1−α − (τj+2 + 2τj+1)
1−α

]
. (4.15)

Let

Q(a, b) = 2a1−α − (b+ 2a)1−α + b1−α

− a
[
(a+ 2)1−α − a1−α − (b + 2a+ 2)1−α + (b + 2a)1−α

]
.

For any a, b > 0, straightforward computation gives

∂bQ(a, b) = (1 − α)(a+ 1)

ï
1

a+ 1
b−α +

a

a+ 1
(b+ 2a+ 2)−α − (b+ 2a)−α

ò
≥ 0,

where the Jensen’s inequality is used. Further, when b = 0, we have Q(a, 0) = a2−αp(1/a),

where

p(x) = (1 + 2x)− (1 + 2x)1−α + 21−α(1 + x)1−α − 21−α(1 + x).

It is easy to find that p(0) = 0, p′(0) ≥ 0, and p′′(x) ≥ 0, so that p(x) ≥ 0. Since Q(a, 0) ≥ 0

and ∂bQ(a, b) ≥ 0, we have Q(a, b) ≥ 0 for any a, b > 0. In particular, we have

τ−1
j+1τ

1−α
j Q

(
τj+1τ

−1
j , τj+2τ

−1
j

)
≥ 0.

It can be verified that the above inequality is equivalent to (4.15). This completes the proof of

the lemma. �

With nonuniform time mesh, we rewrite the first-order stabilized L1 scheme (2.5) as

Dα
n+1φ = γ G

(
Lφn+1 + δφE1(φ

n) + L̃(φn+1 − φn)
)
, (4.16)

and the (2 − α)-order L1-SAV scheme (3.1) as

Dα
n+ 1

2

φ = γGµn+ 1

2 , (4.17a)

µn+ 1

2 = Lφn+
1

2 +
rn+

1

2»
E1

(
φ̄n+

1

2

)
+ C0

δφE1

(
φ̃n+

1

2

)
, (4.17b)

rn+1 − rn =
1

2
»
E1

(
φ̃n+

1

2

)
+ C0

〈
δφE1

(
φ̃n+

1

2

)
, φn+1 − φn

〉
, (4.17c)

where L, L̃, E1, and C0 are the same as before, while

φ̃n+
1

2 = φn +
τn+1

2τn
(φn − φn−1).

Using Lemma 4.1 we can derive the energy bound preserving property of the L1 schemes

(4.16) and (4.17) with nonuniform time meshes. The details will be omitted here.

Theorem 4.1 (Energy Boundedness). The energy boundedness holds for the L1 schemes

(4.16) and (4.17) with arbitrary nonuniform time mesh

En ≤ E0, ∀n ≥ 1, (4.18)

where En denotes the classical discrete energy for (4.16) and the modified SAV energy for (4.17).
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Remark 4.1. The energy stability of L2 schemes for time-fractional phase-field equations have

been studied recently in [22,28,29]. Furthermore, a series of works on global-in-timeH1 stability

of standard and fast L2 schemes on general nonuniform time meshes for subdiffusion equations

have been done in [30–32].

5. Numerical Tests

In this section, we test the proposed schemes for time-fractional phase-field equations to

verify our energy stability results. In particular, we test the first order stabilized L1 scheme

(2.5) for the time-fractional AC and CH models, and then the (2 − α)-order L1-SAV scheme

(3.1) for the time-fractional MBE model with slope selection. The implementations of these

schemes are linearly implicit without using nonlinear iterations.

5.1. Time-fractional Allen-Cahn model

We first test the stabilized L1 scheme (2.5) for the time fractional AC model defined in

a two-dimensional domain Ω = [0, Lx] × [0, Ly] with periodic boundary conditions. We take

Lx = Ly = 2, ε = 0.1, and γ = 1 in (1.1). The stabilization constant S in scheme (2.5) is set to

be S = 2 and the time step is set to be ∆t = 0.01. The peuso-spectral method with 128× 128

Fourier modes is used for space discretization. The initial phase-field state is taken as

φ0(x) = tanh

ï
1

2ε

Å
2r

3
−

1

4
−

1 + cos(6θ)

16

ãò
(5.1)

with the polar coordinates r =
√
x2 + y2 and θ = arctan(y/x).

Fig. 5.1 illustrates the solution φ to the time-fractional AC equation with different orders

of derivative α = 1, 0.8, 0.5, 0.3. On the left-hand side of Fig. 5.2, one can see that the energy

decreases with respect to time. In the middle of Fig. 5.2, it can be observed that the fractional

derivative of energy is always nonpositive for different values of α, which is in good agreement

with the discrete fractional energy law in Theorem 2.1. On the right-hand side of Fig. 5.2, we

plot the derivative of weighted energy with respect to time, which is found to be nonpositive

as stated in Theorem 2.2.

5.2. Time-fractional Cahn-Hilliard model

For the time-fractional CH model defined on [0, Lx]× [0, Ly], we again solve the governing

equation using the stabilization scheme (2.5). The following parameters are used: Lx = Ly = 2,

ε = 0.1, γ = 0.1, L = 8, S = 4, and ∆t = 0.01. Still, 128× 128 Fourier modes are used in the

peuso-spectral method. The initial phase-field state φ0 is taken as the uniformly distributed

random field in [−1, 1].

Fig. 5.3 illustrates the phase-field function φ with α = 1, 0.8, 0.5, 0.3. We observed an in-

teresting phenomena that the steady state with α = 0.5 and 0.3 is very different with that of

α = 1 and 0.8. In addition, it is observed from the left-hand side of Fig. 5.4 the energy decreases

with respect to time although its theoretical justification is still unavailable. Furthermore, in

the middle of Fig. 5.4, it can be observed that the fractional derivative of energy is always

nonpositive as stated in Theorem 2.1. On the right-hand side of Fig. 5.4, the derivative of

weighted energy is nonpositive as stated in Theorem 2.2.
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Fig. 5.1. Snapshots of the time-fractional Allen-Cahn solution with α = 1, 0.8, 0.5, 0.3.

Fig. 5.2. Energy (left), time-fractional derivative of energy (middle), and time derivative of weighted

energy (right) with respect to time, for the time-fractional Allen-Cahn model with α = 1, 0.8, 0.5, 0.3.

5.3. Time-fractional MBE model with slope selection

We test the (2 − α)-order L1-SAV schemes (3.1) and (4.17) for solving the time-fractional

MBE equation (1.3) with slope selection defined in the domain [0, 2π]× [0, 2π]. The following
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Fig. 5.3. Snapshots of the time-fractional Cahn-Hilliard solution with α = 1, 0.8, 0.5, 0.3.

Fig. 5.4. Energy (left), time-fractional derivative of energy (middle), and time derivative of

weighted energy (right) with respect to time t, for the time-fractional Cahn-Hilliard equation with

α = 1, 0.8, 0.5, 0.3.

parameters are used: ε2 = 0.1, γ = 1, and C0 = 1. For the peuso-spectral method, 128 × 128

Fourier modes are used. The initial phase-field state φ0 is taken to be

φ0(x, y) = 0.1 [sin(3x) sin(2y) + sin(5x) sin(5y)] , (x, y) ∈ [0, 2π]2. (5.2)
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Fig. 5.5. Snapshots of the solution to the time-fractional MBE equation with slope selection with

α = 1, 0.8, 0.5, 0.3.

First, we test the scheme (3.1) with uniform time step ∆t = 0.01. Fig. 5.5 illustrates the

phase solution φ to the time-fractional MBE equation with α = 1, 0.8, 0.5 and 0.3. It can be

observed that when α becomes smaller, the phase changes faster at the beginning but later

changes quite slowly. On the left-hand side of Fig. 5.6, the modified energy decreases with

respect to time in the case of α = 1, 0.8 and 0.5. However, the energy dissipation is violated

at tn ≈ 1.44 in the case of α = 0.3, as observed in [13]. The violation occurs for small α,

which requires much smaller mesh sized to obtain satisfactory resolution. Even in this case it

is observed that the energy stability (boundedness) is preserved. In the middle of Fig. 5.6, the

fractional energy law in Theorem 3.1 is verified. On the right-hand side of the figure, it is found

that the derivative of weighted (modified) energy is nonpositive.

Next, we test the scheme (4.17) with graded time mesh (see, e.g. [38])

tj = (j/N)
r
T, j = 0, 1, . . . , N, (5.3)

where r ≥ 1 is some constant and N is the total number of time steps. In our test, we set r = 1.2

and T = 10. Fig. 5.7 illustrate the modified energy for N = 100, 500 and 1000 respectively,

which corresponds roughly to ∆t ≈ 0.1, 0.02, 0.01 away from t = 0. It is observed that the

computed energy is bounded above by the initial energy, as stated in Theorem 4.1. One can
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Fig. 5.6. Energy (left), time-fractional derivative of energy (middle), and time derivative of weighted

energy (right) with respect to time t, for the time-fractional MBE equation with slope selection with

α = 1, 0.8, 0.5, 0.3. Here, in the middle and the right-hand side figures, the y-axis is cut for a better

illustration.

Fig. 5.7. Discrete energy of the L1-SAV scheme on graded time meshes for the time-fractional

MBE equation with slope selection, where the number of steps and the fractional order are set to

N = 100, 500, 1000 and α = 1, 0.8, 0.5, 0.3 respectively.

find that in the case of N = 100 and α = 0.3, the computed energy oscillates despite that the

stability can be ensured. We also mention that when α = 0.3 and the computed energy at

T = 10 varies with different values of N .

6. Conclusion

In this work, we applied a special Cholesky decomposition technique to analyze the energy

stability of the first-order L1 approximation for time-fractional phase-field equations. From

a numerical point view, the essential step to study the fractional PDE is to approximate the

time-fractional derivative operator. We use a classical scheme called L1 approximation, which is

naturally derived from the approximation of the fractional integral appropriately. In particular,

we investigated the discrete versions of the fractional energy law of Du et al. [9] and the weighted

energy lay of [27], and obtained the dissipation of the fractional/weighted energy associated

with numerical schemes. A higher order numerical scheme, i.e. a (2−α)-order L1-SAV scheme,

is also investigated, while the relevant energy boundedness and the fractional energy law are

established. Moreover, we prove that the L1 schemes with nonuniform time steps still preserve
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the energy boundness.

We point out that the Cholesky decomposition technique is useful for the numerical schemes

for time-fractional problems. It is expected that the framework developed in this work can also

be employed to study second-order schemes for time-fractional phase-field equations. In fact,

there have been extensive works of second-order accurate energy stable numerical schemes for

the Cahn-Hilliard and MBE equation, using the convex splitting approach, in the standard

temporal derivative case. Both the Crank-Nicolson and the modified BDF2 approaches, with

the standard finite difference, mixed finite element and Fourier pseudo-spectral spatial approxi-

mations have been reported, see, e.g. [7,25,33]. It is certainly of some theoretical and numerical

interests to extend these results to the time-fractional equations. The corresponding analysis

for the stability issues seems a challenging issue.
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