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Abstract

In this paper we discuss topological spaces generated by simple graphs using adjacency relation and non adjaceny
relation on vertices. We establish important results showing relations between complete graph and discrete topological
space. We also discuss the topological spaces related to complete graphs, isomorphic graphs and study their
properties. Further we discuss the interior and closure operators and their properties. Our motivation is to give
an fundamental step toward linkage between topology and graph so as to study different aspects of graphs in terms of
topological properties.
2020 Mathematical Sciences Classification: O5C10.
Keywords and Phrases: Graph Theory, topological spaces, interior operator and closure operator.

1. Introduction
Graph theory has vast application in various fields like graphics, communication science, computer technology, image
processing, data mining, town planning, electric and civil engineering, operation research, medical fields etc. Using
graphs we can represent any system involving a binary relation in terms of mathematical model. Topology is a study
of spaces invariant under continuous deformations. Topology has applications in various fields like molecular biology,
robotics, remote sensing, data analysis, concurrency theory etc.

A graph can be considered as one dimensional topological spaces of a type [4]. Both graph theory and topology
claimed to have their origin in famous Eulers seven bridge problem of 1736 . So, the study of interdependence of
graph theory and topology can be quite useful. The notions of connected graphs, homeomorphic graphs have the same
meaning as in topology, while the notions of homology in topology can be used in solutions of problems of graph
theory. Abedal-Hamza Mahadi [1] constructed a topology on undirected graph.Allam[3] discussed a new method
to generate topology on graph by using new method of taking neighborhood is determining two fixed vertices on
the graph.Zhang and Li[7] discussed topological properties of a pair of relation based generalized approximation
operators like interior and closure operators. Allam, Bakeir and Abo-tabl[2] studied the topologies associated with
closure operators.

In this paper we define a topology using adjacency relation on a simple graph and study their properties.

2. Preliminaries
Definition 2.1 ([4, 6]). A graph G is a ordered set of vertices V(G) and edges E(G). If V(G) and E(G) are finite then
G is said to be finite graph and if either V(G) or E(G) or both are infinite then G is said to be infinite graph.

Definition 2.2 ([6]). Two vertices a and b are said to be adjucent if they are joined by an edge. Two distinct edges ab
and bc are said to be adjacent if they are joined by common vertex b. The vertex a and edges joined to a are said to be
incident with each other.

Definition 2.3 ([4]). A graph G has a loop if G contains an edge joining a vertex to itself. A graph G has multiedges
if it has more than one edge joining two vertices. A graph G with multiedges and without loop is called multigraph.
A graph G with loop and multiedges is called pseudograph. A graph G is said to be simple if it has no loops and no
multiedges.

Definition 2.4 ([4]). A graph G is said to be connected if every pair of vertices are joined by a path.A graph G is said
to be complete graph if every pair of vertices in G are adjacent.

Definition 2.5 ([4]). Two graphs G and H are isomorphic graphs if there exist one one map between their vertices
which preserves adjacency.

Definition 2.6. A binary relation R on non empty set X is a subset of X×X.
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Definition 2.7 ([5]). Let X be a non empty ste and P(X) be the power set of X. A collection τ⊆P(X) is said to be a
topology on X if the following conditions are satisfied,
1. X and φ ∈ τ
2. The intersection of finite members of τ and an arbitrary union of members of τ are in τ.
An ordered pair (X, τ) is called a topological space and the members of topological spaces are called open sets.

Definition 2.8 ([5]). A topology τ on X is called discrete topology if τ = P(X). A topology τ on X is called an
indiscrete topology if τ = {φ, X}.
Definition 2.9 ([5]). A collection of subsets of X whose union equals X is called a subbasis S for a topology τ on X.
The coolection of all unions of finite intersections of members of S is a topology τ generated by subbasis S .

3. Topology Generated by Simple Connected Graph
In this section first we define subbasis and basis for a topology on given simple connected graph by using adjacency
relation of vertices.

Definition 3.1. Let G = (V(G), E(G)) be the simple connected graph and let X = V(G). On set of vertices X we define
an adjancy relation R as follows,

(u, v) ∈ R if u is adjacent to v for u, v ∈ X

Now for u ∈ X, we define as R[u]={v ∈ X/ (u, v) ∈ R}.
Then the set S G = {R[v]/v ∈ X} forms a basis for a topology on X as it is collection of subset of X whose union equals
X.Let βG be the finite intersection of members of subbasis S G then clearly βG forms a basis. The collection τG of all
unions of members of βG is a topology on X. We called τG as a topology generated by a graph G and the ordered pair
(X, τG) as a topological space generated by graph G.

Example 3.1. Let G1 be graph with vertex set V(G1) = {a, b, c, d} then

Definition 2.7 ([5]). Let X be a non empty ste and P(X) be the power set of X. A collection τ⊆P(X) is said to be a
topology on X if the following conditions are satisfied,
1. X and φ ∈ τ
2. The intersection of finite members of τ and an arbitrary union of members of τ are in τ.
An ordered pair (X, τ) is called a topological space and the members of topological spaces are called open sets.

Definition 2.8 ([5]). A topology τ on X is called discrete topology if τ = P(X). A topology τ on X is called an
indiscrete topology if τ = {φ, X}.
Definition 2.9 ([5]). A collection of subsets of X whose union equals X is called a subbasis S for a topology τ on X.
The coolection of all unions of finite intersections of members of S is a topology τ generated by subbasis S .

3. Topology Generated by Simple Connected Graph
In this section first we define subbasis and basis for a topology on given simple connected graph by using adjacency
relation of vertices.

Definition 3.1. Let G = (V(G), E(G)) be the simple connected graph and let X = V(G). On set of vertices X we define
an adjancy relation R as follows,

(u, v) ∈ R if u is adjacent to v for u, v ∈ X

Now for u ∈ X, we define as R[u]={v ∈ X/ (u, v) ∈ R}.
Then the set S G = {R[v]/v ∈ X} forms a basis for a topology on X as it is collection of subset of X whose union equals
X.Let βG be the finite intersection of members of subbasis S G then clearly βG forms a basis. The collection τG of all
unions of members of βG is a topology on X. We called τG as a topology generated by a graph G and the ordered pair
(X, τG) as a topological space generated by graph G.

Example 3.1. Let G1 be graph with vertex set V(G1) = {a, b, c, d} then

a

b c

d

Figure 3.1: G1

R[a] = {b},R[b] = {a, c, d},R[c] = {b},R[d] = {b},

S G1 = {{b}, {a, c, d}},

βG1 = {φ, {b}, {a, c, d}},

τG1 = {φ, {b}, {a, c, d}, X}.

Example 3.2. Let G2 be graph with vertex set V(G2) = {a, b, c, d} then

a

b c

d

Figure 3.2: G2

R[a] = {b, d},R[b] = {a, c, d},R[c] = {b, d},R[d] = {a, b, c},

S G2 = {{b, d}, {a, c, d}, {a, b, c}},

βG2 = {φ, {b}, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d}},

τG1 = {φ, {b}, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d}, X}.

Example 3.3. Let G3 be graph with vertex set V(G3) = {a, b, c, d, e} then
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a

b c

d

e

Figure 3.3: G3

R[a] = {b, d, e},R[b] = {a, c},R[c] = {b, d},R[d] = {a, c},

R[e] = {a},

S G3 = {{a}, {a, c}, {b, d}, {b, d, e}},

βG3 = {φ, {a}, {a, c}, {b, d}, {b, d, e}},

τG3 = {φ, {a}, {a, c}, {b, d}, {b, d, e}, X}.

Theorem 3.1. If G is complete graph then the topological space generated by G is discrete.

Proof. Let G be complete graph with n vertices such that V(G) = {v1, v2,...,vn } , denote V(G) = X. Let R be adjacency
relation on set of vertices X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X then by the definition 3.1 , the set S G = {R[vi]/vi ∈
X, i = 1, 2, ..., n} forms a subbasis for a topology on X.

Since G be complete graph with n vertices,therefore on simplifying S G we get,

S G = {X − {v1}, X − {v2}, ..., X − {vn}}. (3.1)

Let a basis βG is the finite intersection of members of subbasis S G. Clearly from equation 3.1, βG ⊆ P(X), where P(X)
is a power set of X and contains all singleton subset of X. Hence the collection of all union of members of βG is a
topology. Therefore τG = P(X). Hence the topological space generated by complete graph is discrete space. �

Example 3.4. Let G4 be complete graph with vertex set V(G4) = {a, b, c} then

a

b c

Figure 3.4: G4

S G4 = {{a, b}, {a, c}, {b, c}},

βG4 = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}},

τG4 = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

Therefore τG4 = P(X).

Example 3.5. Let G5 be complete graph with vertex set V(G5) = {a, b, c, d} then

a

b c

d

Figure 3.5: G5

S G5 = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}},

βG5 = {φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, d}, {b, d}, {c, d},

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}},

τG5 = {φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, d}, {b, d}, {c, d}.

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}

Therefore τG5 = P(X).

Remark 3.1. Converse of above theorem need not be true. A topological space generated by a graph G is discrete then
G need not be complete graph.

Example 3.6. Let G6 be a simple connected graph with vertex set V(G6) = {a, b, c, d, e} then clearly G6 is not a
complete graph but a topological space τG6 generated by G6 is discrete.
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Figure 3.6: G6

S G6 = {{a, d}, {a, c}, {b, e}, {b, d}, {c, e}},

βG6 = {φ, {a}, {b}, {c}, {d}, {e}, {a, d}, {a, c}, {b, e}, {b, d}, {c, e}},

τG6 = {φ, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {b, c}, {a, d}, {b, d}, {c, d},

{a, e}, {b, e}, {c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},

{a, c, e}, {a, d, e}, {a, b, e}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d},

{a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, X} = P(X).

Therefore a topological space τG6 is discrete space but G6 is not a complete graph.

Theorem 3.2. If two simple connected graphs are isomorphic then the topological spaces generated by these graphs
are also homeomorphic.

Proof. Let G and H are two simple connected isomorphic graphs then both of them have same number of vertices
and edges which preserves adjacency. Let S G and S H are the subbases for the topologies generated by G and H
respectively then the sets S G and S H are equivalent, since they are constructed by using adjacency relation of vertices.
Hence the topological spaces generated by G and H must be homeomorphic. �

Remark 3.2. Converse of above theorem need not be true. If topological spaces generated by two simple connected
graphs are homeomorphic then these two graphs may not be isomorphic.

Example 3.7. Let G7 be a complete graph with vertex set V(G7) = {a, b, c, d, e} them from Theorem 3.1, topological
space τG7 generated by G7 is discrete, see Figure 3.7 given below. Consider Example 3.6, the topological space
τG6 generated by G6 is also discrete and vetex set of G6 is equal to vertex set of G7.
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Figure 3.7: G7

Hence the topological spaces τG6 and τG7 are homeomorphic but the corresponding
graphs G6 and G7 are not isomprphic because G6 is not complete graph but G7 is
complete.

Theorem 3.3. If H is a connected subgraph of a simple connected graph G then τH ⊆ τG.

Proof. Straightforward. �

4. Interior Operator of a Graph
Definition 4.1. Let G be the simple connected graph with vertex set X. Let R be adjacency relation on set of vertices
X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X. Let A be any subset of X then we define the interior operator of A as
intA = {v ∈ A/R[v] ⊆ A}.
Theorem 4.1. Let G be the simple connected graph with vertex set X. Let R be the adjacency relation on set of vertices
X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X. If A and B are any two subsets of X then
(a) intX = X and intφ = φ,
(b) If A ⊆ B then intA ⊆ intB,
(c) intA ∩ intB = int(A ∪ B),
(d) intA ∪ intB ⊆ int(A ∪ B).
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Proof. (a) Since intA = {v ∈ X/R[v] ⊆ X}. Hence if A = X then clearly intA = X. Obviously intφ = φ.
(b) Let A ⊆ B. Let v ∈ intA be any element then v ∈ A and R[v] ⊆ A. Since A ⊆ B inplies v ∈ B and R[v] ⊆ B. Hence
by definition of interior operator, v ∈ intB. Therefore intA ⊆ intB.
(c) For any element v, v ∈ int(A ∩ B)
⇔v ∈ (A ∩ B) such that R[v] ⊆ (A ∩ B), since by definition of interior operator.
⇔v ∈ A such that R[v] ⊆ A and v ∈ B such that R[v] ⊆ B.
⇔ v ∈ intA and v ∈ intB.
Hence intA ∩ intB = int(A ∪ B).
(d) Let v ∈ int(A ∪ B) be any elements then v ∈ intA or v ∈ intB.Hence by definition of interior operator, v ∈ A and
R[v] ⊆ A or v ∈ B and R[v] ⊆ B. This implies v ∈ A or v ∈ B and R[v] ⊆ A or R[v] ⊆ B. Therefore v ∈ (A ∪ B) and
R[v] ⊆ (A ∪ B).Hence v ∈ int(A ∪ B). Therefore intA ∪ intB ⊆ int(A ∪ B). �

Example 4.1. Consider Example 3.3, Let X = {a, b, c, d, e} and A = {a, b, c}, B = {a, b, e}, C = {a, b, c, d} and
D = {a, b, c, e} are all subset of X then intA = {b}, intB = {e}, intC = {b, c, d} and intD = {b, e}. Obviously intX = X,
since A ⊆ D and intA ⊆ intB. Hence Theorem 4.1(b) is verified. Now intA∩ intB and since A ⊆ C = {a, b, c}, therefore
int(A∩C) = {b}, hence Theorem 4.1(c) is verified.Similarly (int(B)∪ int) = {b, c, d, e} and since (B∪C) = {a, b, c, d, e},
therefore int(B ∪C) = {a, b, c, d, e}. Hence Theorem 4.1(d) is verified.

Remark 4.1. int(A ∪ B) ⊆ (intA ∪ intB) is need not be true in general because from above example (intB ∪ intC) =

{b, c, d, e} and int(B ∪C) = {a, b, c, d, e}. Therefore int(A ∪ B) * (intA ∪ intB).

5. Closure Operator of a Graph
Definition 5.1. Let G be the simple connected graph with vertex set X. Let R be adjacency relation on set of vertices
X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X. Let A be any subset of X then we define the closure operator of A as
clA = A ∪ {v ∈ X/(R[v] ∩ A) , φ}.
Theorem 5.1. Let G be the simple connected graph with vertex set X. Let R be the adjacency relation on set of vertices
X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X. If A and B are any two subsets of X then
(a) clX = X and clφ = φ,
(b) If A ⊆ B then clA ⊆ clB,
(c) (clA ∪ clB) = cl(A ∪ B),
(d) cl(A ∩ B) ⊆ (clA ∩ clB).

Proof. (a) Since clA = A ∪ {v ∈ X/(R[v] ∩ A) , φ}.Hence if A = X then clearly clX = X and obviously clφ = φ.
(b) Let A ⊆ B.Let v ∈ clA be any element then v ∈ A or R[u] ∩ A , φ.Now since A ⊆ B implies that v ∈ B. Hence
v ∈ clB and clA ⊆ clB.
(c) Let v ∈ (clA ∪ clB) be any element then v ∈ clA or v ∈ clB.Then by definition of closure operator, v ∈ A or v ∈ B
or (R[v] ∩ A) , φ or (R[v] ∩ B) , φ. This implies v ∈ (A ∪ B) or R[v] ∩ (A ∪ B) , φ. Hence v ∈ cl(A ∪ B). But
v ∈ (clA ∪ clB) thus

(clA ∪ clB) ⊆ cl(A ∪ B). (5.1)
Now Let v ∈ cl(A ∪ B) be any element.Then by definition of closure operator,v ∈ (A ∪ B) or R[v] ∩ (A ∪ B) , φ.This
implies v ∈ A or v ∈ B or (R[v]∩ A) , φ or (R[v]∩ B) , φ. Hence v ∈ (clA∪ clB). But v ∈ cl(A∪ B) thus v ∈ cl(A∪ B)
thus

cl(A ∪ B) ⊆ (clA ∪ clB). (5.2)
Therefore from equations 5.1 and 5.2 (clA ∪ clB) = cl(A ∪ B).
(d) Let v ∈ cl(A ∩ B) be any element. Then by difinition of closure operator, v ∈ (A ∩ B) or [R[v] ∩ (A ∩ B)] , φ. This
implies v ∈ A and v ∈ B or R[v] ∩ A , φ and R[v] ∩ B , φ.Thus v ∈ A or R[v] ∩ A , φ and v ∈ B or R[v] ∩ B , φ.
Therefore v ∈ cl(A) ∩ cl(B) and hence cl(A ∩ B) ⊆ (clA ∩ clB). �

Example 5.1. Consider Example 3.1, let X = {a, b, c, d} and A = {a, b, c}, B = {a, b}, C = {b, d}, D = {a, c, d},
E = {a, b, d}, F = {b, c, d} and I = {c, d} are all subset of X then clA = {a, b, c, d}, clB = {a, b, c, d}, clC = {a, b, c, d},
clD = {a, b, c, d}, clE = {a, b, c, d}, clF = {a, b, c, d} and clI = {c, b, d}.Obviously clX = X. Since C ⊆ E hence
clC ⊆ clE, Theorem 5.1(b) is verified. Now clC∪clD = {a, b, c, d} and since C∪D = {a, b, c, d} therefore cl(C∪D) =

{a, b, c, d}, Theorem 5.1(c) is verified. Similarly clC ∩ clI = {b, c, d} and since C ∩ I = {φ}, hence cl(C ∩ I) = {φ},
Theorem .1(d) is verified.

Remark 5.1. (clA ∩ clB) ⊆ cl(A ∩ B) is need not be true in general because from above example clC ∩ clI = {b, c, d}
and cl(C ∩ I) = {φ}. Hence (clC ∩ clI) * cl(C ∩ I).
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6. Topology Generated by Simple Graph
Definition 6.1. Let G = (V(G), E(G)) be the simple graph and let X = V(G). Let R be adjacency relation on set of
vertices X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X. Then the set S G = X ∪ {R[v]/v ∈ X} forms a subbasis for a
topology on X as it is collection of subset of X whose union equals X.Let βG be the finite intersection of members of
subbasis S G then clearly βG forms a basis. The collection τG of all unions of members of βG is a topology on X. We
called τG as a topology generated by graph G and the ordered pair (X, τG) as a topological space generated by graph
G.

Example 6.1. Let G8 be a graph with vertex set V(G8) = {a, b, c, d} then

6. Topology Generated by Simple Graph
Definition 6.1. Let G = (V(G), E(G)) be the simple graph and let X = V(G). Let R be adjacency relation on set of
vertices X and R[u] = {v ∈ X/(u, v) ∈ R} for u ∈ X. Then the set S G = X ∪ {R[v]/v ∈ X} forms a subbasis for a
topology on X as it is collection of subset of X whose union equals X.Let βG be the finite intersection of members of
subbasis S G then clearly βG forms a basis. The collection τG of all unions of members of βG is a topology on X. We
called τG as a topology generated by graph G and the ordered pair (X, τG) as a topological space generated by graph
G.

Example 6.1. Let G8 be a graph with vertex set V(G8) = {a, b, c, d} then
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Figure 6.1: G8

R[a] = {b},R[b] = {a},R[c] = {φ},R[d] = {φ},
S G8 = X ∪ {{a}, {b}},
βG8 = {φ, {a}, {b}, X},
τG8 = {φ, {a}, {b}, {a, b}, X}.

Theorem 6.1. G is null graph⇔ topology τG generated by G is indiscrete.

Proof. Obvious. �

Example 6.2. Let G9 be a null graph with vertex set V(G9) = {a, b, c, d, e} then

a

b c

d

e f

Figure 6.2: G9

R[a] = {φ},R[b] = {φ},R[c] = {φ},R[d] = {φ},R[e] = {φ}
and R[ f ] = {φ},
S G9 = X ∪ {φ},
βG9 = {φ, X},
τG9 = {φ, X}.
Hence τG9 topology generated by G9 is indiscrete.

7. Topology generated by simple graph using non adjacency relation
On the same line we define a topology on simple graph by using non adjacency relation of vertices as fallows.

Definition 7.1. Let G = (V(G), E(G)) be the simple graph and let X = V(G). On set of vertices X we define a non
adjacency relation R

′
as (u, v) ∈ R

′
if u is not adjacent to v for u, v ∈ X.Now for u ∈ X, we define R

′
[u] = {v ∈

X/(u, v) ∈ R
′ }. Then the set S

′
G

= X ∪ {R′ [u]/v ∈ X} froms a subbasis for a topology on X, as it is collection of subsets
of X whose union equals to X.Let β

′
G be the finite intersection of members of subbasis S

′
G

then clearly β
′
G forms a basis.

The collection τ
′

G of all unions of members of β
′
G is a topology on X. We called τ

′
G

as a topology generated by graph G
and the ordered pair (X, τ

′
G
) as a topological space generated by graph G.

Example 7.1. Let G10 be a graph with vertex set V(G10) = {a, b, c, d} then
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Figure 7.1: G10

R
′
[a] = {c, d},R′ [b] = {d},R′ [c] = {a, d},R′ [d] = {a, b, c},

S
′
G10

= X ∪ {{d}, {a, d}, {c, d}, {a, b, c}},

β
′
G10

= {φ, {a}, {c}, {d}, {a, d}, {c, d}, {a, b, c}, X},

τ
′
G10

= {φ, {a}, {c}, {d}, {a, d}, {c, d}, {a, b, c}, {a, c, d}, X}.

Theorem 7.1. If G is complete graph then topological space generated by non adjancency relation on vertices is
indiscrete.
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G of all unions of members of β
′
G is a topology on X. We called τ

′
G

as a topology generated by graph G
and the ordered pair (X, τ

′
G
) as a topological space generated by graph G.

Example 7.1. Let G10 be a graph with vertex set V(G10) = {a, b, c, d} then

a

b c

d

Figure 7.1: G10

R
′
[a] = {c, d},R′ [b] = {d},R′ [c] = {a, d},R′ [d] = {a, b, c},

S
′
G10

= X ∪ {{d}, {a, d}, {c, d}, {a, b, c}},

β
′
G10

= {φ, {a}, {c}, {d}, {a, d}, {c, d}, {a, b, c}, X},

τ
′
G10

= {φ, {a}, {c}, {d}, {a, d}, {c, d}, {a, b, c}, {a, c, d}, X}.

Theorem 7.1. If G is complete graph then topological space generated by non adjancency relation on vertices is
indiscrete.

6

Theorem 7.1. If G is complete graph then topological space generated by non adjancency relation on vertices is
indiscrete.
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Proof. Let G be a complete graph with vertex set X.Then for each v ∈ X, the non adjancency relation R′[v] = φ. By
the definition 7.1, S ′

G
= X ∪ {φ} and β′G = {φ, X}.Hence the topology τ

′
G related to basis β′G must be indiscrete. �

Theorem 7.2. If G is null graph then topological space generated by non adjancency relation on vertices is discrete.

Proof. Obvious. �

8. Conclusion
In this paper we established a relation between graphs and topological spaces. We have a topology generated on graph
by using adjacency relation and non adjacency relation. We studied graphs by using topological aspects.

There is scope for further study on topological aspects of graphs. Using the interior and closure operator as defined
in paper topologies can be formed and there interrelationship may give some useful insights.

Acknowledgement. We are very much thankful to Editors and anonymous Reviewers for there valuable and positive
suggestions to improve the article.
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Abstract

The aim of this paper is to analyze the maximum age group of women affected by the divorce problem using fuzzy
matrix method. Study of this real world problem is based on four types of different matrices, known as initial raw
data matrix (IRDM), average time dependent data matrix (ATDM), refined time dependent data matrix ( RTDM), and
combined effect time dependent data matrix ( CETDM). For this study the data has been obtained from 110 divorced
women in Delhi and NCR, India. In order to estimate maximum age group of women influenced by divorce problem,
some graphical representations are shown for different values of ?, 0 ≤ α ≤ 1 using algebraic applications of fuzzy
matrices. Abdul et al. [13] faced different type of problem like if we add one or more attributes row wise or column
wise then matrix will become bigger and complexity will increase during calculation. Due to it we use matlab code
to solve each part of this problem in this paper and got best results.
2020 Mathematical Sciences Classification: 15B15.
Keywords and Phrases: Fuzzy matrix theory, maximum age group, divorce problem, divorced women.

1. Introduction
Family is one of the essential steps in bulding a socity. The rise in divorce cases and divorce rates is an indicator of the
disturbance in that building. In the modern days, as the time passes, divorce cases and divorced womenhave goneup.
Divorced women all around the world survive in a hard situation, these women faced many social, economical and
financial problems. Theory of fuzzy matrixes was firstly proposed by Vasantha Kandasamy and Indera [15] to study
the transportation problem. They have defined four types of different matrices, initial raw data matrix (IRDM), average
time dependent data matrix (ATDM), refined time dependent data matrix (RTDM) and combined effect time dependent
data matrix (CETDM), respectively. Many other mathematicians and researchers have worked on fuzzy matrices and
their applications in the real word situations. Vasantha Khandasamy et al. [16] estimated the maximum age-group
of rag pickers using CETD matrix method. Kalaichelvi and Kalaivanan [9] worked on Beneficiaries’ attitude towards
education loan - an analysis through fuzzy matrices in this paper they attempted to analyze the group of beneficiaries
having maximum level of favourable attitude towards the education loan using fuzzy matrices. Education, especially
the higher education, contributes much for the socio-economic development of our country. Education for all is
perceived as the national goal to be achieved and efforts are being taken by launching various schemes by both the
Central and State governments. But increasing cost of education caused by liberal privatization of higher education in
India resulted in financial hardships to students who are economically poor but academically bright to pursue higher
education. In addition to the different scholarships offered by the government, the education loan scheme launched
by the commercial banks based on the directions from the government raised the hope of the needy people that their
dream of higher education is going to be a true. Education loans are provided by all commercial banks to deserving
students for pursuing graduation, post-graduation and professional courses. A maximum of Rs 10 lakhs is sanctioned
for studies in India and it is Rs.20 lakhs for studies in abroad. Education loans upto four lakh rupees require neither
margin money nor collateral security. In case of higher loan amount, margin money of 5% is insisted for studies in
India and it is 15% for studies in abroad. The borrowers need not repay any amount during the moratorium period.
The borrowers are expected to repay loan installments only six months after getting job or one year after the course is
completed whichever happens earlier. The education loan interest waiver scheme announced by the central government
in the union budget 2009-2010 received warm reception with gratitude from the student community, especially the
economically poor section. Under this scheme the students whose family income is below four lakh rupees need not
pay interest pertaining to the moratorium period. The statistics reveal a steady growth in the number of beneficiaries.
Till March,2009 education loan totaling Rs.24,000 crore had been disbursed to 16 lakh students across the country. It
is forecasted to touch Rs.50,000 crore within 2015( Union budget 2009-10). Victor Devadoss and Clement Joe Anand
[5] investigated dimensions of personality of women using CETD matrix and the objective of their work is to find out
the peak age of women gets anger in Chennai, for that they have studied the Dimensions of personality of women.
It has been classified in to five factors as Openness, Conscientiousness, Extraversion, Agreeableness, and Negative
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Emotion. Each Dimension has six facets. Albert William et al. [22] studied the breast cancer problem in women
using RTDM matrices. Kuppuswami et al. [13] worked on traffic flow problem using CETD matrix. Amudhambigai
and Sugaipriya [1] workedon demonetization problem using fuzzy matrix theory. Kalaichelvi and Gnanamalar [6]
workedon the coffee cultivators in kodai hills. They said the coffee industry of India is the sixth largest producer
of coffee in the world. Indian coffee is said to be the finest coffee grown in the shade rather than direct sunlight
anywhere in the world. Three southern states of South India (Karnataka, Kerala and Tamil Nadu) account for 98 %
of coffee production in India. Well known varieties of coffee grown are the Arabica and Robusta. In the study area
Arabica variety is grown. Coffee is a labour-intensive crop and in Kodai Hills coffee is grown under monsoon rainfall
conditions. As the coffee contributes significantly for the national economy and the growers face many hardships in
coffee cultivation, a research has been conducted to study the problems encountered by them and inferences were
drawn using fuzzy matrices. Kokila [11] worked on fuzzy matrix analysis of students information gathering attitude.
According to her Fuzzy matrices play an important role in the formulation and analysis of many classes of discrete
structural models which are in physical, biological, medical, social and engineering sciences. The objective her work is
to study the frequency of subject wise information gathering attitude of college students using fuzzy matrix technique
[5,8,14,15].

In the present paper, we have investigated maximum age group of women affected by the divorce problem using
fuzzy matrices. The rest of the paper is organized in different sections. In section 2, basic definitions and arithmetic
operations are performed on initial raw data matrix. In section 3, ten attributes are considered for collecting the data
on the basis of age-group of divorced women. Section 4, defined and divided into different types of fuzzy matrices. In
section 5, some graphical representations are shown for distinct values of α, 0 ≤ α ≤ 1 using algebraic applications of
fuzzy matrices. Finally, results and conclusionsare given in the last section.

2. Motivation and Limitation of Proposed Paper
Abdul et al. [13] faced different type of problem and saw different type of complexity in these problems. Matlab can
remove this complexity. This is the first problem which is solve by using Matlab.
• We can increase or decrease attributes row wise/ column wise.
• Calculation of big matrix is easy by using Matlab.
• Converting one matrix into another matrix is so easy.
• We write simple matlab code for each part of the problem. These codes will reduce calculation time and give

better results.
• We will represent results graphically by writing matlab codes.
• Matlab code make problems user friendly.

3. Preliminaries
This section begins with fundamental preliminaries based on fuzzy matrix theory.
3.1. Method of obtaining IRDM matrix
An initial raw data matrix is obtained by transformation of raw data into the form of matrix. The order of IRDM matrix
depends on the number of attributes taking for columns and number of class intervals as age groups taken for rows. If
there are m attributes and n class intervals, the constructed IRDM matrix will be of order m × n.
3.2. Method of obtaining ATDM matrix
An average time dependent data matrix is obtained by dividing each entry of the IRDM matrix by length of respective
class interval. The data values of ATDM matrix are uniform in nature.
3.3. Method of obtaining RTDM matrix
A number of refined time dependent data matrixesare obtained using simple mean and standard deviation techniques.
The data entries represented by RTDM matrices are 1, -1 and 0. The refined time dependent data matrices also names
as fuzzy matrices. The mathematical formulas used for converting ATDM matrix into distinct RTDM matrices are as
follows:

If bi j ≤ µ j − ασ j then ei j = −1.
If bi j?(µ j − ασ j, µ j + ασ j) then ei j = 0.
If bi j ≥ µ j + ασ j then ei j = 1.

µ j =

∑m
i=1 xi j

m ∀ j = 1, 2, . . . , n,

σ j =

∑m
i=1(xi j−µ j)2

m ∀ j = 1, 2, . . . , n.
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3.4. Method of obtaining CETDM matrix
A combined effect time dependent data matrix is obtained by combining RTDM matrices for different values of α,0 ≤
α ≤ 1. The data represented by CETDM matrix gives cumulative effect of all these entries [2, 7].

4. Social attributes and their short descriptions to estimate maximum age group of women affected by divorce
system

In this section, we have considered following ten social attributes for constructing a linguistic questionnaire to collect
the raw data in the form of initialraw data matrix [6,9,12].

SA1- Husband Extra Marital Affairs
SA2- Husband Unemployment
SA3- Lack of Communication
SA4- Arguing and Abusing
SA5- Quixotic Expectations
SA6- Couple Without Kids
SA7- Lack of Affinity
SA8- Lack of Equality
SA9- Different interests and priorities
SA10- Inability to resolve conflicts

SA1- Extra Marital Relations
Husband extra marital relationsare very hurtful for women and break the loyalty and trust between them. Most of

the times husband infidelity may be the main reason for the women divorce cases.
SA2- Husband Unemployment

Money makes people happy and touches almost everything in the world. Clearly, all financial goals are based on
employment of husband particularly, when the women are housewives and more spending, causing a breakdown of
most marriages into divorces.
SA3- Lack of Communication

As the good communication is the foundation of strong bonding between married coupled. In fact, lack of
communication developed some kind of noise, resentment and frustration. Effective communication is very crucial in
marriage and it impacts all aspects of a marriage.
SA4- Arguing and Abusing

Constant arguing and abusing (emotional or physical) about same things again and again kill many relationships
and come to the end of a marriage.
SA5-Quixotic Expectations

When one or both persons have unrealistic expectations. These quixotic expectations can make a stress on the
other person, leaving down feelings and setting up a failure in the pre-assumed expectations.
SA6- Couple Without Kids

If the married couple has no kids, after a long period of married life, it becomes one of the major issues of
increasing into divorce cases and divorce rate.
SA7- Lack of Affinity

When one spouse or both persons are not well feeling or connected to each other by emotions and love that can a
cause of many divorces.
SA8- Lack of Equality

If any one spouse has more responsibility in the marriage as compare to the other one, it can createresentment and
become a main reasonfor ending a marriage life.
SA9- Different interests and priorities

For a successful marriage life, it is essential to have common interests and exploring them together. If the married
couple has different priorities and interests, it can also create some unbalancing situations between husband and wife
and comes to the end of marriage life.
SA10- Inability to resolve conflicts

Every married couple has some conflicts and disagreements between them, so there must be certain ground rules
to resolve these conflicts. Sometimes a third party can help to develop ground rules and teach them to move through
conflicts, otherwise these conflicts kill all aspects of a married life.

Based on above assumesten attributes, we have collected data from 110 divorced women in Delhi and NCR, as
given below in Table 4.1
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Table 4.1: Number of women respondent based on their age group

Age Group Number of Respondent
18-22 22
23-27 22
28-32 22
33-37 22
38-42 11
43-47 11

110

The initial raw data matrix of women affected by divorce system is obtained by taking above attributes as the
columns and age groups in years 18-22, 23-27, 28-32, 33-37, 38-42, 42-47 as the rows, respectively [7].

Age Group = {’18-22’;’23-27’;’28-32’;’33-37’;’38-42’;’43-47’};
SA1 = [21; 21; 21; 21; 11; 11];
SA2 = [8; 10; 11; 8; 3; 2];
SA3 = [9; 16; 19; 13; 7; 4];
SA4 = [6; 14; 15; 9; 4; 3];
SA5 = [7; 15; 20; 15; 7; 6];
SA6 = [8; 16; 17; 12; 4; 2];
SA7 = [8; 11; 12; 11; 4; 4];
SA8 = [11; 16; 18; 17; 7; 7];
SA9 = [16; 17; 18; 18; 6; 6];
SA10 = [19; 20; 22; 20; 8; 7];
IRDM = table (Age Group, SA1, SA2, SA3, SA4, SA5, SA6, SA7, SA8, SA9, SA10)
Press enter this will come on screen as shown in Table 4.2.

Table 4.2: Initial raw data matrix of divorced women of the order 6 × 10

Transformation of initial raw data matrix into the average time dependent data matrix, by dividing each entry of
initial raw data matrix with the length of respective class interval [3].

IRDM{:, 2:end} = IRDM{:, 2:end}*1/5
Press enter this will come on screen.
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ATDM (: , :) = IRDM (: , :)
Press enter this will come on screen as shown in Table 4.3.

Table 4.3: Average time dependent data matrix of divorced women of the order 6 × 10

Next, we find the mean and standard deviation of every column in the average time dependent data matrix.
a = [4.2, 1.6, 1.8, 1.2, 1.4, 1.6, 1.6, 2.2, 3.2, 3.8; 4.2, 2, 3.2, 2.8, 3, 3.2, 2.2, 3.2, 3.4, 4; 4.2, 2.2, 3.8, 3, 4, 3.4, 2.4,

3.6, 3.6, 4.4; 4.2, 1.6, 2.6, 1.8, 3, 2.4, 2.2, 3.4, 3.6, 4; 2.2, 0.6, 1.4, 0.8, 1.4, 0.8, 0.8, 1.4, 1.2, 1.6; 2.2, 0.4, 0.8, 0.6, 1.2,
0.4, 0.8, 1.4, 1.2, 1.4];

MEAN = mean (a), STDD = std (a)
Press enter this will come on screen as shown in Table 4.4.

Table 4.4: Mean and Standard Deviation of the above average time depedent data matrix

Now we make table of mean for all attributes.
Age Group = {’MEAN –>’};
SA1 = [3.5333];
SA2 = [1.4000];
SA3 = [2.2667];
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SA4 = [1.7000];
SA5 = [2.3333];
SA6 = [1.9667];
SA7 = [1.6667];
SA8 = [2.5333];
SA9 = [2.7000];
SA10 = [3.2000];
Mean Table = table (Age Group, SA1, SA2, SA3, SA4, SA5, SA6, SA7, SA8, SA9, SA10)
Press enter this will come on screen as shown in Table 4.5.

Table 4.5: Mean of the above average time depedent data matrix

Now we make table of standard deviation for all attributes.
Age Group = {’STAN DEVIATION’};
SA1 = [1.0328];
SA2 = [0.7376];
SA3 = [1.1361];
SA4 = [1.0178];
SA5 = [1.1570];
SA6 = [1.2420];
SA7 = [0.7230];
SA8 = [1.0013];
SA9 = [1.1713];
SA10 = [1.3327];
STANDERD DEVIATION Table = table (Age Group, SA1, SA2, SA3, SA4, SA5, SA6, SA7, SA8, SA9, SA10)
Press enter this will come on screen as shown in Table 4.6.

Table 4.6: Standard deviation of the above average time depedent data matrix

Converting ATDM into distinct RTDM
for i = 1:6;
for j=2:11;
Sum = Mean Table{1,j} + STANDERD DEVIATION Table{1,j}*.25;
Diff = Mean Table{1,j} - STANDERD DEVIATION Table{1,j}*.25;
if(le(ATDM{i, j}, Diff))
disp (’-1’)
elseif((ATDM{i, j} > Diff) && (ATDM{i,j} < Sum))
disp(’0’)
elseif(ge(ATDM{i, j},Sum))
disp(’1’)
end
end
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end
Press enter this will come on screen.
A matrix will come on screen of order 60 × 1.
a1 = [paste here all element of matrix of order 60 × 1];
RTDM1 = reshape(a1,10,6)
Press enter this will come on screen as shown in Table 4.7.

Table 4.7: Converting ATDM into distinct RTDM

Above RTDM1 table is not in proper way. To convert it into proper way to use below code.
RTDM1 = RTDM1’
Press enter this will come on screen as show in Table 4.8.
For α = .25;

Table 4.8: Proper distinct RTDM

Row Wise Sum1 = sum(RTDM1, 2)
Press enter this will come on screen.

for i = 1:6;
for j=2:11;
Sum = Mean Table{1,j} + STANDERD DEVIATION Table{1,j}*.5;
Diff = Mean Table{1,j} - STANDERD DEVIATION Table{1,j}*.5;
if(le(ATDM{i, j}, Diff))
disp (’-1’)
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elseif((ATDM{i, j} > Diff) && (ATDM{i,j} < Sum))
disp(’0’)
elseif(ge(ATDM{i, j},Sum))
disp(’1’)
end
end
end
Press enter this will come on screen.
A matrix will come on screen of order 60 × 1.
a2 = [paste here all element of matrix of order 60 × 1];
RTDM2 = reshape(a2,10,6)
Press enter this will come on screen as shown in Table 4.9.

Table 4.9: Converting ATDM into distinct RTDM

Above RTDM 2 table is not in proper way. To convert it into proper way to use below code.
RTDM2 = RTDM2’
RTDM for α = 0.5
Press enter this will come on screen as show in Table 4.10.

Table 4.10: Proper distinct RTDM

Row Wise Sum2 = sum(RTDM2, 2)
Press enter this will come on screen
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for i = 1:6;
for j=2:11;
Sum = Mean Table{1,j} + STANDERD DEVIATION Table{1,j}*.8;
Diff = Mean Table{1,j} - STANDERD DEVIATION Table{1,j}*.8;
if(le(ATDM{i, j}, Diff))
disp (’-1’)
elseif((ATDM{i, j} > Diff) && (ATDM{i,j} < Sum))
disp(’0’)
elseif(ge(ATDM{i, j},Sum))
disp(’1’)
end
end
end
Press enter this will come on screen.
A matrix will come on screen of order 60 × 1.
a3 = [paste here all element of matrix of order 60 × 1];
RTDM3 = reshape(a3,10,6)
Press enter this will come on screen as shown in Table 4.11.

Table 4.11: Converting ATDM into distinct RTDM

Above RTDM 3 table is not in proper way. To convert it into proper way to use below code.
RTDM3 = RTDM3’
RTDM for α = 0.8
Press enter this will come on screen as show in Table 4.12.

Table 4.12: Proper distinct RTDM

RTDM3=

Row Wise Sum3 = sum(RTDM3, 2)
Press enter this will come on screen
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5. Plotting graphs for different values of α, 0 ≤ α ≤ 1to depicting the maximum age group of women affected
by the divorce system

x =18:5:47;
title(’Maximum Age Group of Woman Affected By Divorced for α= 0.25’), xlabel(’AgeGroup’),ylabel(’Row Wise Sum1’),

plot(x, Row Wise Sum1)

Graph 5.1: Depicting the maximum age-group of women affected by the divorce for α = 0.2

x =18:5:47;
title(’Maximum Age Group of Woman Affected By Divorced for α= 0.5’), xlabel(’AgeGroup’), ylabel(’Row Wise Sum2’),

plot(x, Row Wise Sum2)
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Graph 5.2: Depicting the maximum age-group of women affected by the divorce for α= 0.5

x =18:5:47;
title(‘Maximum Age Group of Woman Affected By Divorced for α= 0.8’), xlabel(‘AgeGroup’), ylabel(‘Row Wise Sum3’),

plot(x, Row Wise Sum3)
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Graph 5.3: Depicting the maximum age-group of women affected by the divorce for α= 0.8

x =18:5:47;
plot(x, Row Wise Sum1);
hold on
plot(x, Row Wise Sum2);
hold on
plot(x, Row Wise Sum3);
legend(’ ? = .25’,’ ? = .5’,’ ? = .8’)
hold off

Graph 5.4: Graphical comparison of the maximum age-group of women affected by divorce

6. Combined effect time dependent data matrix and its graphical representation
CETDM = RTDM1 + RTDM2 + RTDM3

Row Wise Sum = Row Wise Sum1 + Row Wise Sum2 + Row Wise Sum3
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x =18:5:47;
title(’Graphical Representation of combined effect time dependent data matrix’),xlabel(’AgeGroup’), ylabel(’Row Wise Sum’),
plot(x, Row Wise Sum)

Graph 6.1: Depicting the maximum age-group of women affected by the divorce for CETDM

7. Results and Conclusions
From the above studies and plots for different values of α, 0 ≤ α ≤ 1, we obtained that the maximum age group
of women affected by the divorce problem has been infrequently changed [5,11,14]. The graphical representation is
that most of the women affected by divorce problem lie between 24 to 36. The result confirms by combined effect
time dependent data matix is also very near to age group of 24 to 36. Also the data obtained for age groups 18 to 22
and 43 to 47 are negative, which simply mean that very few women are affected by divorce problem during this age
interval.The main motivation to work on divorce problem is to evaluate determine the maximum age group of women
affected by divorce so that family counselors can help to resolve this problem.
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Abstract

In the present paper, we have obtained an analytical solution for the thickness of current sheet in the dissipation
region of the solar corona, reconnection time and reconnection rate for collisionless magnetic reconnection occuring
in the solar corona. For our analysis we have used the length scale of the electron dissipation region based on field
reversals. The reconnection electric field and component of the electron pressure tensor used in the Sweet-Parker
model have been utilised to finally determine the exact numerical value of the thickness of current sheet, reconnection
time and reconnection rate. It is shown that the thickness of the current sheet in the collisionless reconnection model
is directly proportional to the electron mass and inversely proportional to the length scale of the electron dissipation
region. Also, it is shown that the reconnection time is inversely proportional to the cube of the magnetic field and
directly proportional to length scale, whereas reconnection rate is inversely proportional to the length scale of the
electron dissipation region.
2020 Mathematical Sciences Classification: 00A79.
Keywords and Phrases: Dissipation region, magnetic reconnection, reconnection rate, solar corona.

1. Introduction
Magnetic reconnection is the fundamental process through which magnetic energy gets transformed into thermal
energy and heat of the plasma. Many observational evidences suggest that magnetic reconnection is significantly
accountable for the expulsion of solar flares, coronal mass ejection (CMEs), magnetospheric substorms and heating
process [2,18,19]. At temperature of few million degrees in the solar corona, the continuous flow of plasma gives
rise to magnetic reconnection process and the association of magnetic field lines with tremendous energy released
is responsible for heating the corona [11,14,40]. When two pieces of magnetised plasma of opposite polarity come
closer, they reconnect and a current sheet is formed also called as dissipation region [31]. This is the region where the
magnetic field is considered to be zero, known as neutral region. Magnetic field lines of opposite polarity annihilate
and magnetic flux cancelling occurs with a characteristic speed called Alfven speed and the plasma moves outward.
As a result, the magnetic composition gets abolished on the inflow sides and a new magnetic arrangement developes
on the outflow sides. The magnetic field lines change their direction and give rise to very high electric current density
which causes heating of the plasma. An X-point shape is formed where the magnetic field lines meet, this process also
takes place in magnetosphere.

A new paradigm for solar coronal heating keeping the plasma marginally collisionless has been proposed by
[35]. The plasma collisionality is controlled by the coronal density and thus transition occurs between the slow
collisional Sweet-Parker and the fast collisionless reconnection regimes. Continuous repetition of fast reconnection
events represents coronal heating. Fast reconnection takes place in a collisionless plasma where resistive MHD is
not valid. Over a long period, fast collisionless reconnection have been observed in space and solar physics. Many
laboratory experiments shows that fast reconnection does indeed take place in the collisionless regime.

For fast collisionless reconnection, there are two physically distinct mechanisms, namely
Hall effect [3,13] and spatially localised anamalous resistivity [28,34]. Thus, the magnetic reconnection is

classified into two regimes:- the slow collisional Sweet-Parker reconnection in resistive MHD and the fast Petschek-
like collisionless reconnection. In collisionless plasma, the transportation is done by magnetic reconnection
process[25]. Using localized diffusive effects, magnetic reconnection always gives priority to large scale plasma
transport instead of global diffusion [1,26]. Reconnection process results in the generation of waves and turbulence
or the onset of reconnection is affected by the preexisting waves and turbulence. Over a wide range of scales and
frequencies kinetic processes plays an important role in collisionless plasma because they generate waves in ion,
hybrid and electron ranges. In all part of the reconnection region, we can find the presence of these waves such as
outflows [15], separatrix regions [37], ion and electron diffusion region [6]. The upper hybrid waves are present near
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the electron plasma frequency. Deformations in the electron distribution function such as electron beam, ring, shell
leads to the generation of these waves. Because of their high frequencies these waves can accelerate at fast rates, and
to cause the dissipation of unstable electron distribution, these waves act very quickly in comparison to the timescales
over which reconnection evolves.

These waves are often observed near by the source region because these waves have relatively low group velocities
as compared to the electron thermal speed. In the separatrix regions, generation of fast electron beams occurs and are
often unstable. For weak beams upper hybrid waves are favourable near the plasma frequency. From wind and cluster
observations in magnetotail reconnection both upper hybrid and langmuir waves have been reported.

A large number of electrostatic and electromagnetic modes are supported by magnetized beam-plasma system.
With the help of linear and non-linear mechanism these modes are exhilarated in situ [7]. They are incorporated at
higher altitudes and there is an interchange of energy and momentum between these modes. By the use of axial and
spiraling electron and ion beams [30] these large amplitude Trivelpiece-Gould(TG) modes or lower hybrid waves were
observed in various experiments. The excitation of higher harmonics of a TG mode in a low-energy beam-plasma
system were observed by [20]. These large amplitude TG modes which are also known as lower hybrid waves are used
for heating and suppression of micro-instabilities in Q-machine. In magnetized beam-plasma systems, they are also
called the TG modes, in which these lower hybrid waves are observed as dominant instability.

Large amplitude waves associated with magnetic reconnection are often observed. Because of lower hybrid
drift waves, the largest amplitude electric fields are asssociated with magnetopause [24]. During magnetopause
reconnection, lower hybrid drift waves are developed in the magnetic separatrix regions due to the sharp density
gradient [24]. By introducing electron and ion heating lower hybrid waves performs a vital role in both symmetric and
asymmetric reconnection. Within the current sheet near the X-line, electromagnetic lower hybrid waves are developed.

Resistive Magnetohydrodynamics (MHD) models in plasma physics give evidences for the support of magnetic
reconnection given by ohmic dissipation which generates resistive electric field [8].

For collisionless plasma there are less no. of collisions between ions and electrons, so the nature of dissipation
for time and spatial scale illustrating magnetic reconnection is depressed. There is a violation of idealness condition
for magnetic reconnection and the dissipative electric field. In MHD, the generalised Ohm’s law is given by J =

σ(E + V × B). When σ → ∞ for ideal MHD, E = −V × B, for this condition the field gets frozen with the fluid, thus
no reconnection occurs. The current sheet will not be magnetized unless at the boundaries the flow of magnetization
current occurs. Thus magnetization of the current sheet is the basic requirement of reconnection , thus E + v × B = 0,
this shows the defficiency of collisions, hence called collisionless plasma. In order to achieve this condition we need
to increase resistivity and decrease scale length. This is basically the reason for a very small thickness of the current
sheet as calculated in this paper.

In this paper we are using collisionless system, because of the high temperature of Solar Corona [27]. In the
diffusion region, the dissipation mechanism occurs which results in the formation of an electric field and due to this
electric field the frozen-in-flux condition is violated for the occurence of the reconnection process [29]. Since for
collisionless plasma E + v × B = 0, the validity of this condition allows one to visualize transport of magnetic flux
through the plasma fluid motion. If this condition does not hold, then the magnetic field line motion is not applicable
as it is ill-defined and does not tie to the plasma fluid motion. As a result, magnetic flux transport cannot be visualized
to be carried by the plasma fluid motion. This electric field results in the dependence of the dissipation region on the
plasma parameters.

In solar corona, the temperature is very high of the order of (1− 2)× 106 K, and due to large amount of energy that
is stored in the form of magnetic field, magnetic reconnection enables the liberation of this enormous energy with solar
flares and coronal mass ejections [27]. The evidences for magnetic reconnection in the solar corona have also been
provided by the observations from SOHO, TRACE, RHESSI. E Parker and PA Sweet [16], advocated a framework to
decipher the phenomena of energy release and heating of solar corona.

In the diffusion region where the current sheet is formed ohmic dissipation takes place due to which magnetic
energy gets converted into thermal energy. In the present paper we have used the famous Sweet-Parker model [16]
to obtain the expressions for the thicknesss of current sheet, time and rate of magnetic reconnection process taking
place in solar corona. We have used the equation for reconnection electric field and component of electron pressure
tensor as determined by Hesse [8]. Our results include current sheet thickness, which is in agreement with the results
obtained by Spangler [33]. However, in his paper Spangler [33] has used ion inertial length to determine the thickness
of the current sheet, plasma density profile based on radio propagation measurements of the corona and magnetic field
model of Ingleby et al. [10] . He found the value of thickness of current sheet in terms of Ro which is the heliocentric
distance in units of a solar radius. A similar approach has been taken up by Kumar et al. [38] but the results obtained
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in the current study are quite different. The variation in the results may be attributed to the introduction of the length
scale of dissipation region.

2. Current sheet thickness
According to Sweet-Parker model [16], when two oppositely directed magnetic field lines approach each other,
reconnection occurs and a current sheet is formed which is called dissipation region. In collisionless magnetic
reconnection the dissipation region has two scale structure. The ion diffusion region which has a larger structure
has a size of c/wpI , where wpI is the ion plasma frequency. The electron diffusion region which has smaller structure
has a size of c/wpe, where wpe is the electron plasma frequency. Energy is released in the form of kinetic energy and
thermal energy through this reconnection process. An increase in the number of field lines increases thermal pressure
resulting in the flow of plasma from the diffusion region with Alfven speed (Ve,A) of electron.

Vout f low = Ve,A =
B√

µomene
, (2.1)

(Vout f low is the velocity of the reconnection outflow, B is the magnetic field in the coronal plasma, me is the mass of
electrons, ne is the number density of electrons and µo is the permeability of free space).

Applying continuity equation,
Vin f lowL = Ve,AδS P. (2.2)

(Vin f low is the velocity of the reconnection inflow, L is the length of the diffusion region, δS P is the width of the diffusion
region in Sweet-Parker Model).

The reconnection rate in Sweet-Parker region is defined as,

RS P =
Vin f low

Ve,A
,

RS P =
1√
S
.

(S =
µoLVA
η

is the Lundquist number and η is the magnetic diffusivity).
Hesse [8], observed the dependence of the structure of the dissipation region on the electron mass. Thus, the

trapping of electrons, in the field reversal region, provides a characteristic length scale to determine the size of the
dissipation region .

Biskamp and Schindler [4], on the basis of the electron orbits in the field reversals already determined this length
scale which is equal to

λx =

[ 2meTe

e2(
∂Bz

∂x
)2

]1/4
. (2.3)

Thus, the length scale of the electron dissipation region is proportional to the fourth root of the electron mass [8].
From this result, we can find the reconnection electric field as,

Erec = − 1
nee

∂Pxy,e

∂x
≈ 1

neeλx
Pxy,e, (2.4)

where Pxy,e is the electron pressure tensor, and this can be written as,

Pxy,e ≈ Pe

2Ωe

∂Vxe

∂x
, (2.5)

(Ωe is the electron cyclotron frequency and Pe denotes the isotropic part of the electron pressure tensor).
Similarly, for z-direction using continuity equation we can write,

∂Vx

∂x
≈ ∂Vz

∂z
.

Substituting value of Pxy,e from equation (2.5) in equation (2.4) we get,

Erec =
1

neeλx

Pe

2Ωe

∂Vxe

∂x
, (2.6)

Since the magnetic field is guided by the electrons, therefore

Vz = Ve,in f low,

Pxy,e =
Pe

2Ωe

∂Ve,in f low

∂z
, (2.7)
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Assuming ( ∂
∂z ) ≈ ( 1

∆z ),
where ∆z is the width of the current sheet.

Pxy,e =
Pe

2Ωe
Ve,in f low

∆z
.

Applying Continuity equation (2.2) in Sweet-Parker Model and writing δS P = ∆z we get,

Ve,in f lowL = Ve,A∆z,

therefore,

∆z =
Ve,in f lowL

Ve,A
.

From equation (2.4),

Erec = Ve,in f lowBo =
1

neeλx
Pxy,e. (2.8)

From equation (2.7),

Ve,in f lowBo =
1

ne, eλx

Pe

2Ωe

(Ve,in f low

∆z

)
,

Here, Pe the electron pressure tensor can be written as Pe =
B2

o
2µo

.

Ve,in f low =
1

2nee2λx

me

2µo

(Ve,A

L

)
. (2.9)

The Lundquist number is given by,

S =
µoLVe,A

η
,

S =
µoVe,A∆zVe,A

Ve,in f lowη
,

S =
µo(Ve,A)2∆z

Ve,in f lowη
,

Putting value of Ve,in f low from equation (2.9) we get,

S =
4(µo)2Ve,Ane2λx∆zS η

meηµoVe,A
.

Rearranging the above equation,
∆z =

me

4µone2λx
. (2.10)

Thus, the width of the current sheet in the collisionless reconnection model is directly proportional to the mass of
electron and inversely proportional to the length scale of the electron dissipation region.
The solar corona parameters are; n = 1014 ∼ 1015m−3 and the length scale of electron dissipation region is of the order
of c/wpe [23].
where wpe is the electron plasma frequency defined as,

wpe =

(4πnee2

me

)1/2
≈ 5.64 × 104(ne)1/2rad/s. (2.11)

Using these values numerically, the width of the current sheet in collisionless magnetic reconnection comes out to
be

∆z = 103m.

This result is in agreement with the width of the current sheet determined by Spangler [33]. However, to determine
the thickness of current sheet Spangler used ion inertial length, tc = VA

Ωi
where VA is the Alfven speed and Ωi is the

proton ion cyclotron frequency.
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3. Reconnection time
The reconnection rate in Sweet-Parker region is defined as,

Rcollissionless =
ve,in f low

ve,A
,

Rcollissionless =
1

2ne2λx

me

2µo

( 1
L

)
. (3.1)

The reconnection time is given by,
tR =

τA

RCollisionless
, (3.2)

Since,

τA =
L

ve,A
.

Substituting this value of τA in equation (3.2) we get,

tR =
L

ve,A

2ne2λx

me
.2µo(L),

tR =
2ne2λx2µoL2

Ve,Ame
. (3.3)

The length of diffusion region is given by,

L =
S η

µoVe,A
, (3.4)

Putting the value of L from equation (3.4) into (3.3) we get,

tR =
2ne2λx2η2S 2

Ve,AmeµoV3
e,A

,

Substituting, Ve,A = B√
µomen ,

tR =
2ne2λx2η2S 2(µo)3/2(me)3/2(n)3/2

µomeB3 ,

tR =
4(n)5/2e2λxη

2S 2(µo)1/2(me)1/2

B3 . (3.5)

Figure 3.1: 3-D plot showing variation of reconnection time with magnetic field and length scale of electron dissipation region.
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Thus, the reconnection time of collisionless magnetic reconnection process is inversely proportional to the cube of
magnetic field and directly proportional to the length scale of electron dissipation region λx. The inverse dependence
of the reconnection time on the cube of magnetic field is in agreement with the findings of Kumar et al. [38]. We
have also plotted a graph showing the variation of reconnection time with magnetic field and length scale of electron
dissipation region in figure (3.1). From Figure 3.1, it is evident that the range of reconnection time of collisionless
magnetic reconnection is of the order of 10−8 seconds.

4. Reconnection rate
In order to understand the magnetic reconnection process, it is mandatory to know the rate at which reconnection
occurs. The reconnection rate determines the temporal rate of change of magnetic flux defines the reconnection
process.

Rcollisionless =
ve,in f low

ve,A
,

Rcollisionless =
1

2ne2λx

me

2µo

( 1
L

)
.

The solar coronal parameters are; n = 1014 ∼ 1015m−3, L = 107m, and the length scale of electron dissipation
region is of the order of c/wpe [see,(2.11)].

Using these values numerically, the reconnection rate for collisionless magnetic reconnection comes out to be,

Rcollisionless = 10−6, (4.1)

However,

Rcollisionless =
1√
S
. (4.2)

Substituting the numerical value of reconnection rate from equation (4.1) in (4.2), we have obtained the value of
Lundquist number S = 1012. For solar corona, the pre-determined value of Lundquist number is of the order of 1012

∼ 1014 [22].
The numerical value of Lundquist number obtained in this paper is in agreement with the value obtained by Shibata

and Magara [32].

5. Conclusions
In this paper, we have obtained analytical solutions for the thickness of current sheet, reconnection time and
reconnection rate using Sweet Parker model. The thickness of the current sheet for collisionless magnetic reconnection
is found to be 103m. The reconnection time for collisionless magnetic reconnection process is found to be inversely
proportional to the cube of the magnetic field and directly proportional to the length scale of electron dissipation
region. We have also predicted the reconnection rate which is numerically equal to 10−6. Using this value we have
obtained S = 1012, which is in agreement with the pre-determined value of Lundquist number.
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Abstract

In this article we aim at obtaining the semi-differentials of Complete Elliptic integrals of different kinds and
thier differences in terms of algebraic functions by using series manipulation technique and Pfaff-Kümmer linear
transformation.
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1. Introduction
The Fractional Calculus is a generalization of classical calculus concerned with operations of integration and
differentiation of non-integer (fractional) order. The concept of fractional operators has been introduced almost
simultaneously with the development of the classical ones. The concept of differentiation (and integration) to a
non-integer order has appeared surprisingly early in the history of the Calculus. It is mentioned in a letter dated
September 30, 1695, from G.W. Leibniz to G.A. L’Hôpital, and in another letter dated May 28, 1697, from Leibniz
to J. Wallis. This question consequently attracted the interest of many wellknown mathematicians, including Euler,
Liouville, Laplace, Riemann, Grnwald, Letnikov and many others.

In 1731, L. Euler extended the derivative formula in general form [3, p.80, Eq.(2.37), [12], p.285, Eq.(5)]:

Dα
x

{
xβ

}
=

dα

dxα
xβ =

Γ(β + 1)
Γ(β + 1 − α)

xβ−α, (1.1)

where α is not restricted to integer values and α may be an arbitrary complex number and Γ(1 + β), Γ(1 + β − α) are
well defined. When α is positive real number, then above formula stands for fractional differentiation and when α is
negative real number, then above formula represents fractional integration.

Fractional Calculus adds another dimension to understand or describe basic nature in a better way. For past three
centuries this subject was with mathematicians and only in last few years, this is pulled to several (applied) fields of
engineering science and economics. Next decade will see several applications based on this three hundred years (old)
new subject, which can be thought of as superset of fractional differintegral calculus, the conventional integer order
calculus being a part of it. Differintegration is operator doing differentiation and sometimes integrations in a general
sense.

The classical Pochhammer symbol (α)p (α, p ∈ C) is defined by( [10, p.22, Eq.(1), p.32, Q.N.(8) and Q.N.(9), see
also [12] p.23, Eq.(22) and Eq.(23)]).
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is accomplished by introducing any
arbitrary number of numerator and denominator parameters [12, p.42, Eq.(1)].

Each of the following results will be needed in our present study:
Some complete Elliptic integrals [4, p.321, Eq.(25)]

B(x) =
∫ π

2

0

cos2 θ√
(1 − x2 sin2 θ)

dθ =
π

4 2F1



1
2 ,

1
2 ;

x2

2;

 ; |x| < 1, (1.2)

C(x) =
∫ π

2

0

sin2 θ cos2 θ
(√

(1 − x2 sin2 θ)
)3 dθ =

π

16 2F1



3
2 ,

3
2 ;

x2

3;

 ; |x| < 1, (1.3)
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D(x) =
∫ π

2

0

sin2 θ√
(1 − x2 sin2 θ)

dθ =
π

4 2F1



1
2 ,

3
2 ;

x2

2;

 ; |x| < 1. (1.4)

Complete Elliptic integral of second kind [4, p.317, Eq.(2)]

E(x) =
∫ π

2

0

√
(1 − x2 sin2 θ) dθ =

π

2 2F1



1
2 , − 1

2 ;
x2

1;

 ; |x| < 1. (1.5)

Complete Elliptic integral of first kind [4, p.317, Eq.(1)]

K(x) =
∫ π

2

0

dθ√
(1 − x2 sin2 θ)

=
π

2 2F1



1
2 ,

1
2 ;

x2

1;

 ; |x| < 1. (1.6)

Pfaff-Kümmer linear transformation[10, p.60, Eq.(4),[11], p.67, Eq.(19), [12], p.33, Eq.(19)]:

2F1


α, β;

z
γ;

 = (1 − z)−α 2F1


α, γ − β;

−z
1−z

γ;

 ; |z| < 1, (1.7)

where | arg (1 − z)| < π and γ ∈ C\Z−0 .
See ref. [10, p.70, Q.N.(10)]

2F1


α, α − 1

2 ;
z

2α;

 =

(
2

1 +
√

(1 − z)

)2α−1

,

(1.8)

where |z| < 1 and 2α ∈ C\Z−0 .

2F1


α, α + 1

2 ;
z

2α;

 =
1√

(1 − z)

(
2

1 +
√

(1 − z)

)2α−1

,

(1.9)

where |z| < 1 and 2α ∈ C\Z−0 .
Motivated by the work collected in beautiful monographs of Abramowitz et al.[1], Andrews[2, 3], Gradshteyn

et al.[5], Magnus et al.[6], Prudnikov et al.[7] and the papers of Qureshi et al.[8, 9], we aim at obtaining semi-
differentials of complete Elliptic integrals. In section 2, semi-differentials of complete Elliptic integrals of different
kinds in terms of certain algebraic expressions are mentioned. In section 3, their proofs are given by using series
manipulation technique and Pfaff-Kümmer linear transformation.

2. Some results involving semi-differentiation
In this section, we obtain the semi-differentiation of complete Elliptic integrals of different kinds and their differences
in terms of algebraic expressions.

d
1
2

dx
1
2

{
B(
√

x)
}

=

√
π

2
√

x
(
1 +
√

(1 − x)
) . (2.1)

d
1
2

dx
1
2

{
C(
√

x)
}

=

√
π

4x
5
2

(
6 − 4x√
(1 − x)

− 6 + x
)
. (2.2)

d
1
2

dx
1
2

{
D(
√

x)
}

=
1
2

√
π

x(1 − x)
1(

1 +
√

(1 − x)
) . (2.3)

d
1
2

dx
1
2

{
E(
√

x)
}

=

√
π

2

√(
1 − x

x

)
. (2.4)

d
1
2

dx
1
2

{
K(
√

x)
}

=
1
2

√(
π

x(1 − x)

)
. (2.5)

d
1
2

dx
1
2


1√

(1 + x)
B


√( x

1 + x

)
 =

√
π

x(1 + x)
1

2
(
1 +
√

(1 + x)
) . (2.6)
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d
1
2

dx
1
2


1

(1 + x)
3
2

C

√( x

1 + x

)
 =

√
π

4x
5
2

(
2(3 + 2x)√

(1 + x)
− 6 − x

)
. (2.7)

d
1
2

dx
1
2


1√

(1 + x)
D


√( x

1 + x

)
 =

1
2

√
π

x

(
1

1 +
√

(1 + x)

)
. (2.8)

d
1
2

dx
1
2


√

(1 + x) E

√( x

1 + x

)
 =

√
π

2

√(
1 + x

x

)
. (2.9)

d
1
2

dx
1
2


1√

(1 + x)
K


√( x

1 + x

)
 =

1
2

√
π

x(1 + x)
. (2.10)

d
1
2

dx
1
2

{
B(
√

x) − 4C(
√

x)
}

=
−√π
2x

5
2

(
20 − 17x + x2

√
(1 − x)

− 20 + 7x
)
. (2.11)

d
1
2

dx
1
2

{
B(
√

x) − D(
√

x)
}

=
−√πx

2
√

(1 − x)
(
1 +
√

(1 − x)
)2 . (2.12)

d
1
2

dx
1
2

{
B(
√

x) − 1
2

E(
√

x)
}

=

√
π
{
2 − (2 + x)

√
(1 − x)

}

4x
3
2

. (2.13)

d
1
2

dx
1
2

{
B(
√

x) − 1
2

K(
√

x)
}

=
−√πx

4
√

(1 − x)
(
1 +
√

(1 − x)
)2 . (2.14)

d
1
2

dx
1
2

{
C(
√

x) − 1
4

D(
√

x)
}

=
3
√
πx

8
√

(1 − x)
(
1 +
√

(1 − x)
)3 . (2.15)

d
1
2

dx
1
2

{
C(
√

x) − 1
8

K(
√

x)
}

=
1

16

√(
πx

1 − x

) 
(8
√

(1 − x) − x + 8)
(
1 +
√

(1 − x)
)4


. (2.16)

d
1
2

dx
1
2

{
C(
√

x) − 1
8

E(
√

x)
}

=

√
(πx)
8 4F3



1
2 , 2, 73+

√
145

32 , 73−√145
32 ;

x
4, 41+

√
145

32 , 41−√145
32 ;


. (2.17)

d
1
2

dx
1
2

{
D(
√

x) − 1
2

E(
√

x)
}

=

√
π

4x
3
2


x2 − x + 2

(
1 − √(1 − x)

)

√
(1 − x)


. (2.18)

d
1
2

dx
1
2

{
D(
√

x) − 1
2

K(
√

x)
}

=

√
πx

4
√

(1 − x)
(
1 +
√

(1 − x)
)2 . (2.19)

d
1
2

dx
1
2

{
K(
√

x) − E(
√

x)
}

=
1
2

√(
πx

1 − x

)
. (2.20)

3. Demonstration of the semi-differentials
Proof of (2.1).

d
1
2

dx
1
2

{
B(
√

x)
}

=
d

1
2

dx
1
2


π

4 2F1



1
2 ,

1
2 ;

x
2;





=
π

4
∑∞

n=0

(
1
2

)
n

(
1
2

)
n

(2)n n!
d

1
2

dx
1
2

xn
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=
π

4
∑∞

n=0

(
1
2

)
n

(
1
2

)
n

Γ (n + 1)

(2)n Γ
(
n + 1

2

) xn− 1
2

n!

=
1
4

√(
π

x

) ∑∞
n=0

(
1
2

)
n

(1)n xn

(2)n n!

=
1
4

√(
π

x

)
2F1


1, 1

2 ;
x

2;

 . (3.1)

Using equation (1.8) in equation (3.1) and after further simplification, we arrive at the result (2.1).
Proof of (2.2).

d
1
2

dx
1
2

{
C(
√

x)
}

=
d

1
2

dx
1
2


π

16 2F1



3
2 ,

3
2 ;

x
3;





=
π

16
∑∞

n=0

(
3
2

)
n

(
3
2

)
n

(3)n n!
d

1
2

dx
1
2

xn

=
π

16
∑∞

n=0

(
3
2

)
n

(
3
2

)
n

(3)n

Γ (n + 1)

Γ
(
n + 1

2

) xn− 1
2

n!

=
1
16

√(
π

x

) ∑∞
n=0

(
3
2

)
n

(
3
2

)
n

(1)n

(3)n

(
1
2

)
n

xn

n!

=
1
16

√(
π

x

) ∑∞
n=0

(
3
2

)
n

(1)n xn

(3)n n!
(1 + 2n)

=
1
16

√(
π

x

) 
∑∞

n=0

(
3
2

)
n

(1)n xn

(3)n n!
+ 2

∑∞
n=1

(
3
2

)
n

(1)n xn

(3)n (n − 1)!



=
1
16

√(
π

x

) 
∑∞

n=0

(
3
2

)
n

(1)n xn

(3)n n!
+ x

∑∞
n=0

(
5
2

)
n

(2)n xn

(4)n n!



=
1
16

√(
π

x

)  2F1



3
2 , 1;

x
3;

 + x 2F1



5
2 , 2;

x
4;




. (3.2)

Using equations (1.8) and (1.9) in equation (3.2), we get

d
1
2

dx
1
2

{
C(
√

x)
}

=
1
16

√(
π

x

) 

(
2

1 +
√

1 − x

)2

+
x√

1 − x

(
2

1 +
√

1 − x

)3


=

√
π

4x
5
2

{(
1 −
√

1 − x
)2

+
2√

1 − x

(
1 −
√

1 − x
)3
}

=

√
π

4x
5
2


−6
√

1 − x − 4x + 6 + x
√

1 − x√
1 − x

 . (3.3)

On simplifying further, we arrive at the result (2.2).
Proof of (2.3) to (2.5).

The proof of the results (2.3) to (2.5) are obtained by following the same steps as in the proof of the results (2.1) and
(2.2). So we omit the details.
Proof of (2.6).
In the proof of the result (2.6), we proceed same as above and make use of Pfaff-Kümmer’s transformation (1.7) and
the equation (1.9). So we omit the details here.
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Proof of (2.7).

d
1
2

dx
1
2

{
1

(1 + x)
3
2

C(
√

x)
}

=
π

16
d

1
2

dx
1
2


1

(1 + x)
3
2

2F1



3
2 ,

3
2 ;

x
1+x

3;




. (3.4)

Using Pfaff-Kümmer’s transformation (1.7) in equation (3.4), we get

d
1
2

dx
1
2

{
1

(1 + x)
3
2

C(
√

x)
}

=
π

16
d

1
2

dx
1
2

 2F1



3
2 ,

3
2 ;
−x

3;





=
π

16
∑∞

n=0

(
3
2

)
n

(
3
2

)
n

(−1)n

(3)n n!
d

1
2
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1
2

xn

=
π

16
∑∞

n=0

(
3
2

)
n

(
3
2

)
n

(−1)n

(3)n

Γ (n + 1)

Γ
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n + 1

2

) xn− 1
2

n!

=
1
16

√(
π

x
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n=0

(
3
2

)
n

(
3
2

)
n

(1)n (−1)n

(3)n

(
1
2

)
n

xn

n!

=
1
16

√(
π

x
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n=0

(
3
2

)
n

(1)n (−1)n xn

(3)n n!
(1 + 2n)

=
1
16

√(
π

x

) 
∑∞

n=0

(
3
2

)
n

(1)n (−1)n xn

(3)n n!
+ 2

∑∞
n=1

(
3
2

)
n

(1)n (−1)n xn

(3)n (n − 1)!



=
1
16

√(
π

x

) 
∑∞

n=0

(
3
2

)
n

(1)n (−1)n xn

(3)n n!
− x

∑∞
n=0

(
5
2

)
n

(2)n (−1)n xn

(4)n n!



=
1
16

√(
π

x

)  2F1



3
2 , 1;

−x
3;

 − x 2F1



5
2 , 2;

−x
4;




. (3.5)

Using equations (1.8) and (1.9) in equation (3.5), we get

d
1
2
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1
2

{
1

(1 + x)
3
2

C(
√

x)
}

=
1
16

√(
π

x

) 

(
2

1 +
√

1 + x

)2

− x√
1 + x

(
2

1 +
√

1 + x

)3


=

√
π

4x
5
2

{(
1 −
√

1 + x
)2

+
2√

1 + x

(
1 −
√

1 + x
)3
}

=

√
π

4x
5
2


−6
√

1 + x + 4x + 6 − x
√

1 + x√
1 + x

 . (3.6)

On simplifying further, we arrive at the result (2.7).
Proof of (2.8) to (2.10).

By following the same steps as in the proof of the result (2.7) and making use of Pfaff-Kümmer’s transformation
(1.7), we arrive at the results (2.8) to (2.10). So we omit the details here.
Proof of (2.11).
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Replacing n by n + 1 in equation (3.7), we get
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Using equations (1.8) and (1.9) in equation (3.8), we get

d
1
2

dx
1
2

{
B(
√

x) − 4C(
√

x)
}

=
−5
√
πx

16



(
2

1 +
√

1 − x

)3

+
2x

5
√

1 − x

(
2

1 +
√

1 − x

)4


=
−5
√
π

2x
5
2

{(
1 −
√

1 − x
)3

+
4

5
√

1 − x

(
1 −
√

1 − x
)4
}

=
−√π
2x

5
2

(1 −
√

1 − x)3


4 − √1 − x√

1 − x

 . (3.9)

On further simplification, we arrive at the result (2.11).
Proof of (2.12).
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Replacing n by n + 1 in equation (3.10), we get
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Using equation (1.9) in equation (3.11) and after further simplification, we get the result (2.12).
Proof of (2.13) and (2.14).
For the proof of the results (2.13) and (2.14), we follow the same steps as in the proof of the results (2.11) and (2.12)
and make use of the equation (1.8). So we omit the details here.
Proof of (2.15).
Similarly, the proof of the result (2.15) is obtained by following the same steps as in the proof of the results (2.11) and
(2.12) and making use of the equation (1.9). So we omit the details here.
Proof of (2.16).
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Replacing n by n + 1 in equation (3.12), we get
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Using equations (1.8) and (1.9) in equation (3.13), we get
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On further simplification, we arrive at the result (2.16).
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Proof of (2.17) to (2.20).
By following the same steps as in the proof of the results (2.11) to (2.16), we arrive at the results (2.17) to (2.20). So
we omit the details here.

4. Concluding remarks and observations
In this paper, we have obtained the semi-differentials of Complete Elliptic integrals of different kinds in terms of
algebraic functions by using series manipulation technique and Pfaff-Kümmer linear transformation. We conclude this
paper with the remark that the results deduced above are expected to lead some potential applications in several fields
of Applied Mathematics, Statistics and Engineering Sciences.
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Abstract

The inspiration driving this article is to explore the unsteady MHD flow across stretching surface along with
suction/injection and heat source/sink inserted into a porous medium. Governing PDEs are altered into non-linear
ODEs, which are numerically solved by utilizing MATLAB built-in routine Bvp4c. Impact of physical parameters
affecting velocity and energy are investigated using portrayal and tabular expressions. The results displayed that by
improving the heat source and permeability parameter, temperature profiles increase while antipodal effect is observed
in velocity profiles. The effect of various parameters like magnetic, suction/injection, Eckert and Prandtl number are
also examined through graphs. The achieved results thus affirm that an exquisite agreement is acquired with those
available in the open literature.
2020 Mathematical Sciences Classification: 76D05, 76D10, 76W05
Keywords and Phrases: MHD, Permeable stretching surface, Porous medium, Heat source/sink.

1. Introduction
These days applications on stretchable surfaces are extensively engaged in the field of mechanical as well as industrial
engineering. Scientists and researcher are continuously looking to create better systems and increase their performance
by improving heat transfer from them. Structure and utilization of the stretchable surfaces are well known and quickest
tactics to accomplish this goal. Stretchable surfaces have a various of characteristics, like fins and heat sinks are
often utilized in various applications as an example aviation industry, microelectronics, cooling electrical devices,
heat exchangers, gas turbines , etc. The behaviour of boundary layer flow across continuous solid surfaces was first
addressed by Sakiadis [23]. Crane [4] investigated the flow through a stretching sheet that was kept at a consistent
length. Temperature distribution across a stretching sheet with homogeneous heat flow was described by Dutta et al.
[8]. Heat transmission on a continuously stretching plate with suction or blowing was investigated by Chen and Char
[5]. The simultaneous heat and mass transport in a continuous liquid film on a lateral stretching sheet are examined by
Andersson et al. [1]. Andersson’s approach is extended by Elbashbeshy and Bazid [10] across an unsteady stretching
surface.

Flow through porous media occurs into various engineering situations and has noteworthy as well as engineering
applications, as illustration, flow across ion-exchange beds and packed beds, production of energy from geothermal
areas, Filtration of minerals from liquids. Ali [2] looked at the heat transmission properties of a stretched surface
using suction/injection. Gupta and Gupta [11] investigated the effects of suction or blowing on a stretched sheet. Heat
transmission through an unstable stretched permeable surface with a fixed wall temperature was explored by Ishak
et al. [12]. Cortell [10] investigated the influence of viscous dissipation and heat radiation on fluid flow through a
non-linearly stretched permeable surface.

Flow of MHD across a stretching permeable surface has important applications in industrial processes, modern
metallurgical and metal-working process such as hot rolling, glass blowing, paper production, plastic films, metal
spinning, plasma studies, wire coating, nuclear reactors, geothermal energy extraction, electromagnetic propulsion
and polymer extrusion, etc. Choudhary et al. [7] used suction/injection to examine unsteady MHD flow and heat
transfer across a stretched permeable surface. Butt et al. [3] investigated the impact of magnetic fields on entropy
production in viscous flow through a stretching cylinder contained in a porous material using numerical simulations.
Radiation effects on MHD flow near the stretching sheet’s stagnation point were explored by Jat and Chaudhary
[14]. In the presence of a heat source/sink, Mukhopadhyay and Layek [18] investigated the effects of altering fluid
viscosity on flow through a heated stretched sheet inserted in a porous media. Several research analyses are performed
regarding some relevant work on MHD flow for different geometry as provided Refs [9,13,16,17,19,21,22,25].Using
semi-analytical methods, Jabeen et al. [15] investigated the Magnetohydrodynamic fluid flow across a nonlinear
stretching sheet in a porous material.

Based on the aforementioned review of the literature, it is observed that few works are available on the fluid flow
across stretchable surface with suction/injection and heat source/sink embedded in a porous medium. Our main goal
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in this article is to numerical investigate the flow of unsteady MHD across permeable stretching surface with the effect
of heat source/sink and suction/injection. The numerical solution of suggested issue is attained by supplicating bvp4c
from MATLAB and appearances of all involving parameters are discussed.

2. Mathematical formulation
Let us consider the 2-D unsteady flow of a viscous incompressible fluid across a permeable stretching surface adjacent
to a porous medium. The flow is limited in the semi infinite region y> 0 and the sheet is coincides with the plane y=0.
The x-axis is taken along the sheet (Figure 2.1) and a homogeneous magnetic field H2

0 is applied along the y-axis. The
flow is generated by linear stretching of the sheet and there is no free stream velocity within the boundary layer.

Figure 2.1: Physical model of the problem.

Under usual boundary-layer approximations the continuity, momentum and energy equations are
∂u
∂x

+
∂v
∂y

= 0, (2.1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 −

(
σeµ

2
e H0

2

ρ
+
ν

kp

)
u, (2.2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

µ

ρCp

(
∂u
∂y

)2

+
Q (T − T∞)

ρCp
, (2.3)

and the boundary conditions are given by:

u = uw(x, t), v = vw(x, t), T = Tw(x, t) at y = 0, (2.4)

u→ 0, T → T∞ at y→ ∞,
where u and v are velocity component in the x and y directions, respectively, ρ is the fluid density, ν is the kinematic
viscosity, Cp is the specific heat at constant pressure, T is fluid temperature, σe is the electrical conductivity, µe is the
magnetic permeability, α is the thermal diffusivity, µ is the coefficient of viscosity, kp is the permeability of the porous
medium and Q is the heat generation/absorption coefficient.

By introducing the following quantities Ishak et al. [12]

u =
∂ψ

∂y
, v = −∂ψ

∂y
, η = y

√
uw

νx
, ψ (x, y, t) =

√
νxuw f (η) (2.5)

and T = T∞ +
b
a

uwθ (η),

where ψ(x, y, t) is the stream function, f (η) is the dimensionless stream function, η is the similarity variable, and θ(η)
is the dimensionless temperature. Equation (2.2) and (2.3) thus reduce to the following non-dimensional form

f ′′′ − f ′2 + f ′′ f − (M + k1) f ′ − A
(

f ′ +
η

2
f ′′

)
= 0, (2.6)
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1
Pr
θ′′ + f θ′ − A

(
θ +

η

2
θ′
)
− (

f ′ − λ) θ + Ec f ′′2 = 0. (2.7)

Boundary conditions (2.4) reduce as:

η = 0 : f (η) = f0, f ′(η) = 1, θ(η) = 1

η→ ∞ : f ′(η)→ 0, θ(η)→ 0 (2.8)

where primes denote differentiation with respect to η . A = c/a is the unsteadiness parameter, M = (σeµ
2
e H2

0νRex)/(ρu2
w)

is the magnetic field parameter, Rex =(uwx)/ν is the local Reynolds number, Pr=ν/α is the Prandtl number, Ec
=u2

w/Cp(Tw − T∞) is the Eckert number, f0 = −(vw/uw)
√

Rex the suction/injection parameter, k1 = νx/kpuw is the
permeability parameter and λ = Qx/ρCpuw is heat source/sink parameter.
The physical quantities skin friction coefficient C f and local Nusselt number Nux are defined as

C f =

2µ
(
∂u
∂y

) ∣∣∣∣
y=0

ρuw
2 =

2 f ′′ (0)√
Rex

, (2.9)

Nux = − x
(Tw − T∞)

∂T
∂y

∣∣∣∣
y=0

= −θ′ (0)
√

Rex , (2.10)

where Rex=(uwx)/ν local Reynolds number.

3. Results and Discussion
The system of nonlinear ordinary equations (2.6) and (2.7) along with the boundary conditions (2.8) are solved
numerically using the Bvp4c in MATLAB. The effects of the governing parameters, namely magnetic field parameter
M, Prandtl number Pr, suction/injection parameter f0, permeability parameter k1, heat source/sink parameter λ,
unsteady parameter A and Eckert number Ec on the flow, and temperature profiles are examined. The physical
parameters are involved by subsequent manageable assortments: 0.1 ≤ M ≤4, 0.7 ≤ Pr ≤ 5, -1≤ f0 ≤ 1, 0.2≤ K1
≤ 0.8, 0.1≤ A ≤ 3, −0.2≤ λ ≤ 0.2, 0.1 ≤ Ec ≤ 2. A comparative investigation is made in order to authorize the current
numerical results with predetermined outcomes Table 3.2. Based on the findings, the calculated results show that this
is an outstanding and significant study.

Figures 3.1-3.2 represent the prominences of f0 on velocity and temperature profiles. By enhancing the f0
parameter, velocity as well as temperature profile get cut down. Figures 3.3-3.4 exhibit consequences of unsteady
parameter A on f ′ and θ profiles. An increase in unsteady parameter A reduces f ′ and θ profiles.

Figures 3.5-3.6 show the influence of M on f ′ and θ profiles. As values of M are enhanced, the f ′ profiles decrease
whereas temperature profiles θ is improved. The antagonistic force identified as Lorentz force comes into play when
magnetic field is incumbent on the field of flow with which the boundary layer thickness for momentum diminishes
under the effect of strong magnetic domain.

Figures 3.7-3.8 represent the prominences of permeability parameter k1 on f ′ and θ profiles. By improving the k1
values velocity profiles reduce rapidly whereas θ profile increase. Figure 3.9 exhibits consequences of Eckert number
Ec on temperature profiles. It is notice that temperature profiles grow as Ec values are increased.

Figure 3.10 show the influence of Pr on temperature profiles. It is observed that temperature profiles are improved
as Pr values are increased. The proportion of the amount of momentum diffusivity with that of thermal diffusivity
is termed as Prandtl number. In fact, fluids with lower Prandtl number possess higher heat conductivities than those
with higher Prandtl number therefore rate of thermal diffusion from surface considered is faster in the fluids carrying
lower Prandtl number. Figure 3.11 represents the prominences of heat source/sink parameter λ on θ profiles. Rising
the value of λ, enhancement in θ profiles is noticed.

Table 3.2 represents the investigations on the internal assessment with those previously issued consequences for
listed researchers namely Ishak et al. [12] and Choudhary et al. [7]. Under various limiting cases the compression
with previously available issued outcomes is made and excellent agreement is achieved which validates the presented
investigations with prescribed accuracy.
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Figure 3.1: Influence of Suction/injection on velocity profiles. Figure 3.2: Influence of Suction/injection on temperature pro-
files.

Figure 3.3: Influence of A on velocity profiles. Figure 3.4: Influence of A on temperature profiles.
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Figure 3.5: Influence of M on velocity profiles. Figure 3.6: Influence of M on temperature profiles.

Figure 3.7: Influence of Permeability parameter on velocity
profiles.

Figure 3.8: Influence of Permeability parameter on temperature
profiles.
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Figure 3.9: Influence of Ec on temperature profiles. Figure 3.10: Influence of Pr on temperature profiles.

Figure 3.11: Influence of Heat source/sink parameter on Temperature profiles.
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Table 3.1 Comparison of − f ′′(0) and −θ′(0) for varying parameters: f0 ,A, M, Pr, Ec, k1, λ
f0 A M Pr Ec k1 λ present results

− f ′′(0)
present result
−θ′(0)

-1.0 0.1 0.1 0.1 1.0 0.1 0.1 0.73811 0.55720
-0.5 0.90749 0.69902
0.5 1.40230 1.17331
1.0 1.72921 1.50172
-0.5 1.0 0.0 1.0 0.0 0.0 0.0 0.80951
0.0 1.32052
0.5 2.22236
1.0 1.0 0.1 1.0 0.1 0.1 0.1 1.94957 1.74740

2.0 2.17661 1.99300
3.0 2.38244 2.20858

1.0 0.1 1.0 1.0 0.1 0.1 0.1 2.05394 1.43771
3.0 2.60189 1.34110
4.0 2.82782 1.30500

1.0 0.1 0.1 0.7 0.1 0.1 0.1 1.72915 1.10878
2.0 2.68577
5.0 5.83928

1.0 0.1 0.1 1.0 1.0 0.1 0.1 1.72915 0.80698
1.5 0.42100
2.0 0.03503

1.0 0.1 0.1 1.0 0.1 0.2 0.1 1.76943 1.49350
0.4 1.84630 1.47802
0.6 1.91895 1.46368

1.0 0.1 0.1 1.0 0.1 0.1 -0.2 1.72915 1.65513
0.0 1.55612
0.2 1.44297

Table 3.2 Comparison of − f ′′(0) and −θ′(0) for varying parameters:
f0, A, M, Pr and Ec

f0 A M Pr Ec Ishak et
al. [9]
−θ′(0)

Choudhary
et al. [11]
− f ′′(0)

Choudhary et
al. [11] −θ′(0)

present
results
− f ′′(0)

present re-
sult −θ′(0)

-1.0 0.1 0.1 0.1 1.0 0.71244 0.71121 0.71243 0.71120
-0.5 0.82241 0.81408 0.82231 0.81407
0.5 1.31617 1.30514 1.31615 1.30512
1.0 1.64870 1.63647 1.64868 1.63645
-0.5 1.0 0.0 1.0 0.0 0.8095 0.80957 0.80951
0.0 1.3205 1.32064 1.32052
0.5 2.2224 2.22255 2.22236

4. Conclusion
In this study numerical solutions for unsteady MHD flow across a stretching permeable surface with suction/ injection
and heat source/sink embedded in a porous medium is analysied. The influence of distinct parameters on the behaviour
of fluid flow including temperature profiles are abridged as given below:
• Velocity profiles decrease as the parameter f0 increases.
• The velocity profiles get cut down with increasing values of M while the temperature profiles rise.
• Temperature profiles increase as Eckert number improved.
• Temperature profiles increase by increasing permeability parameter and source/sink parameter.

Acknowledgement. We are very much thankful to the Editor and Reviewer for their suggestions to bring the paper
in its present form.
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Abstract

Let P(z) be a polynomial of degree n having all its zeros in |z| < K,K > 0 while s-fold zeros are located at
origin. In this paper, by motivation with a result of Aziz[A Refinement of an Inequality of S. Bernstein, Journal of
Mathematical Analysis and Applications, 144 (1989), 226-235.], we propose some new estimates of the lower bound
of |P′(z)| in terms of max |P(z)| on |z| = 1.
2020 Mathematical Sciences Classification: 30D15, 30A10.
Keywords and Phrases: Polynomials; Inequalities; maximum modulus; Zeros.

1. Introduction and statement of results
Let a polynomial P(z) of degree n has all its zeros in |z| ≤ 1.Then it was shown by Turan[12], that

max
|z|=1
|P′(z)| ≥ n

2
max
|z|=1
|P(z)|. (1.1)

The result is sharp and equality in (1.1) holds if all the zeros of P(z) lie on |z| = 1.
Aziz[1] proved that if P(z) is a polynomial of degree n which has s-fold zeros at the origin, 0 ≤ s ≤ n, then

max
|z|=1
|P′(z)| ≥ n

2

(
2 max
|z|=1
|P(z)| −

(
1 − s

n

)
(M∗1 + M∗2)

)
, (1.2)

where

M∗1 = max
1≤k≤(n−s)

|P(e2kπi/(n−s))| (1.3)

and

M∗2 = max
1≤k≤(n−s)

|P(e(1+2k)πi/(n−s))|. (1.4)

In literature (see [2,3,4,8,9,11]), there are several results concerning the estimation of upper bound of maximum
modulus of polynomial and its derivative. For deep understanding of the subject matter, we have studied other research
work (see [5,6,7,10]). Here, we propose to obtain some estimates for the lower bound of maximum modulus of the
derivative of a polynomial.

2. Main results
In this paper, we shall present certain new inequalities to the polynomials P(z) of degree n having all its zeros inside a
disk of prescribed radius of which s-fold zeros lying at origin.

Theorem 2.1. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and s-fold zeros at the origin, then

max
|z|=1
|P′(z)| ≥ n

2

(
2 max
|z|=1
|P(z)| −

(
1 − s

n

)
(M∗2α + M∗2α+π)

1/2
)
, (2.1)

where

M∗α = max
1≤k≤(n−s)

|P(ei(α+2kπ)/(n−s))| (2.2)

and M∗α+π is obtained from (2.2) by replacing α with α + π.

On taking s = 0 in Theorem 2.1, we obtain the following

Corollary 2.1. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

max
|z|=1
|P′(z)| ≥ n

2

(
2 max
|z|=1
|P(z)| − (M2

α + M2
α+π)

1/2
)
, (2.3)

where Mα is obtained from (2.2) for s = 0.
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Further, we are able to generalise our Theorem 2.1. More precisely, we prove the

Theorem 2.2. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ K,K ≤ 1 and s-fold zeros at the origin,
then

max
|z|=1
|P′(z)| ≥ n max

|z|=1
|P(z)| − (n − s)K√

2(1 + K2)
(M∗2α + M∗2α+π)

1/2, (2.4)

where M∗α is defined by (2.2).

Remark 2.1. For K = 1, Theorem 2.2 reduces to Theorem 2.1
On taking s = 0 in Theorem 2.2, we obtain the following

Corollary 2.2. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ K,K ≤ 1, then

max
|z|=1
|P′(z)| ≥ n max

|z|=1
|P(z)| − nK√

2(1 + K2)
(M2

α + M2
α+π)

1/2, (2.5)

where Mα is obtained from (2.2) for s = 0.

While seeking the corresponding complimentary result of (2.4) for polynomial having its zeros in |z| ≤ K,K ≥ 1,
we prove following

Theorem 2.3. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ K,K ≥ 1 and s-fold zeros at the origin,
then

max
|z|=1
|P′(z)| ≥ n max

|z|=1
|P(z)| − (n − s)K(n−s)

√
2(1 + K2(n−s))

(M∗2α + M∗2α+π)
1/2, (2.6)

where M∗α is defined by (2.2).

If we take s = 0 in Theorem 2.3, we get the following

Corollary 2.3. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ K,K ≥ 1, then

max
|z|=1
|P′(z)| ≥ n max

|z|=1
|P(z)| − nKn

√
2(1 + K2n)

(M2
α + M2

α+π)
1/2, (2.7)

where Mα is obtained from (2.2) for s = 0.

3. Lemmas
For the proofs of main results,we need the following Lemmas

Lemma 3.1. If P(z) is a polynomial of degree n having no zeros in |z| < K,K ≥ 1, then for every real α,

max
|z|=1
|P′(z)| ≤ n√

2(1 + K2)
(M2

α + M2
α+π)

1/2, (3.1)

where

Mα = max
1≤k≤n

|P(ei(α+2kπ)/n)| (3.2)

and Mα+π is obtained from (3.2) by replacing α with α + π.

Lemma 3.2. If P(z) is a polynomial of degree n having no zeros in |z| < K,K ≤ 1, then for every real α,

max
|z|=1
|P′(z)| ≤ n√

2(1 + K2n)
(M2

α + M2
α+π)

1/2, (3.3)

provided |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1 where Q(z) = znP(1/z) and Mα is defined by
(3.2).

Lemma 3.1 and Lemma 3.2 are special cases of Rather and Shah’s results ([9], Theorem 3 and Theorem 5, for
m = 0).
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4. Proof of the main results
As Theorem 2.1 is a special case of Theorem 2.2 (for K = 1), so we only need here to prove Theorem 2.2.
Proof of Theorem 2.2. Let P(z) = zsH(z), where H(z) is a polynomial of degree (n − s) having all its zeros in
|z| ≤ K,K ≤ 1 and H(0) , 0. If G(z) = zn−sH(1/z), then G(z) has no zeros in |z| < 1/K, 1/K ≥ 1.

If Q(z) = znP(1/z), then |Q(z)| = |P(z)| for |z| = 1. Clearly, Q(z) is a polynomial of degree (n − s) and

Q(z) =zn(1/z)sH(1/z)

=z(n−s)H(1/z)
=G(z).

It is immediate for |z| = 1,

|Q(z)| = |G(z)| = |H(z)|.
Moreover,

zQ′(z) = nznP(1/z) − z(n−1)P′(1/z),

from which it follows that for |z| = 1,

|Q′(z)| = |z(n−1)Q′(1/z)| = |nP(z) − zP′(z)|.
We conclude that

|P′(z)| + |Q′(z)| ≥ n|P(z)|.
Choosing θ such that |P(eiθ)| = max

|z|=1
|P(z)|, we get

|P′(eiθ)| + |Q′(eiθ)| ≥ n max
|z|=1
|P(z)|,

which implies that

max
|z|=1
|P′(z)| + max

|z|=1
|Q′(z)| ≥ n max

|z|=1
|P(z)|. (4.1)

As |Q(z)| = |P(z)| for |z| = 1, then

max
1≤k≤(n−s)

|Q(ei(α+2kπ)/(n−s))| = max
1≤k≤(n−s)

|P(ei(α+2kπ)/(n−s))| = M∗α,

and

max
1≤k≤(n−s)

|Q(ei(α+(1+2k)π)/(n−s))| = max
1≤k≤(n−s)

|P(ei(α+(1+2k)π)/(n−s))| = M∗α+π,

Since G(z) has no zeros in |z| < 1/K, 1/K ≥ 1, applying Lemma 3.1 to G(z), we get,

max
|z|=1
|G′(z)| ≤ (n − s)√

2(1 + (1/K)2)
(M∗2α + M∗2α+π)

1/2.

As Q(z) = G(z), so we have Q′(z) = G′(z) and |Q′(z)| = |G′(z)| for |z| = 1. So,

max
|z|=1
|Q′(z)| ≤ (n − s)√

2(1 + (1/K)2)
(M∗2α + M∗2α+π)

1/2. (4.2)

Therefore, from (4.1) and (4.2), we get

max
|z|=1
|P′(z)| + (n − s)K√

2(1 + K2)
(M∗2α + M∗2α+π)

1/2 ≥ n max
|z|=1
|P(z)|.

which follows the required result.
Proof of Theorem 2.3. Let P(z) = zsH(z),where the polynomial H(z) has all its (n − s) zeros in |z| ≤ K,K ≥ 1 and
H(0) , 0. If G(z) = z(n−s)H(1/z), then G(z) has no zeros in |z| < 1/K, 1/K ≤ 1. If Q(z) = znP(1/z), then |Q(z)| = |P(z)|
for |z| = 1. Clearly, Q(z) is a polynomial of degree (n − s) and

Q(z) =zn(1/z)sH(1/z)

=z(n−s)H(1/z)
=G(z).

It is immediate that

|Q(z)| = |G(z)| = |H(z)| = |P(z)| for |z| = 1,
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then

max
1≤k≤(n−s)

|Q(ei(α+2kπ)/(n−s))| = max
1≤k≤(n−s)

|P(ei(α+2kπ)/(n−s))| = M∗α,

max
1≤k≤(n−s)

|Q(ei(α+(1+2k)π)/(n−s))| = max
1≤k≤(n−s)

|P(ei(α+(1+2k)π)/(n−s))| = M∗α+π,

As polynomial G(z) of degree (n − s) has no zeros in |z| < 1/K, 1/K ≤ 1, therefore applying Lemma 3.2 to G(z),
we obtain

max
|z|=1
|G′(z)| ≤ (n − s)√

2(1 + (1/K)2(n−s))
(M∗2α + M∗2α+π)

1/2, (4.3)

when |G′(z)| and |H′(z)| attain maximum at the same point on |z| = 1. If we choose β such that

max
|z|=1
|G′(z)| = |G′(eiβ)| where 0 ≤ β < 2π,

then

max
|z|=1
|H′(z)| = |H′(eiβ)|.

As Q(z) = G(z), so we have Q′(z) = G′(z) and |Q′(z)| = |G′(z)| for |z| = 1. Therefore,

|Q′(eiβ)| = |G′(eiβ)|. (4.4)

Also,we have

zQ′(z) = nznP(1/z) − zn−1P′(1/z),

from which it follows that for |z| = 1,

|Q′(z)| = |zn−1Q′(1/z)| = |nP(z) − zP′(z)|.
We conclude that

|P′(z)| + |Q′(z)| ≥ n|P(z)|.
Choosing θ such that |P(eiθ)| = max

|z|=1
|P(z)|, we get

|P′(eiθ)| + |Q′(eiθ)| ≥ n max
|z|=1
|P(z)|,

which implies that

max
|z|=1
|P′(z)| + max

|z|=1
|Q′(z)| ≥ n max

|z|=1
|P(z)|. (4.5)

Making an appeal to (4.3), (4.4) and (4.5), we derive

max
|z|=1
|P′(z)| + (n − s)√

2(1 + (1/K)2(n−s))
(M∗2α + M∗2α+π)

1/2 ≥ n max
|z|=1
|P(z)|,

from which the result follows.

5. Conclusion
In this paper, our results are generalization of previously known results and open avenues to find new estimates of
lower bounds for the maximum modulus of polynomial and its derivatives as well as polar derivatives.
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Abstract

In various infectious diseases infection is spread by vectors such as infected mosquito, black flies, ticks etc. In this
paper a non-linear mathematical model is proposed and analysed for vector-borne infectious diseases like: Yellow
Fever, Dengue Fever, Malaria etc. that are caused through direct transmission or through biting of an infectious vector
by considering the effect of environment on the pathogen. It is further assumed that pathogen population increases
with increase in discharge by human population in the environment, thereby increasing vector population. This model
is analysed by using Sylvester’s criterion and by Lyapunov’s direct method. It is found that if growth of pathogen
population caused by conductive human related activity increases, the spread of infectious disease increases.
2020 Mathematical Sciences Classification: 92B05, 93D05, 34D23, 34D35.
Keywords and Phrases: Vector-borne diseases, Reproduction number, Stability, Backward bifurcation.

1. Introduction
Vector-transmitted diseases are transmitted through vectors that are basically the biological agents that carry infectious
agents in their guts and are released in the blood when these vectors bite human population. The vectors carry
the disease without getting themselves infected. Environment plays a significant role in the spread of vector-borne
infectious diseases. A conducive environment is provided for the survival [3] and even growth [17] of pathogens in
the environment by various kinds of household and other wastes, discharged into the environment. The environment-
to-host disease transmission is now more evident as contaminated contact surface: household wastes like food, water
etc., and soil may transmit infection to susceptible hosts [4, 6, 24]. Thus, the contaminated environment, due to human
activities, is liable for the fast spread of vector-borne diseases.

Mathematical models have been used to study the various aspects of vector-borne infectious diseases. In early
19th century, the first model proposed by Ross [23] and modified by Macdonald [20], has influenced the mathematical
theory of vector-host infectious diseases. Since then, mathematical models have been used to evaluate various
specific infectious diseases [1, 2, 8, 18, 28]; and models related to vector-borne diseases have been analyzed by
considering various aspects and effects [11, 22, 16, 15]. However, very little attention has been paid to the study
of vector-borne diseases with Pathogen growing in the environment. Human migration has a significant role in the
transmission and spread of vector-borne diseases. Cosner et al. [10] described vector-borne diseases on different
physical locations, socio-behavioural and socio-economical classes. The effect of immigration of human individuals
on the host-vector disease has been addressed by Tumwiine et al. [25]. The transmission model of dengue fever, by
considering temperature-dependent parameters with vectorhost transmission, has been used to discuss: the variation
of pre-adult mosquito maturation, adult mosquito death rate, oviposition rate and virus incubation rate in the mosquito
[9]. Mosquito dispersal is one of the fundamental aspects that influence the persistence and revival of many vector-
borne diseases. Lutambi et al. investigated effect of heterogeneous dispersal of mosquito resources (breeding sites) on
the spatial spread dynamics and persistence of mosquito populations [19].

The role of vector biting and its effect, on the spread of disease and vector mortality, provide further insight
on the disease transmission in age-structured model [21]. An epidemic model of vector-borne disease possessing
partial immunity to reinfection by considering time delay in vector population could destabilize the system and lead
to Hopf bifurcation [27]. Britton and Traore described the spread and time to extinction of vector-borne disease in a
community; where host and vector die, and new hosts and vectors are borne by considering the stochastic model [5].
Disease transmission between a host and vector and host population has been analyzed by the diffusive age-structured
epidemic model using the reaction-diffusion equations [13]. Waikhom et al. investigated effect of temperature on
transmission dynamics of host-pathogen systems and studied the relationship between climate and thermal adaptability
in pathogens [26]. Ghosh et al. studied the environmental effect on the direct (infected to susceptible) and indirect
(through carriers) transmission of carrier-dependent infectious diseases [14]. However, in these studies, the effect of
the environment on the pathogen population has not been considered either directly or indirectly.
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2. Mathematical Model
In this section an ODE model for the spread of vector transmitted disease in host is presented. We assume that the
total host population at time t; N1 (t) is partitioned as Susceptible class S (t), Infectious class I(t) and Recovered class
R(t). Furthermore, the host population is recruited at a constant rate b1 and dies at natural death rate µ1. We further
assume that:

a) The vertical transmission in the host population is negligible, so as all the newly recruited individuals are
susceptibles.

b) The recovered individuals acquire permanent immunity such and cannot again become susceptible.
c) The Susceptible host can become infected either through direct transmission (contact with the infected person:

possibly through blood transfusion) or through biting of an infectious vector.

We consider λ1 as the rate of direct transmission for new infections so that the simple mass action term λ1S I gives the
incidence of new infection. Similarly, the new infections spread by the pathogen-carrier vectors is given by the mass
action term β1S V where β1 is the biting rate of a vector (pathogen-carrier) on the susceptible host. The dynamics of
disease in host population can be formulated by using following differential equations.
Host Population Dynamics:

dS
dt

= b1 − λ1S I − β1S V − µ1S , (2.1)

dI
dt

= λ1S I + β1S V − (α + µ1) I, (2.2)

dR
dt

= αI − µ1R, (2.3)

where V denotes the number of pathogen-carrier vectors at time t. The number of the susceptible (pathogen-free)
vectors at time t is denoted by M, so that the total Vector Population N2(t) is given by N2(t) = M + V . In addition, we
suppose that the vector population is recruited at a rate b2 and the natural death rate is denoted by µ2 . We consider
all the new-born vectors as susceptible despite the fact that pathogen of several vector-borne diseases (Yellow fever,
Lyme disease) can be transmitted from female parent (female) to offspring in the vector population. The susceptible
vectors become infected after biting the infected host at a rate λ2 such that λ2MI represents the incidence of newly
infected vectors. The susceptible vectors after becoming infected will remain infected throughout the life and will
carry pathogen for whole life.

The free-living pathogen in the environment are denoted by compartment P. The pathogen shed by the Infectious
individuals are capable of growth and survival in the environment. Further E(t) is the cumulative density of
environmental factors and the growth rate of environmental factors which depends on the human action (household
emission, waterlogging, etc.) is denoted by Q0 and the depletion rate coefficient of environmental factors be θ1. The
growth rate coefficient of environmental factors due to human and vector population density related factors is denoted
by θ2.
Vector Population Dynamics:

dM
dt

= b2 − λ2MI − µ2M, (2.4)

dV
dt

= λ2MI − µ2V, (2.5)

dP
dt

= ηIP + θP
(
1 − P

c(E)

)
− γP, (2.6)

dE
dt

= Q0 − θ1E + θ2N, (2.7)

where η represents the shedding rate of pathogen from infected hosts, γ gives the decay rate of pathogen in the
environment, θ represents the growth rate of pathogen and c(E) is the carrying capacity of the environment. We
assume some of the parameters of the model as bi > 0, µi > 0 for i = 1, 2 α > 0, θ > 0 and the initial conditions for
vector and host population as

S (0) = S 0, I(0) = I0,R(0) = R0,V(0) = V0,M(0) = M0, P(0) = P0, E(0) = E0.

Since R does not appear in other equations (2.1) − (2.7) and we have
N (t) = N1 (t) + N2 (t).

Also limt→∞ N1 (t) = b1
µ1

and limt→∞ N2 (t) = b2
µ2

.
So we assume that
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N1 (t) = b1
µ1

and N2 (t) = b2
µ2

; S (t) + I (t) + R (t) = N1 (t) and M (t) + V (t) = N2 (t).

Therefore, M (t) = N2 (t) − V (t) =
(

b2
µ2
− V (t)

)
.

Thus, the model can be reduced as:
dS
dt

= b1 − λ1S I − β1S V − µ1S , (2.8)

dI
dt

= λ1S I + β1S V − (α + µ1) I, (2.9)

dV
dt

= λ2

(
b2

µ2
− V (t)

)
I − µ2V, (2.10)

dP
dt

= ηIP + θP
(
1 − P

c(E)

)
− γP, (2.11)

dE
dt

= Q0 − θ1E + θ2N. (2.12)

The set Ω attracts all the solutions (initiating in the positive orthant) of the reduced system. We need the solution to be
non-negative for the biological reasons and the reduced system is studied in the closed set

Ω = {(S , I,V, P, E) ∈ R5
+, 0 6 S + I 6

b1

µ1
; 0 6 V 6

b2

µ2
; S , I,V > 0; 0 6 P 6 m; 0 6 E 6 Em},

due to mathematical properties of the solution,
where

P 6
c (E)
θ

(
ηb1 + µ1 (θ − γ)

µ1

)
= m, Em =

Q0 + θ2N
θ1

.

2.1. Existence of equilibrium and Reproduction number:
The reduced model (2.8) − (2.12) has following three non-negative equilibria:

i) Disease-Free equilibrium: E0 =
(
S 0, I0,V0, P0, E0

)
=

(
S 0, 0, 0, P0, E0

)

where
S 0 =

b1

µ1
, P0 = (θ − γ)

c(E)
θ

, E0 =
Q0 + θ2N

θ1
,

which exists if ηI + θ > γ.

ii) Pathogen- free equilibrium: E1 =
(
S 1, I1,V1, P1, E1

)
=

(
S 1, 0, 0, 0, E1

)

where
S 1 =

b1

µ1
, E1 =

Q0 + θ2N
θ1

.

We will discuss in detail the existence of endemic equilibrium E2. Before that we will obtain the expression of
basic reproduction number. The basic reproduction number denoted by R0 and defined as the average number of
secondary infections produced when a single infectious host is introduced into a totally susceptible population.
We use the next generation matrix method described in Diekmann et al.[12] to define the basic reproductive
number R0. The associated linearized matrices of system (2.8) − (2.12), at Disease-free Equilibrium E0, for the
computations of R0 are given by

F =

(
α1S 0 β1S 0

0 0

)
and V =

(
α + µ1 0
− λ2b2

µ2
µ2

)
.

The basic reproduction number is the spectral radius of
(
FV−1

)
, which is

R0 =
b1

µ1

(
λ2

(α + µ1)
β1

µ2

b2

µ2
+

λ1

(α + µ1)

)
.

iii) Endemic equilibrium: E2 = (S ∗, I∗,V∗, P∗, E∗)
where

S ∗ =
b1 − (α + µ1) I∗

µ1
,V∗ =

λ2b2

µ2 (λ2I∗ + µ2)
I∗, P∗ =

(
ηI∗ + θ − γ

θ

)
c(E), E∗ =

Q0 + θN
θ1

.

Substituting these values in equation (2.9) we get
F (I) = a0I∗2 + a1I∗ + a2, (2.1.1)
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where
a0 =µ2λ1λ2 (α + µ1) ,

a1 =
[
µ1µ2λ2 (α + µ1) + λ1µ

2
2 (α + µ1) + β1λ2b2 (α + µ1) − b1µ2λ1λ2

]
,

a2 =
[
µ1µ

2
2 (α + µ1) − b1

(
λ1µ

2
2 + β1λ2b2

)]
= µ1µ

2
2 (α + µ1) (1 − R0) .

Since, it is obvious from the expression of a0, a1, a2 that a0 is always positive. Using Descartess rule of signs,
equation (2.1.1) has a positive root whenever R0 > 1. Further, equation (2.1.1) may have more than one positive
root in case R0 < 1 and a1 > 0. To be precise, this will result in complicated system, i.e. the system (2.8) − (2.12)
may undergo backward bifurcation if R0 < 1. In the next section, a detailed analysis is carried out to investigate the
existence of backward bifurcation.

3. Existence of backward Bifurcation
The model (2.8) − (2.12) may undergo backward bifurcation if R0 < 1, and backward bifurcation requires extra effort
to eradicate the disease, as it violates the basic requirement of disease eradication. To discuss whether or not the
system (2.8) − (2.12) exhibits backward bifurcation; we calculate the bifurcation coefficients using centre manifold
theory [7]. The Jacobian matrix around the disease-free equilibrium of the model (2.8) − (2.12)) is given by:

J0 =



−µ1 −λ1S 0 −β1S 0 0 0
0 λ1S 0 − (α + µ1) β1S 0 0 0
0 λ2b2

µ2
−µ2 0 0

0 ηP 0 θ−γ−2θP0

c(E)
θP+θP2c(E)

(c(E))2

0 0 0 0 −θ1 .



Now, for R0 = 1,
we select λ∗2 =

µ2
2

b1b2β1
(µ1 (α + µ1) − λ1b1) as the bifurcation parameter.

The right eigen vectors of J0 at λ2 = λ∗2 are given by ω = [ω1, ω2, ω3, ω4, ω5]T ,
where

ω1 =

[
λ1b1

µ1
+

1
µ1

(µ1 (α + µ1) − λ1b1)
]
, ω2 = 1,

ω3 =
1

b1β1
(µ1 (α + µ1) − λ1b1) , ω4 =

θ

ηc
, ω5 = 0.

Similarly, the left eigenvalues are given by ν = (ν1, ν2, ν3, ν4, ν5),
where

ν1 = 0, ν2 = 1, ν3 =
β1b1

µ1µ2
, ν4 = 0, ν5 = 0.

The expression for the coefficients a and b given in Castillo-Chavez and Song [7] are as:

a =
∑n

k, j,i=1vkwiw j
∂2 fk
∂xi∂x j

(
E0, λ

∗
2
)
,

b =
∑n

k,i=1vkwi
∂2 fk
∂xi∂ψ

(
E0, λ

∗
2
)
.

Using the above expressions, the coefficients a and b for the proposed system (2.8) − (2.12) are computed as:

a = ν2

[
2ω1ω2

∂2 f2
∂S ∂I

(
E0, λ

∗
2
)

+ 2ω2ω3
∂2 f2
∂I∂V

(
E0, λ

∗
2
)]

+ ν3

[
2ω2ω3

∂2 f2
∂I∂V

(
E0, λ

∗
2
)]

= −

λ2

1b1

µ2
1

+
2

b1µ1

(
β1b2 + µ1µ2

µ1β1b2

)
(µ1 (α + µ1) − λ1b1)2

 .

Similarly, we have

b = ν3

(
ω2

∂2 f2
∂I∂λ2

(
E0, λ

∗
2
))

=
β1b1b2

µ1µ
2
2

.

It is clear from the expressions of a and b that a < 0 and b > 0. This eliminates the possibility of backward
bifurcation. Thus, equation (2.1.1) does not possess a positive root for R0 < 1.
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4. Stability of Disease-free Equilibrium
4.1. Local Stability of Disease-free Equilibrium
Theorem 4.1. The disease-free equilibrium point E0 is locally asymptotically stable if R0 < 1, µ1 (µ2 + α + µ1) > λ1b1
and 2θP

c(E) + γ > θ otherwise unstable.

Proof. The Jacobian of linearised system around E0 =
(
S 0, 0, 0, P0, E0

)
is:

J0 =



−µ1 −λ1S 0 −β1S 0 0 0
0 λ1S 0 − (α + µ1) β1S 0 0 0
0 λ2b2

µ2
−µ2 0 0

0 ηP 0 θ−γ−2θP0

c(E)
θP+θP2c(E)

(c(E))2

0 0 0 0 −θ1 .



The corresponding three eigenvalue values are −θ1,−
(

2θP
c(E) + γ − θ

)
,−µ1 and the eigenvalue values are negative

provided 2θP
c(E) + γ > θ .

The other two eigenvalue values can be obtained from
(
λ1S 0 − (α + µ1) − λ

)
(µ2 − λ) − β1λ2b2S 0

µ2
= 0. By simple

algebraic calculations, we have
µ1λ

2 + (µ1 (µ2 + α + µ1) − λ1b1) λ + µ1µ2 (α + µ1) (1 − R0) = 0
A1λ

2 + A2λ + A3 = 0,

where A1 = µ1 , A2 = (µ1 (µ2 + α + µ1) − λ1b1) and A3 = µ1µ2 (α + µ1) (1 − R0) .
Using Routh-Hurwitz criterion, a second-degree polynomial with all the coefficients positive will obviously have

negative roots.
Now, A2 > 0 if µ1 (µ1 + µ2 + α) > λ1b1 and A3 > 0 ⇐⇒ R0 < 1.
Hence the theorem. �

4.2. Non-linear stability of Disease-free Equilibrium
Theorem 4.2. The disease-free equilibrium E0 =

(
S 0, 0, 0, P0, E0

)
is non-linearly asymptotically stable in the region

Ω provided the following conditions are satisfied:

i) µ1 >
1
2
β1
µ1

(λ1 + β1) ,
ii) 2µ1 (α + µ1) > b1 (3λ1 + β1),

iii) µ2 > β1
b1
µ1

+ λ2

(
b2
µ2

+ b1
µ1

)
,

iv) 2
c(E)θm + γ > ηm + θ.

Proof. See 8 Appendix I

5. Stability of Pathogen free Equilibrium
5.1. Linear Stability of Pathogen free Equilibrium
The Jacobian of the linearized system around E1 =

(
S 1, 0, 0, 0, E1

)
is

JE1 =



−µ1 −λ1 0 0 0
0 λ1S − (α + µ1) β1S 0 0
0 λ2b2

µ2
−µ2 0 0

0 0 0 θ − γ 0
0 0 0 0 θ1 .



Clearly, the corresponding three eigenvalues −θ1,− (γ − θ) ,−µ1 are negative provided γ > θ and the remaining
two eigenvalues can be obtained from

λ2 +

(
µ2 + α + µ1 − λ1

b1

µ1

)
λ + µ2 (α + µ1) (1 − R0) = 0.

Now, by using Routh-Hurwitz criterion, the above second degree equation will possess the negative roots if all the
coefficients are positive i.e.

µ1 (µ2 + α + µ1) > λ1b1

and
µ2 (α + µ1) (1 − R0) > 0 ⇐⇒ R0 < 1.

Thus, we state the following theorem to establish the stability of pathogen-free equilibrium.
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Theorem 5.1. The pathogen-free equilibrium E1 is locally asymptotically stable if R0 < 1, µ1 (µ2 + α + µ1) > λ1b1
and γ > θ otherwise unstable.

5.2. Non-linear stability of Pathogen-free Equilibrium
Theorem 5.2. The disease-free equilibrium E1 =

(
S̄ , 0, 0, 0, Ē

)
is non-linearly asymptotically stable in the region Ω

provided the following conditions are satisfied:

i) 2µ1 (α + µ1) > b1 (2λ1 + β1),
ii) µ1µ

2
2 > (λ2β2µ1 + b1µ2),

iii) 2µ2
1 > b1 (λ1 + β1),

iv) m > 0.

Proof. See 9, Appendix II.

6. Stability Analysis of Endemic Equilibrium
6.1. Linear stability analysis of Endemic Equilibrium
By using the bifurcation coefficients a and b obtained in the ’Existence of Backward Bifurcation’ section and using
the application of the theorem 4.1 given in [7] provide the conditions for the local stability of endemic equilibrium.
The theorem can be stated as:

Theorem 6.1. The endemic equilibrium E2 is locally asymptotically stable for R0 > 1.

6.2. Non-linear stability of Endemic Equilibrium
Theorem 6.2. The disease-free equilibrium E2 = (S ∗,V∗, I∗, P∗, E∗) is non-linearly asymptotically stable in the region
Ω provided the following conditions are satisfied:

i) 2µ1 (α + µ1) > b1 (2λ1 + β1),
ii) µ1µ

2
2 > (λ2β2µ1 + b1µ2),

iii) 2µ2
1 > b1 (λ1 + β1),

iv) m > 0.

Proof. See 10, Appendix III.

7. Numerical Analysis

Figure 7.1: Time versus all population and Pathogens

In this section numerical simulation is presented to study the dynamic behaviour of the system (2.8) − (2.12) and
to explain the applicability of the results discussed above. The parameter values considered for simulation are as:
b1 = 12, λ1 = 0.0001, β1 = 0.062, µ1 = 0.04, α = 0.05, λ2 = 0.00094, µ2 = 0.5, η = 0.005, θ = 0.08, c(E) = 0.001, θ2 =

0.005, γ = 0.02, θ1 = 0.2,Q = 0.45, b2 = 5. The equilibrium values for endemic equilibrium are computed as:
E2 = (342.42, 14.482, 0.038035, 0.0016551, 1.3577). The eigenvalues corresponding to variational matrix of endemic
equilibrium are :

−0.0417574653,−0.1324089419,−0.1526889240,−0.2,−2.3765070091
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Figure 7.2: Variation of pathogen population with time for distinct values of η

Since all the eigenvalues corresponding to E2 are found to be negative, for the above set of parameter values,
therefore, the endemic equilibrium E2 is locally asymptotically stable. Figure 7.1 depicts plot between time versus all
population and pathogen and shows that all the trajectories lead to the endemic equilibrium.

Figure 7.2 shows the variation of pathogen with time for distinct values of η, the rate of release of pathogen from
infective host population. It is seen that as the rate of shedding of pathogen from infected host increases, the pathogen
population in the environment increases. Figure 7.3 shows the variation of infected (host) population with time for
different values of β1, the biting rate of vector (pathogen carrier) on the susceptible host. It is noted that infective
population also increases with increase in the value of β1. This indicates that to keep the spread of infected host
population under control, the vector population present in the environment needs to be curbed by way of some suitable
strategies like reducing areas where vectors can easily breed.

Figure 7.3: Variation of infected (host) population with time for distinct values of β1

The effect of carrying capacity on pathogen population with time is shown in Figure 7.4. It is observed that as
the carrying capacity of environment increases, the pathogen population also increases. Therefore, in order to control
the pathogen population, the feasibility of environment for the breading and growth of pathogen population should be
minimised. Figure 7.5 shows the variation of cumulative density of environment with the values of Q0, the growth rate
of environmental factors depending on the human action.
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Figure 7.4: Variation of pathogen population with time for distinct values of c(E)

.

Figure 7.5: Variation of cumulative density of environment with time for distinct values of Q0

Figure 7.6: Phase plane between susceptible and pathogen population with the variation of carrying capacity of environment distinct values of c(E)

.

It shows that the rise in the environmental factors like household emission, water-logging etc. will rise the
cumulative density of the environment which in turn will increase the pathogen and vector population. Figure 7.6
shows the phase plane between susceptible and pathogen population with the variation of carrying capacity of the
environment.
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8. Appendix I
We now transform system using S = S 0 + x1, I = I0 + x2,V = V0 + x3, P = P0 + x4, E = E0 + x5 around E0 =(
S 0, 0, 0, P0, E0

)
, we have

dx1

dt
= − (λ1x2 + β1x3) S 0 − x1 (λ1x2 + β1x3) − µ1x1,

dx2

dt
= (λ1x2 + β1x3) S 0 + x1 (λ1x2 + β1x3) − (α + µ1) x2,

dx3

dt
= λ2

b2

µ2
x2 − λ2x2x3 − x3

(
λ2I0 + µ2

)
,

dx4

dt
= η

(
x2P0 + x2x4

)
+ x4

(
θ

(
1 − 2

c(E)

(
P0 + x4

))
− γ

)
,

dx5

dt
= −θ1x5.

Consider the positive definite

V1 =
1
2

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5

)
,

dV1

dt
=

[
−λ1x1x2S 0 − λ1x2x2

1 − β1x3x1S 0 − β1x3x2
1 − µ1x2

1

]
+

[
λ1x2

2S 0 + λ1x1x2
2 + β1x2x3S 0 + β1x1x2x3

− (α + µ1) x2
2

]
+

[
λ2

(
b2

µ2
x2

3 + I0x2
3 + x2x2

3

)
− µ2x2

3

]
+

[
ηx2x2

4 + ηP0x2
4 + θx2

4 −
2

c(E)
θ
(
P0 + x4

)
x2

4 − γx2
4

]

+
[
−θ1x2

5

]

= λ1x1x2

(
S 0 + x1

)
− β1x1x3

(
S 0 + x1

)
− µ1x2

1 + λ1x2
1

(
S 0 + x1

)
− (α + µ1) x2

2 + λ2
b2

µ2
x2

3 + λ2x2
3

(
I0 + x2

)

− µ2x2
3 + ηx2

4

(
P0 + x4

)
+ θx2

4 −
2

c(E)
θ
(
P0 + x4

)
x2

4 − γx2
4 − θ1x2

5.

Using the region Ω and the inequality ±2ab 6
(
a2 + b2

)
on the right side of the above equation, we have

dV1

dt
6
λ1b1

2µ1
x2

1 +
λ1b1

2µ1
x2

2 +
β1b1

2µ1
x2

1 +
β1b1

2µ1
x2

3 − µ1x2
1 + λ1

b1

µ1
x2

2 +
β1b1

2µ1
x2

2 +
β1b1

2µ1
x2

3 − (α + µ1) x2
2 +

λ2b2

2µ2
x2

3 +
λ2b1

µ1
x2

3

− µ2x2
3 + ηmx2

4 + θx2
4 −

2
c(E)

θmx2
4 − γx2

4 − θx2
5

= −
[
a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 + a5x2

5

]
,

where

b1 = µ1 − λ1b1

2µ1
− β1b1

2µ1
, b2 = (α + µ1) − 3

2
λ1b1

µ1
− β1b1

2µ1
,

b3 = µ2 − β1
b1

µ1
− λ2

(
b2

µ2
+

b1

µ1

)
, b4 =

2
c(E)

θm + γ − ηm − θ, b5 = θ.

Now dV2
dt is negative definite, if each bi > 0 ∀ i = 1, 2...5.

Since, θ > 0 (assumed). Hence, by using Lyapunov’s second method of stability, the required conditions can be
obtained.

9. Appendix II
We now transform system using S = s̄ + y1,V = V̄ + y2, I = Ī + y3, P = P̄ + y4, E = Ē + y5 around E1 =

(
S̄ , 0, 0, 0, Ē

)
,

we have
dy1

dt
= − (λ1y2 + β1y3) S̄ − y1 (λ1y2 + β1y3) − µ1y1,

dy2

dt
= (λ1y2 + β1y3) S̄ + y1 (λ1y2 + β1y3) − (α + µ1) y2,
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dy3

dt
= λ2

b2

µ2
y2 − λ2y2y3 − y3

(
λ2 Ī + µ2

)
,

dy4

dt
= η

(
y2P̄ + y2y4

)
+ y4

(
θ

(
1 − 2

c(E)

(
P̄ + y4

))
− γ

)
,

dy5

dt
= −θ1y5.

Consider the positive definite

V2 =
1
2

(
B1y2

1 + B2y2
2 + B3y2

3 + B4y2
4 + B5y2

5

)
,

dV2

dt
= B1

[
−λ1y1y2S̄ − λ1y2y2

1 − β1y3y1S̄ − β1y3y2
1 − µ1y2

1

]
+ B2

[
λ1y2

2S̄ + λ1y1y2
2 + β1y2y3S̄ + β1y1y2y3

− (α + µ1) y2
2

]
+ B3

[
λ2

(
b2

µ2
y2

3 + Īy2
3 + y2y2

3

)
− µ2y2

3

]
+ B4

[
ηy2y2

4 + ηP̄y2
4 + θy2

4 −
2

c(E)
θy3

4 − γy2
4

]

+ B5

[
−θ1y2

5

]

= B1

[
−λ1y1y2

(
S̄ + y1

)
− β1y1y3

(
S̄ + y1

)
− µ1y2

1

]
+ B2

[
λ1y2

2

(
S̄ + y1

)
+ β1y3y2

(
S̄ + y1

)
− (α + µ1) y2

2

]

+ B3

[
λ2

b2

µ2
y2

3 + y2
3

(
Ī + y2

)
− µ2y2

3

]
+ B4

[
ηy2y4

(
P̄ + y4

)
− 2

c(E)
θy2

4

(
P̄ + y4

)
− γy2

4

]
+ B5

[
−θ1y2

5

]
.

Using the region Ω and the inequality ±2ab 6
(
a2 + b2

)
on the right side of the above equation, we have

6 B1

[
λ1b1

2µ1
y2

1 +
λ1b1

2µ1
y2

2 +
β1b1

2µ1
y2

1 +
β1b1

2µ1
y2

3 − µ1y2
1

]
+ B2

[
λ1

b1

µ1
y2

2 +
β1b1

2µ1
y2

2 +
β1b1

2µ1
y2

3 − (α + µ1) y2
2

]

+ B3

[
λ2b2

µ2
y2

3 +
b1

µ1
y2

3 − µ2y2
3

]
+ B5

[
ηmy2y4 − 2

c(E)
θmy2

4 − γy2
4

]
+ B5

[
−θy2

5

]

= −
[
b11y2

1 + b33y2
3 +

(
b22y2

2 − b24y2y4 + b44y2
4

)
+ b55y2

5

]
,

where

b11 = B1

(
µ1 − λ1b1

2µ1
− β1b1

2µ1

)
, b22 = B2

(
(α + µ1) − λ1

b1

µ1
− β1b1

2µ1

)
− B1

λ1

2
b1

µ1
,

b33 = B3

(
µ2 − λ2

b2

µ2
− b1

µ1

)
− β1b1

2µ1
(B1 + B2) , b44 = B4

(
2

c(E)
θm + γ

)
,

b55 = θ1B5, b24 = B4ηm.
It can be shown by using Sylvester criteria that dV2

dt is negative definite if the following conditions are satisfied:

B1

(
µ1 − λ1b1

2µ
− β1b1

2µ1

)
> 0,

B3

(
µ2 − λ2

b2

µ2
− b1

µ1

)
− β1b1

2µ1
(B1 + B2) > 0,

(
B2

(
(α + µ1) − λ1

b1

µ1
− β1b1

2µ1

)
− B1

λ1b1

2µ1

) (
2

c(E)
θm + γ

)
>

1
2

B4 (ηm)2 ,

B5θ1 > 0, and B4ηm > 0.
Suppose that B1 = B4 = B5 = 1 then, we have

2µ2
1 > b1 (λ1 + β1) ,

B2 >
µ1

2µ1 (α + µ1) − b1 (2λ1 + β1)

(
c(E) (ηm)2

2θm + γc(E)
+ λ1

b1

µ1

)
,

B3 >


µ1µ2

µ1µ
2
2 − (λ2b2µ1 + b1µ2)


(
1 +

µ1

2µ1 (α + µ1) − b1 (2λ1 + β1)

(
c(E) (ηm)2

2θm + γc(E)
+ λ1

b1

µ1

))
β1b1

2µ1
.

provided 2µ1 (α + µ1) − b1 (2λ1 + β1) > 0 and µ1µ
2
2 − (λ2β2µ1 + b1µ2) > 0 .

Finally, the required conditions for non-linear stability are:

i) 2µ1 (α + µ1) > b1 (2λ1 + β1),
ii) µ1µ

2
2 > (λ2β2µ1 + b1µ2),

iii) 2µ2
1 > b1 (λ1 + β1),

iv) m > 0.
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10. Appendix III
We now transform system using S = S ∗ + z1,V = V∗ + z2, I = I∗ + z3, P = P∗ + z4, E = E∗ + z5 around E2 =

(S ∗,V∗, I∗, P∗, E∗), we have
dz1

dt
= − (µ1 + λ1I∗ + β1V∗) z1 − (λ1z2 + β1z3) S ∗ − (λ1z2 + β1z3) z1,

dz2

dt
= (λ1z2 + β1z3) S ∗ + z1 (λ1I∗ + β1V∗) + z1 (λ1z2 + β1z3) − (α + µ1) z2,

dz3

dt
= λ2

b2

µ2
z2 − λ2 (V∗z2 + z2z3) − (λ2I∗ + µ2) z2,

dz4

dt
= η (I∗z4 + P∗z2 + z2z4) + z4

(
θ

(
1 − 2

c(E)
(p∗ + z4)

)
− γ

)
,

dz5

dt
= −θ1z5.

Consider the positive definite

V3 =
1
2

(
C1z2

1 + C2z2
2 + C3z2

3 + C4z2
4 + C5z2

5

)
,

dV3

dt
= C1

[
−µ1z2

1 − z2
1λ1I∗ − z2

1β1V∗ − λ1z1z2S ∗ − β1z3z1S ∗ − λ1z2z2
1 − β1z3z2

1

]
+ C2

[
λ1z2

2S ∗ + β1z2z3S ∗

+λ1z1z2I∗ + β1z1z2V∗ + λ1z1z2
2 + β1z1z2z3 − (α + µ1) z2

2

]
+ C3

[
λ2

b2

µ2
z2z3 − λ2z2z3V∗ − λ2z2z2

3 − λ2z2
3I∗ − µ2z2

3

]

+ C4

[
ηz2

4 + ηP∗z4z2 + ηz2z2
4 +

(
θ

(
1 − 2

c(E)
(P∗ + z4)

)
− γ

)
z2

4

]
+ C5

[
−θ1z2

5

]

= C1

[
−µ1z2

1 − λ1 (I∗ + z2) z2
1 − β1 (V∗ + z3) z2

1 − (λ1S ∗ + β1V∗) z1z3

]
+ C2

[
λ1 (S ∗ + z1) z2

2 + β1z2z3

(S ∗ + z1) + (λ1I∗ + β1V∗) z1z2 − (α + µ1) z2
2

]
+ C3

[
λ2

b2

µ2
z2z3 − λ2z2z3 (V∗ + z3) − λ2z2

3I∗ − µ2z2
3

]

+ C4

[
ηI∗z2

4 + ηz2z4 (P∗ + z4) +

(
θ

(
1 − 2

c(E)
(P∗ + z4)

)
− γ

)
z2

4

]
+ C5

[
−θ1z2

5

]
.

Using the region Ω and the inequality ±2ab 6
(
a2 + b2

)
on the right side of the above equation, we have

dV3

dt
6 C1

[
−µ1z2

1 − λ1
b1

µ1
z2

1 − β1
b2

µ2
z2

1 − λ1z1z2S ∗ − (λ1S ∗ + β1S ∗) z1z3

]
+ C2

[
λ1

b1

µ1
z2

2−

β1
b1

µ1
z2z3 + (λ1I∗ + β1V∗) z1z2 − (α + µ1) z2

2

]
+ C3

[
λ2

b2

µ2
z2z3 − λ2

b2

µ2
z2z3 − λ2I∗z2

3 − µ2z2
3

]

C4

[
ηI∗z2

4 + ηmz2z4 +

(
θ

(
1 − 2m

c(E)

)
− γ

)
z2

4

]
+ C5

[
−θ1z2

5

]

= −
[(

1
2

c11z2
1 − c12z1z2 +

1
3

c22z2
2

)
+

(
1
2

c11z2
1 − c13z1z3 +

1
2

c33z2
3

)

+

(
1
3

c22z2
2 − c23z2z3 +

1
2

c33z2
3

)
+

(
1
3

c22z2
2 − c24z2z4 + c44z2

4

)
+ c55z2

5

]
,

where

c11 =C1

(
µ1 + λ1

b1

µ1
+ β1

b2

µ2

)
, c12 =C2 (λ1I∗ + β1V∗) −C1λ1S ∗,

c22 =C2

(
(α + µ1) − λ1

b1

µ1

)
, c13 =C1 (−λ1S ∗ − β1S ∗) ,

c33 =C3 (λ2I∗ + µ2) , c23 =C2β1
b1

µ1
,
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c44 =C4

(
γ + θ

2m
c(E)

− θ − ηI∗
)
, c24 =C4ηm,

c55 =C5θ1.

It can be shown by using Sylvester criteria that dV3
dt is negative definite if the following conditions are satisfied:

C1

(
µ1 + λ1

b1

µ1
+ β1

b2

µ2

)
C2

(
(α + µ1) − λ1

b1

µ1

)
>

3
2

[
C2 (λ1I∗ + β1V∗) −C1λ1S ∗

]2 ,

C3

(
µ1 + λ1

b1

µ1
+ β1

b2

µ2

)
(λ2I∗ + µ2) > C1 (λ1S ∗ + β1S ∗)2 ,

C3

(
(α + µ1) − λ1

b1

µ1

)
(λ2I∗ + µ2) > C2

3
2

(
β1

b1

µ1

)2

,

C2

(
(α + µ1) − λ1

b1

µ1

) (
γ + θ

2m
c(E)

− θ − ηI∗
)
> C4

3
4

(ηm)2 ,

C5θ1 > 0.

Suppose that C1 = C2 = C5 = 1, we get

C3 > max (L1, L2) , C4 >
4 (µ1 (α + µ1) − λ1b1) (cγ + 2θm − cθ − ηcI∗)

3µ1c(E) (ηm)2 ,

where

L1 =
µ1µ2 (λ1S ∗ + β1S ∗)2

(
µ2µ

2
1 + λ1µ2b1 + β1µ1b2

)
(λ2I∗ + µ2)

and L2 =
3 (β1b1)2

2µ1 (µ1 (α + µ1) − λ1b1) (λ2I∗ + µ2)
.

Finally, conditions required for the non-linear stability are:
(
µ1 + λ1

b1

µ1
+ β1

b2

µ2

) (
(α + µ1) − λ1

b1

µ1

)
>

3
2

[
(λ1I∗ + β1V∗) − λ1S ∗

]2 ;

µ1 (α + µ1) > λ1b1;
c(E)γ + 2θm > c(E)θ + ηc(E)I∗.

Clearly, by Lyapunovs direct method it is observed that endemic equilibrium point E2 is non-linearly asymptoti-
cally stable under the set of above conditions.

11. Conclusion
In this paper, a nonlinear mathematical model is proposed to study the effect of free living pathogen on the vector
borne diseases. In modeling the process, the total human population is divided into subclasses of susceptible host,
infected host and recovered host and the vector population is divided into two subclasses of susceptible vector and
infected vector. It is assumed that the disease spreads by direct contact of susceptible host with infected host and
indirectly through biting of infected vector. The density of pathogen population is assumed to be directly proportional
to the infected host population. The model exhibits three equilibria; namely disease free, pathogen free and endemic
equilibrium. The model has been analyzed using stability theory and numerical simulation. Certain inferences
have been drawn regarding the spread of the disease by establishing local and global stability results and numerical
simulation. The analysis of the model shows that if suitable strategies such as; reducing or removing areas where
vectors can easily breed, use of pesticides for vector control; are applied to curb the vector population, the infected
host population declines which consequently reduces the pathogen in the environment. The study shows that the
presence of environmental factors support the growth of pathogen population (Figure 7.4). The human population
related environmental factors can be minimised by adopting the strategies which may include: elimination of carrier
breeding sites, larvaciding, adulticiding, keeping surroundings clean and hygienic.
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Jñānābha, Vol. 52(1) (2022), 66-68

SOME NEW FIXED POINT THEOREMS FOR ITERATED CONTRACTION MAPS IN INTUITIONISTIC
FUZZY METRIC SPACE

By
A. Muraliraj and R. Thangathamizh

PG & Research Department of Mathematics
Urumu Dhanalakshmi College, Bharathidasan University, Tiruchirappalli, India

Email:karguzali@gmail.com., thamizh1418@gmail. com-Corresponding author
(Received : November 18, 2021; In format : December 17,2021 ; Revised in final form: April 11,2022)

Abstract

We propose iterated contraction maps in intuitionistic fuzzy metric spaces and establish some novel fixed point
theorems for intuitionistic fuzzy iterated contraction maps in intuionistic fuzzy metric spaces in this work.
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1. Introduction
Zedah work in 1995 [6] provided impetus for further work in fuzzy sets. In 1969, Rheinboldt [3] began research
into iterated contraction. Iterated contraction is a valuable notion for studying certain repetitive processes and has
a wide range of applications in metric spaces. In 1994, George and Veeramani [2] significantly modified Kramosil
and Michalek’s idea of fuzzy metric space, constructed a Hausdorff topology, and proved certain previously known
findings.

Atanassov [1] introduces the intuitionistic fuzzy set. After that so many authors proved various fixed point results
in intuitionistic fuzzy metric spaces. Xia, and Tang [4] and [5] established a fixed point theorem for iterated contraction
maps in fuzzy metric space, we followed him and apply in intuitionistic fuzzy metric space and proved fixed point in
similar way.

2. Preliminaries
Definition 2.1 ([1]). A intutionistic fuzzy metric space is an ordered five tuples (X,M,N, ∗,^) such that X is a nonempty
set ∗ and ^ are the continuous t-norm and t-conorm and (M,N) is a intutionistic fuzzy set on X × X × (0,∞)→ [0, 1]
satisfies the following conditions

for all x, y, z ∈ X and s, t > 0,

(IFM 1) M(x, y, t) ≥ 0 for all t > 0,
(IFM 2) M(x, y, t) = 1 iff x = y, t > 0,
(IFM 3) M(x, y, t) = M(y, x, t),
(IFM 4) M (x, z, t + s) ≥ M (x, y, t) ∗ M(y, z, s),
(IFM 5) M(x, y, ) : (0,∞)→ [0, 1) is continuous.
(IFM 6) N(x, y, t) < 1 for all t > 0,
(IFM 7) N(x, y, t) = 0 iff x = y, t > 0,
(IFM 8) N(x, y, t) = N(y, x, t),
(IFM 9) N(x, z, t + s) ≤ N(x, y, t)^N(y, z, s),
(IFM 10) N(x, y,−) : (0,∞)→ [0, 1) is continuous.
Then (M,N, ) is called a Intuitionistic fuzzy metric on X′′.

Definition 2.2 ([3]). A mapping T : X → X in a Intuitionistic fuzzy metric space (X,M,N, ∗,^) is intuitionistic Fuzzy
T-contraction if for T : X → X there exist k ∈ (0, 1) with

M(T x,Ty, t) ≥ M
(
x, y,

t
k

)
and N(T x,Ty, t) ≤ N

(
x, y,

t
k

)
,

for all x, y ∈ X and t > 0, 0 < k < 1, is called a contraction map.

3. Main Results
Definition 3.1. If (X,M,N, ∗,^) is a intuitionist fuzzy metric space such that
M(T x,T 2x, t) ≥ M

(
x,T x, t

k

)
and N(T x,T 2x, t) ≤ N

(
x,T x, t

k

)
for all x ∈ X, t > 0, 0 < k < 1, then T is said to be a

intuitionistic fuzzy iterated contraction map.

66



Remark 3.1. A Intuitionistic fuzzy contraction map is continuous and is a revised intuitionistic iterated contraction. A
intuitionistic fuzzy contraction map has a unique fixed point. However, a intuitionistic fuzzy iterated contraction map
may have more than one fixed point.

Let (X d) be a metric space. Define ∗y = xy, x^ y = x + y − xy and d(x, y) = x − y for all x, y ∈ X and > 0,
M (x, y, t) = t

t+d(x,y) and N (x, y, t) =
d(x,y)

t+d(x,y) , then (X,M,N, ∗,^) is a intuitionistic fuzzy metric space.

If T :
[−1

2 ,
1
2

]
→

[−1
2 ,

1
2

]
is given by T x = x2, then T is a intuitionistic fuzzy iterated contraction but not a

intuitionistic fuzzy contraction map.

The following is a fixed point theorem for intuitionistic fuzzy iterated contraction map.

Theorem 3.1. If T : X → X is a continuous intuitionistic fuzzy iterated contractive map and the sequence of
iterates {xn} in intuitionistic fuzzy metric space (X,M,N, ∗,^), defined by xn+1 = T xn, n = 0, 1, 2, . . . for x ∈ X,
has a subsequence converging to y ∈ X, then y = Ty, that is, T has a fixed point

Proof. The sequence {M (xn+1, xn, t)} and {N (xn+1, xn, t)} is a non-decreasing and non-increasing sequence of reals. It
is bounded above by 1 and 0 and therefore has a limit. Since the subsequence converges to y and T is continuous on
X, so T

(
xni

)
converges to Ty and T 2 (

xni

)
converges to T 2y.

Thus M(y,Ty, t) = lim M
(
xni , xni−1 , t

)
= lim M

(
xni−1 , xni−2 , t

)
.

Then

1 ≥ M
(
Ty,T 2y, t

)
≥ M

(
y,Ty,

t
k

)

≥ M
(
y,Ty,

t
k2

)

≥ M
(
y,Ty,

t
kn

)
, for all n ∈ N, 0 < k < t.

When n→ ∞, M
(
y,Ty, t

kn

)
→ 0, therefore M

(
y,Ty, t

k

)
= 1; that is to say Ty = y.

Also

0 ≤ N
(
Ty,T 2y, t

)
≤ N

(
y,Ty,

t
k

)

≤ N
(
y,Ty,

t
k2

)

≤ N
(
y,Ty,

t
kn

)
, for all n ∈ N, 0 < k < t.

When n→ ∞, M
(
y,Ty, t

kn

)
→ 0, therefore N

(
y,Ty, t

k

)
= 0 that is to say Ty = y. �

We give the following example to show that if T is a intuitionistic fuzzy iterated contraction that is not continuous,
then T may not have a fixed point.

A continuous map T that is not a intuitionistic fuzzy iterated contraction may not have a fixed point.

Note 3.1. If T is not contraction but some powers of T is contraction, then T has a unique fixed point on a complete
metric space.

Proof. If x is a fixed point of k powers of T , thus T k(x) = x, T (T k(x)) = T (x) then T k(T (x)) = T (x), since T k has a
unique fixed point. Consequently T (x) = x. �

Note 3.2. Continuity of a intuitionistic fuzzy iterated contraction is sufficient but not necessary.
As stated in Note 3.1 that if T is not contraction still T may have a unique fixed point when some powers of T is a

intuitionistic fuzzy contraction map. The same is true for intuitionistic fuzzy iterated contraction map.

Theorem 3.2. Let T : X → X be a intuitionistic fuzzy iterated contraction map on a complete metric space X. If
for some power of T , say T is a intuitionistic fuzzy iterated contraction, that is M

(
T x, (T )2x, t

)
≥ M

(
x,T x, t

k

)
and

N
(
T x, (T )2x, t

)
≤ N

(
x,T x, t

k

)
and T is continuous at y, where y = lim(T )n, for any arbitrary x ∈ X. Then T has a

fixed point.

Proof. Since T is a intuitionistic fuzzy iterated contraction that is continuous at y,

M
(
T x, (T )2x, t

)
≥ M

(
x,T x,

t
k

)
. And
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N
(
T x, (T )2x, t

)
≤ N

(
x,T x,

t
k

)
0 < k < t,

M ((T )nx, (T )mx, t) ≥∏n
i=mM

(
(T )i+1x, (T )ix,

t
n − m

)
for all n > m, n,m ∈ N.

≥∏n
i=mM

(
x,T x,

t
(n − m) ∗ ki−1

)
→ 1(m→ ∞),

and

N ((T )nx, (T )mx, t) ≤∏n
i=mN

(
(T )i+1x, (T )ix,

t
n − m

)
for all n > m, n,m ∈ N,

≤∏n
i=mN

(
x,T x,

t
(n − m) ∗ ki−1

)
→ 0(m→ ∞).

Therefore {(T )n}∞n=1 is a Cauchy sequence in X and X is a complete metric space. Thus Exists y ∈ X, s, t, y = (T )nx,
and T is continuous, consequently

T (y) = T ((T )nx) = (T )n+1x = y.

It is easy to show that d (y, f y) ≤ kd(y, f y). Since k ≤ 1, therefore d(y, f y) = 0 and hence f has a fixed point. �

We give the following Note to illustrate the theorem.

Note 3.3. If T is not a fuzzy iterated contraction in Theorem 3.2, but k is a intuitionistic fuzzy iterated contraction
with Ty = y, then T has a fixed point.

Theorem 3.3. If T : X → X is a intuitionistic fuzzy iterated contraction map, and X is a complete metric space, then
the sequence of iterates xn converges to y ∈ X.

In case T is continuous at, then y = Ty, that is T has a fixed point

Proof. Let xn+1 = T xn n = 1, 2, 3, . . . , xi ∈ X. It is easy to show that {xn} is a Cauchy sequence, since T is a
intuitionistic fuzzy iterated contraction. The Cauchy sequence {xn} converges to ∈ X, since X is a complete metric
space. Moreover, if T is continuous at y, then xn+1 = T xn converges to Ty.

It follows that y = Ty. �

Note 3.4. A continuous iterated contraction map on a complete metric space has a unique fixed point. If an iterated
contraction map is not continuous, it may have more than one fixed point.

4. Conclusion
We establish some new fixed point theorems for intuitionistic fuzzy iterated contraction maps in intuitionistic fuzzy
metric spaces in this work.

Acknowledgement. The authors are very much thankful to the Editor and referees for their valuable comments
which improved the presentation of the paper.
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Abstract
In this paper, an attempt is made to study the impact of positive incentive on the diffusion of an innovation in

the society. For this purpose, a non-linear model is proposed involving the following three dependent variables-
(i) the number of non-adopters (ii) the number of adopters and (iii) the variable cumulative incentive introduced
to accumulate the rate of diffusion of an innovation. The model is analyzed by using stability theory of system of
ordinary differential equations and numerical simulations. Although the core concept behind the model is based upon
the approach of Bass model, yet we have incorporated a number of generalizations for the better adaptability of the
model in the real market scenario. A dynamic market affected by demographical changes caused due to immigration,
emigration, etc. has been considered. The coefficients of internal and external influence have also been considered to
be variables depending linearly on the total market population and cumulative incentive, respectively. The analysis
shows that the number of adopters increases with the increase in the external influence caused by cumulative incentive
as a variable. It is also shown that incentive has stabilizing effect on the system. The results are illustrated by
numerical simulations.
2020 Mathematical Sciences Classification: 30D15, 30A10
Keywords and Phrases: Diffusion models, spread of innovation, mathematical model, stability analysis, communi-
cation channels.

1. Introduction
The incentives play a crucial role in speeding up the diffusion of an innovation. There may be different forms of
incentives depending upon the innovation and the priorities of potential user or intermediary. These incentives can be
directly given to the user or an intermediary in monetary form or discounts or cash backs. Nowadays, we see that, in
countries like India, e-transaction services are being rapidly diffused in the potential market which was not looking
possible in the Indian market scenario a few years back. The major force behind this is the incentive in the form
of cash backs and heavy discounts offered by e-commerce websites. Incentive may also be allocated in the form of
government subsidy in order to diffuse government policies in the society. The following graph shows the effect of
incentive in the form of subsidy given by the Indian government to Indian citizens under the Swachh Bharat Mission
(Gramin) of India launched in 2014. A remarkable increase in the Individual Household Latrine Applications (IHHL)
with time can be seen in the graph (see Figure 1.1).

Figure 1.1: Coverage status of IHHL with years (Source: https://sbm.gov.in/sbmReport/home.aspx)

Rogers [14] described innovation diffusion as the process through which new ideas spread throughout a social
system over a period of time and through certain routes. He claimed that invention, communication routes, time, and
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the social structure all play a role in the diffusion process [14]. Since Rogers first presented innovation diffusion theory,
it has been widely applied to service sectors, retail, the pharmaceutical industry, and many other fields. Dearing [6]
suggested the diffusion process that can be readily applicable in the design of interventions of health care systems.
Dearing [4] reviewed diffusion theory and focused on seven concepts that have the potential to accelerate the spread of
evidence-based practices, programmes, and policies in the field of social work. Dearing [7] identified three new paths
for researchers to pursue diffusion research- implementation science, dissemination science, and positive deviance
research. The Positive Deviance method is used by Jain [11] to uncover the successful communication techniques of
rural women entrepreneurs in Uttar Pradesh, India, who gain success in extremely difficult situation. Singhal [17,18]
also used positive deviance approach to study Diffusion of evidence-based practice. Balas [1] provided frameworks for
information diffusion which leads to the adoption of important innovations. According to Dearing [5], when opinion
leaders promote or embrace a new practise, it spreads to others rapidly, resulting in diffusion.

Negative incentives are also very helpful in the diffusion of an innovation as they deprive individuals of privileges
and impose certain restrictions as penalty for not adopting the innovation. For example, in India there is an ongoing
debate on the rapidly increasing population and there are suggestions to deprive those individuals of fundamental rights
such as, the right to vote, who do not act in accordance with the measures for population control. Thus, the introduction
of incentives can play a vital role in speeding up the diffusion of an innovation. But this characteristic has not been
considered so far, in the study of innovation diffusion, where the diffusion process is governed by the framework
proposed by Bass [2]. Since then, a number of mathematical models have been proposed and analyzed to study the
diffusion trend by focusing on the role of transmission between adopters and non-adopters [8,9,12,13,15,21,22,23].
Centrone [3] proposed a binomial innovation diffusion model considering the demographic process of entrance and
exit from the market. Wang [20] proposed a mathematical model to analyze the dynamics of users of a certain product
in two different patches. Wang [19] suggested a model incorporating decision making stage and awareness stage
with constant coefficient of awareness rate. Shukla [16] proposed and analyzed a non-linear mathematical model
considering the adopters, non-adopters population densities and cumulative density of external influences as dependent
variables to study the effect of external influences on innovation diffusion. They have treated the density of internal
influences as a constant.

It is noticeable here that in most of the mathematical models of innovation diffusion, the external and internal
influence factors have been assumed to be constants. But this is not realistic in the dynamic market population
where the demography changes because of immigration, emigration, discontinuation of use of an innovation, etc.
Mathematical modeling of the effect of incentives on the diffusion of an innovation also remains untouched in most
of the existing literature. Therefore, in this paper, we suggest a non-linear mathematical model to study the effect of
incentives on diffusion of innovation by considering variable coefficients of external and internal influences.

2. Mathematical Model
Suppose Na,Noand N denote the variable adopter’s population, non-adopter’s population and total population
respectively. I represents the variable governing the cumulative density of incentive. Let p and q denote the
coefficientsof external and internal influence. Let, A be the constant immigration rate and N̄ be the non-migrating
population. Using these considerations, we propose the following mathematical model -

dNo

dt
= A − γ(N − N̄) − pNo − q

NaN0

N
− eNo + νNa, (2.1)

dNa

dt
= pNo + q

NaN0

N
− eNa − αNa − νNa, (2.2)

dI
dt

= µNo − µoI, (2.3)

No(0) > 0,Na(0) ≥ 0, I(0) ≥ 0.

Here, e is the constant emigration rate of population, ν is the rate at which adopters move back to non-adopters, α
is the rate at which innovation is discontinued and γ, µ, µo are constants of proportionality.

According to the assumptions mentioned in the introduction we assume p and q of the form p0 + p1I and q0 + q1N
respectively, where p0, p1, q0, q1 are non-negative constants. Here, p0 is constant coefficient of external influence when
no incentive is there and p1is the coefficient of external influence due to incentive. Also, the total population is given
by N = No + Na. Using all these assumptions and facts model (2.1) - (2.3) can be expressed in the form-

dNa

dt
= po(N − Na) + p1I(N − Na) + qo

Na(N − Na)
N

+ q1Na(N − Na) − e1Na, (2.4)

dN
dt

= A1 − (e + γ)N − αNa, (2.5)
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dI
dt

= µ(N − Na) − µoI, (2.6)

N(0) > 0,Na(0) ≥ 0, I(0) ≥ 0, where e1 = e + α + ν and A1 = A + γN̄.
Now we determine the region of attraction for model system (2.4) - (2.6) given in the following lemma, Freedman

[10].

Lemma 2.1. The region of attraction for all solutions of model (2.4) - (2.6) is given by-

Ω =

{
(Na,N, I) : 0 ≤ Na ≤ A1

e + γ
,

A1

e + α + γ
≤ N ≤ A1

e + γ
, 0 ≤ I ≤ µA1

µo(e + γ)

}
. (2.7)

Proof. Since 0 ≤ Na ≤ N, we have A1 − (e + α + γ)N ≤ dN
dt ≤ A1 − (e + γ)N, hence we get 0 ≤ Na ≤ A1

e+γ
and

A1
e+α+γ

≤ N ≤ A1
e+γ

.

Also, since dI
dt ≤ µNmax − µoI, we have 0 ≤ I ≤ µA1

µ0(e+γ) . �

3. Equilibrium Analysis
There is only one non-negative equilibrium E∗(N∗a ,N

∗, I∗) of the model system (2.4) - (2.6), which can be obtained by
equating the right-hand sides of the model system (2.4) - (2.6) to zero, as follows,

po(N − Na) + p1I(N − Na) + qo
Na(N − Na)

N
+ q1Na(N − Na) − e1Na = 0, (3.1)

A1 − (e + γ)N − αNa = 0, (3.2)

µ(N − Na) − µoI = 0. (3.3)

From equations (3.2) and (3.3), we get

I =
µ

µ0
(N − Na),Na =

A1 − (e + γ)N
α

,N − Na =
(e + α + γ)N − A1

α
. (3.4)

Using (3.4) in (3.1), we get

F(N) = {p0 +
p1µ

µ0
(
(e + α + γ)N − A1

α
)}( (e + α + γ)N − A1

α
) + q0(

A1 − (e + γ)N
αN

)(
(e + α + γ)N − A1

α
)

− e1(
A1 − (e + γ)N

α
) + q1(

A1 − (e + γ)N
α

)(
(e + α + γ)N − A1

α
) = 0. (3.5)

From (3.5) we get F( A1
e+α+γ

) = − e1A1
(e+α+γ) < 0, F( A1

e+γ
) = (p0 +

p1µA1
µ0(e+γ) )

A1
(e+γ) > 0.

Since, F( A1
e+α+γ

) and F( A1
e+γ

) are of opposite sign and F(N) is continuous in the interval ( A1
e+α+γ

, A1
e+γ

), hence, there
exists at least one root of F(N) in the interval A1

e+α+γ
< N < A1

e+γ
.

In order to establish uniqueness of equilibrium we need to show that F
′
(N) > 0 in A1

e+α+γ
< N < A1

e+γ
.

We can rewrite F(N) as

F(N) = (
(e + α + γ)N − A1

α
)G(N) − e1

α
(A1 − (e + γ)N) = 0. (3.6)

where,

G(N) = p0 +
p1µ

µ0
(
(e + α + γ)N − A1

α
) + q0(

A1 − (e + γ)N
αN

) + q1(
A1 − (e + γ)N

α
). (3.7)

Now differentiating (3.6), we get

F
′
(N) =

(e + α + γ)
α

G(N) + (
(e + α + γ)N − A1

α
)G

′
(N) +

e1(e + γ)
α

,

or
(A1 − (e + γ)N)F

′
(N) =

(e+α+γ)
α

G(N)(A1 − (e + γ)N) + (A1 − (e + γ)N)( (e+α+γ)N−A1
α

)G
′
(N) + e1

α
(e + γ)(A1 − (e + γ)N).

Using equation (3.6),
(A1−(e+γ)N)F

′
(N) =

(e+α+γ)
α

G(N)(A1−(e+γ)N)+(A1−(e+γ)N)( (e+α+γ)N−A1
α

)G
′
(N)+ (e+γ)

α
((e+α+γ)N−A1)G(N).

Putting values of G(N),G
′
(N) from equation (3.7) and further simplifying, we get

(A1 − (e + γ)N)F
′
(N) =

(e+α+γ)
α

(A1 − (e + γ)N)(p0 +
p1µ
µ0

( (e+α+γ)N−A1
α

)) +
(A1−(e+γ)N)

α
((e + α + γ)N − A1) p1µ

µ0

(e+α+γ)
α

+

( (A1−(e+γ)N)
α

)2 A1q0
N2 +

(e+γ)
α

((e + α + γ)N − A1)(p0 +
p1µ
µ0

( (e+α+γ)N−A1
α

)) + (e + α + γ)( (A1−(e+γ)N)
α

)2q1 > 0.
Thus, there exists a unique non trivial equilibrium E∗(N∗a ,N

∗, I∗) of model (2.4) - (2.6) in the region given by
0 ≤ Na ≤ A1

e+γ
and A1

e+α+γ
≤ N ≤ A1

e+γ
.
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4. Stability Analysis
The stability results are stated in the form of following theorems-

Theorem 4.1. The equilibrium E∗ is locally asymptotically stable without any condition.

Proof. See Appendix A. �

Theorem 4.2. The equilibrium E∗ is non linearly stable inside the region of attraction Ω, if the following conditions
are satisfied,

p1(N∗ − N∗a)µα ≤ 2µ0(e + γ)(p0 + q1N∗a), (4.1)

(
p1Imax

N∗a
+

q0(Na)max

NminN∗
)2 ≤ 2

q0

N∗
(e + γ)
α

(
p0

N∗a
+ q1). (4.2)

Proof. See Appendix B. �

5. Numerical Simulation
Now we conduct numerical simulation of model (2.4) - (2.6) to test the feasibility of our analysis regarding the
existence and stability of the equilibrium E. For this, we assume the following set of values of parameters-
A = 1000, e = 0.04, p0 = 0.09, q0 = 0.1, µ0 = 0.05, α = 0.004, γ = 0.02, ν = 0.001, p1 = 0.00000875, µ = 0.04, N̄ =

1000, q1 = 0.000008.
For these values of parameters, conditions (4.1) and (4.2) of stability are satisfied and the value of equilibrium

point is obtained as N∗a = 13992.79092,N∗ = 16067.14727, I∗ = 1659.485079 .
Now we plot the following graphs to illustrate the analytical findings and to gain a better insight into the dynamical

behaviour of the model.

Model Validation
In Figure 5.1, we see that, in this model, the density of adopter’s population follows the same S-pattern as seen in the
Bass Model [2]. The figure shows that the diffusion of new innovation/scheme accelerates with time and slows down
near its saturation level. This trend is analogous to the diffusion of IHHL scheme with time as seen in Figure 1.1.

Figure 5.1: (S-curve) Density of adopters population with time for three different sets of initial conditions.

Observations
In Figure 5.2 and Figure 5.3, it is seen that the curves with different initial conditions i.e. starting from different
points in the region of attraction tend to equilibrium point E∗ as the time progresses. This verifies the stability of
the model at equilibrium E∗. In Figure 5.4, we have plotted the effect of immigration rate on adopter’s population.
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In order to observe the effect, we have plotted three different curves taking three different values of parameter of
immigration rate A as 1000, 1500 and 2000, while keeping the values of other parameters fixed. This figure shows
that as the immigration rate increases, adopter’s population also increases. In Figure 5.5, we see that adopter’s
population decreases as p1 increases whereas in Figure 5.6 we see that the incentive increases with the increase in
rate of immigration. Similarly in Figures 5.7, 5.8, 5.9 and 5.10 , we see that the number of adopter’s increases with
the increase in parameters µ, µ0, q0 and q1.

Figure 5.2: Total population with density of adopter’s population.

Figure 5.3: Incentive with density of adopter’s population.
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Figure 5.4: Density of adopter’s population with time for different values of A.

Figure 5.5: Density of adopter’s population with time for different values of p1.
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Figure 5.6: Incentive with time for different values of A.

Figure 5.7: Density of adopter’s population with time for different values of µ.
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Figure 5.8: Density of adopter’s population with time for different values of µ0.

Figure 5.9: Density of adopter’s population with time for different values of q0.
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Figure 5.10: Density of adopter’s population with time for different values of q1.

6. Conclusions
In this paper, we have proposed and analyzed a nonlinear mathematical model to study the effects of (i) variable
external influence which is linearly related to the incentive variable and (ii) variable internal influence which is linearly
related to total market population, on diffusion of innovation under consideration. The analysis shows that there is
positive effect of the variability of external influence on number of adopters and hence on diffusion process. This also
shows that incentive policy has stabilizing effect on the system. From stability conditions, it is also seen that, α, the
rate at which innovation is discontinued has destabilizing effect on the system. It is seen that density of adopter’s
population increases with increase in p1, the coefficient of external influence due to incentive. Also µ0, the parameter,
which represents the technical difficulties in the implementation of incentive schemes has a negative effect on the
density of adopter’s population.

7. Appendices
7.1. Appendix A
Proof of Theorem 4.1. To examine local stability of the equilibrium E∗(N∗a ,N

∗, I∗), we obtain Jacobian matrix of the
linearised form of model system (2.4) - (2.6) at E∗ as

J =

[−p0 − p1I∗ + q0 − 2q0N∗a
N∗ − e1 + q1N∗ − 2q1N∗a p0 + p1I∗ +

q0N∗2a
N∗2 0

−α −e − γ 0
−µ µ −µ0

]
,

Using equations (3.1) and (3.2) at equilibrium E∗(N∗a ,N
∗, I∗),

We can express −p0 − p1I∗ + q0 − 2q0N∗a
N∗ − e1 + q1N∗ − 2q1N∗a = − p0N∗

N∗a
− p1N∗I∗

N∗a
− q0N∗a

N∗ − q1N∗a , and thus we rewrite
the Jacobian matrix as,

J =

[− p0N∗

N∗a
− p1N∗I∗

N∗a
− q0N∗a

N∗ − q1N∗a p0 + p1I∗ +
q0N∗2a
N∗2 0

−α −e − γ 0
−µ µ −µ0

]
.

The characteristic equation is of the form (µ0 + λ)(λ2 − (a11 + a22)λ + (a11a22 − a12a21)) = 0, where a11 =

− p0N∗

N∗a
− p1N∗I∗

N∗a
− q0N∗a

N∗ − q1N∗a < 0, a22 = −e − γ < 0, a12 = p0 + p1I∗ +
q0N∗2a
N∗2 > 0, and a21 = −α < 0. Since

a11 + a22 < 0, (a11a22 − a12a21) > 0, hence all eigen values lie in the negative, left half plane. Thus, the equilibrium
E∗(N∗a ,N

∗,M∗) is locally asymptotically stable without any condition.
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7.2. Appendix B
Proof of Theorem 4.2. To establish the conditions of global stability stated in Theorem 4.2, we consider the following
positive definite function about E∗,

V(Na,N, I) = c1(Na − N∗a − N∗a ln
Na

N∗a
) +

c2

2
(N − N∗)2 +

c3

2
(I − I∗)2. (B1)

Differentiating with respect to t along the system (2.4) - (2.6) and applying some simple algebraic manipulations,
we get

dV
dt

= c1(− p0N
NaN∗a

− p1IN
NaN∗a

− q0

N∗
− q1)(Na − N∗a)2 + (c1(

p1I
N∗a

+
p0

N∗a
+

q0Na

NN∗
+ q1)

− c2α)(N − N∗)(Na − N∗a) + (c1
p1

N∗a
(N∗ − N∗a) − c3µ)(I − I∗)(Na − N∗a) + c3µ(N − N∗)(I − I∗)

− c2(e + γ)(N − N∗)2 − c3µ0(I − I∗)2. (B2)

Taking,

c1 = µ, c2 =
p0µ

N∗aα
+
µq1

α
, c3 =

p1(N∗ − N∗a)
N∗a

, (B3)

we get
dV
dt = −µ q0

N∗ (Na − N∗a)2 + µ( p1I
N∗a

+
q0Na
NN∗ )(N − N∗)(Na − N∗a) − 1

2 ( p0µ
N∗aα

+
µq1
α

)(e + γ)(N − N∗)2 − 1
2 ( p0µ

N∗aα
+

µq1
α

)(e + γ)(N −
N∗)2 +

p1(N∗−N∗a )
N∗a

µ(N − N∗)(I − I∗) − p1(N∗−N∗a )
N∗a

µ0(I − I∗)2 − µ( p0N
NaN∗a

+
p1IN
NaN∗a

+ q1)(Na − N∗a)2.
dV
dt is negative definite if the following conditions are satisfied-

(
p1I
N∗a

+
q0Na

NN∗
)2 < 2

q0

N∗
(e + γ)
α

(
p0

N∗a
+ q1), (B4)

p1(N∗ − N∗a)µα ≤ 2µ0(e + γ)(p0 + q1N∗a). (B5)

Taking supremum over Na,M and infimum over N in inequality (B4), the inequality (B4) holds strictly if

(
p1Imax

N∗a
+

q0(Na)max

NminN∗
)2 ≤ 2

q0

N∗
(e + γ)
α

(
p0

N∗a
+ q1). (B6)

The inequalities (B5) and (B6) give the two conditions as stated in Theorem 4.2.
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Abstract

In this paper, we construct some new biquadratic sequence spaces using orlicz function defined by Musielak-
Orlicz over n-normed spaces. We study some topological properties and inclusion relations between these spaces.
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1. Introduction
In this paper, the classes of all, entire and analytic scalar valued single sequences are denoted by ω,Γ and Λ

respectively. For the set of all complex sequences (xmnkl), where m, n, k, l ∈ N, the set of positive integers, we write
ω4. Then, ω4 is a linear space under the coordinatewise addition and scalar multiplication.

A biquadratic sequence can be represented by a matrix. In case of double sequence we write in form of a square.
In case of triple sequence it will be in the form of a box in three dimensions. The different type of notions of a triple
sequence was introduced and investigated initially by Sahiner et al. [23], Esi [7], Esi and Catalbas [8], Datta et al. [2],
Debnath et al. [6], Vandana et al.[25] and many others. In case of biquadratic sequence it will be in the form of a box
in four dimensions.

The concept of 2-normed spaces was initially developed by Gähler[12] and the concept of n-normed spaces was
developed by Misiak[16]. Further, Dutta[3, 4, 5], Gunawan [10], Hendra Gunawan and Mashadi[11], Mursaleen et al.
[17, 18], Savas[24] and Jalal [13] also studied n-normed spaces and obtain various results in n-normed spaces. Mishra
et al. [19] studied semi-normed differences and Mishra et al. [20], Rai et al. [22], Vandana et al. [26] also studied
generalized difference χ2I and χ3I of fuzzy real numbers and χ3 ideal fuzzy real numbers and obtain some results.

Kizmaz [14] introduced the notion of difference sequence spaces as follows

Z(∆) = {x = xk ∈ ω : (∆xk) ∈ Z},
for Z = l∞, c and c0

∆(x) = xk − xk+1.

The study was further generalised by Et and Colak [9] and introducing the spaces l∞(∆n), c(∆n) and c0(∆n).
The difference operator on biquadratic sequence is defined as

∆(xmnkl) = xmnkl − x(m+1)nkl − xm(n+1)kl − xmn(k+1)l − xmnk(l+1)

+ x(m+1)(n+1)kl + x(m+1)n(k+1)l + x(m+1)nk(l+1)

− x(m+1)(n+1)(k+1)l − x(m+1)(n+1)k(l+1)

+ x(m+1)(n+1)(k+1)(l+1).

Definitions
Definition 1.1. A biquadratic sequence (ai jkl) is said to converge at L in Pringsheim’s sense if for every ε > 0, there
exists N(ε) ∈ N such that

|ai jkl − L| < ε whenever i, j, k, l ≥ N

and is written as limi, j,k,l→∞ ai jkl = L.

Definition 1.2. A biquadratic sequence (ai jkl) is said to be Cauchy sequence if for every ε > 0, there exists N(ε) ∈ N
such that

|ai jkl − apqrs| < ε
whenever i ≥ p ≥ N, j ≥ q ≥ N, k ≥ r ≥ N, l ≥ s ≥ N.
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Definition 1.3. A biquadratic sequence (ai jkl) is said to be bounded sequence if there exists M > 0, such that |ai jkl| < M
for all i, j, k, l ∈ N.
Definition 1.4. A biquadratic sequence X is said to be solid if (αi jklai jkl) ∈ X whenever (ai jkl) ∈ X and for all
biquadratic sequence (ai jkl) of scalars with |αi jkl| ≤ 1, for all i, j, k, l ∈ N.
2. Preliminaries
A Orcliz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for
x > 0 and M(x)→ ∞ as x→ ∞.

Lindenstrase and Tzaferiri[15] defined the following sequence space using the idea of Orlicz function. Let ω be
the space of all real or complex sequence x = (xk) then

lM =

{
x ∈ ω :

∑∞
k=1

( |xk |
ρ

)
< ∞, for some ρ > 0

}
, (2.1)

which is called as an Orlicz sequence space.
The space lM is a Banach space with norm

||x|| = inf
{
ρ > 0 :

∑∞
k=1M

( |xk |
ρ

)
≤ 1

}
. (2.2)

It is shown in [1] that every Orlicz sequence space lM contains a subspace isomorphic to lp(p ≥ 1). The ∆2−
condition is equivalent to M(Lx) ≤ kLM(x) for all L with L ≥ 1.
An orlicz function M can be represented in the following integral form

M(x) =
∫ x

0η(t)dt, (2.3)
where η known as kernel of M is right differential for t ≤ 0, η(0) = 0 and η is non-decreasing and η→ ∞ as t → ∞.
A sequence f = ( fmnkl) of orlicz function is called Musielak - Orlicz function. A function g = (gmnkl) defined by

gmnkl(v) = sup{|v|u − fmnkl(u) : u ≥ 0} m, n, k, l = 1, 2, 3, ...
is called the complementry function of a Musielak- orlicz function f . For a given Musielak- orlicz function f , the
Musielak- orlicz sequence space t f is defined as follows

t f =
{
x ∈ ω4 : I f (|xmnkl|) 1

m+n+k+l → 0 as m, n, k, l→ ∞
}
,

where I f is a convex modulus function defined by
I f (x) =

∑∞
m,n,k,l=1 fmnkl(|xmnkl|) 1

m+n+k+l , x = (xmnkl) ∈ t f .

Definitions
2.1 Paranormed space

Let X be a linear metric space. A function p : X → R is called a paranorm if
(i) p(x) ≥ 0 for all x ∈ X,
(ii) p(−x) = p(x) for all x ∈ X,
(iii) p(x + y) ≤ p(x) + p(y) for all x ∈ X,
(iv) If (λn) is a sequence of scalars with λn → λ as n → ∞ and xn is a sequence of vectors with p(xn − x) → 0 as

n→ ∞ then p(λnxn − λx)→ 0 as n→ ∞.
A paranorm p for which p(x) = 0 ⇒ x = 0 is called a total paranorm and the pair (x, p) is called a total

paranorm space. It is well- known that the metric of any linear metric space is given by some total paranorm.
If p = (pi jkl) is a biquadratic sequence of positive real number with

0 ≤ pi jkl ≤ supi jkl = G, K = max(1, 2(G−1))
then

|ai jkl + bi jkl|pi jkl ≤ K{|ai jkl|pi jkl + |bi jkl|pi jkl }
for all i, j, k, l and biquadratic sequence ai jkl, bi jkl ∈ C.

In 1960, Gähler was introduced the concept of two-normed spaces, while n-normed spaces developed by Misiak
[16]. Since then, many others have studied this concept and obtained various results.
2.2 n-normed space

Let n ∈ N and X be a linear space over the field R of dimension d, where 2 ≤ n ≤ d. A real valued function ||., ..., .||
on Xn satisfying the following four conditions

(i) ||x1, x2, ..., xn|| = 0 if and only if x1, x2, ..., xn are linearly dependent in X,
(ii) ||x1, x2, ..., xn|| is invariant under permutation,
(iii) ||αx1, x2, ..., xn|| = |α||x1, x2, ..., xn|| for any α ∈ R,
(iv) ||x1 + x′1, x2, ..., xn|| ≤ ||x1, x2, ..., xn||+ ||x′1, x2, ..., xn||, is called n-normed on X, and the pair (X, ||., ..., .||) is called

n-normed space over the field R.
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Example 2.1. (R, ||., ..., .||E) where (R, ||., ..., .||E) is the volume of the n-dimensional parallelopied spanned by the
vectors x1, x2, ..., xn which can be written as

||x1, x2, ..., xn||E = |det(xi j)|
where xi = (xi1, xi2, ..., xin) ∈ Rn for each i = 1, 2, 3, ....

Let (X, ||., ..., .||) be an n-normed space of dimension 2 ≤ d ≤ n and {a1, a2, ..., an} be linearly independent set in X.
Then the following function ||., ..., .||∞ on Xn−1 defined by

||x1, x2, ..., xn−1||∞ = max{||x1, x2, ..., xn−1, ai|| : i = 1, 2, ..., n},
defines an (n − 1) norm on X with respect to {a1, a2, ..., an}.

A sequence (xk) in a n- normed space (X, ||., ..., .||) is said to be convergence if

lim
k,p→∞

||xk − xp, z1, ..., zn−1|| = 0, for any z1, ..., zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with respect to the n-norm.
Any complete n-normed space is said to be n-Banach space. The n-normed space has been studied in [1, 10, 11].

3. Construction of Biquadratic n-normed sequence spaces
Now we introduce the new class of biquadratic sequence spaces using Orlicz functions and difference operator on
n-normed spaces, if M is an orlicz function and p = (pi jkl) is a biquadratic sequence of strictly positive real numbers
and (X, ||., ..., .||) is real linear n-normed space. We define the following class of sequence

ω4
0(M,∆, p, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : lim

p,q,r,s→∞
1

pqrs
∑p,q,r,s

i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

= 0, for each z1, z2, ..., zn−1, for some ρ > 0
}
,

ω4(M,∆, p, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : lim

p,q,r,s→∞
1

pqrs
∑p,q,r,s

i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

= 0, for each z1, z2, ..., zn−1, for some ρ > 0, L > 0
}
,

ω4
∞(M,∆, p, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : sup

pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

< ∞, for each z1, z2, ..., zn−1, for some ρ > 0
}
.

Some Special Cases
(i) If we take M(x) = x, we get

ω4
0(∆, p, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : lim

p,q,r,s→∞
1

pqrs
∑p,q,r,s

i, j,k,l=1

[(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

= 0, for each z1, z2, ..., zn−1, for some ρ > 0
}
,

ω4(∆, p, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : lim

p,q,r,s→∞
1

pqrs
∑p,q,r,s

i, j,k,l=1

[(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

= 0, for each z1, z2, ..., zn−1, for some ρ > 0, L > 0
}
,

ω4
∞(∆, p, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : sup

pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

[(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

< ∞, for each z1, z2, ..., zn−1, for some ρ > 0
}
.

(ii) If we take p = (pi jkl) = 1, we get

ω4
0(M,∆, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : lim

p,q,r,s→∞
1

pqrs
∑p,q,r,s

i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
z1, z2, ..., zn−1

∥∥∥∥∥∥

)]
= 0

for each z1, z2, ..., zn−1, for some ρ > 0
}
,
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ω4(M,∆, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : lim

p,q,r,s→
1

pqrs
∑p,q,r,s

i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]
= 0

for each z1, z2, ..., zn−1, for some ρ > 0, L > 0
}
,

ω4
∞(M,∆, ||., ..., .||) =

{
(ai jkl) ∈ ω4 : sup

pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]
< ∞

for each z1, z2, ..., zn−1, for some ρ > 0,
}
.

Theorem 3.1. Let M be a orlicz function and p = pi jkl be bounded biquadratic sequence of strictly positive reals
numbers. Then the classes of sequence
ω4

0(M,∆, p, ||., ..., .||), ω4(M,∆, p, ||., ..., .||) and ω4
∞(M,∆, p, ||., ..., .||) are linear spaces over the field of real numbers R.

Proof. Let (ai jkl), (bi jkl) ∈ ω4
∞(M,∆, p, ||., ..., .||) and α, β ∈ R. Then ∃ a positive real number ρ1, ρ2 such that

sup
pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

< ∞

for each z1, z2, ..., zn−1, for some ρ1 > 0,
and

sup
pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆bi jkl

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

< ∞

for each z1, z2, ..., zn−1 for some ρ2 > 0.
Let ρ = max{2|α|ρ1, 2|β|ρ2}, then Since ‖., ..., .‖ is a norm on X and M is non-dreasing, convex and using inequality,

we have

sup
pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆αai jkl + ∆βbi jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

≤ sup
pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

{ [
M

(∥∥∥∥∥∥
∆αai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl

+

[
M

(∥∥∥∥∥∥
∆βbi jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl }

≤ K sup
pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

1
2i jkl

{ [
M

(∥∥∥∥∥∥
∆ai jkl

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl }

+ K sup
pqrs

1
pqrs

∑p,q,r,s
i, j,k,l=1

1
2i jkl

{ [
M

(∥∥∥∥∥∥
∆bi jkl

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl }

< ∞.
Thus we have α(ai jkl) + β(bi jkl) ∈ ω4

∞(M,∆, p, ||., ..., .||). Hence ω4
∞(M,∆, p, ||., ..., .||) is a linear space.

Similarly, we can show that ω4
0(M,∆, p, ||., ..., .||) and ω4(M,∆, p, ||., ..., .||) are linear spaces over the field of R. �

Theorem 3.2. Let M be a orlicz function and p = (pi jkl) be bounded biquadratic sequence of strictly positive reals
numbers. Then the classes of sequence
ω4

0(M,∆, p, ||., ..., .||), ω4(M,∆, p, ||., ..., .||) and ω4
∞(M,∆, p, ||., ..., .||) are paranormed spaces paranormed by

g(ai jkl) = sup
i
|ai111| + sup

j
|a1 j11| + sup

k
|a11k1| + sup

l
|a111l|

+ in f
{
ρ

pi jkl
H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl/H

≤ 1
}
,

where
H = max(1,G), G = sup

i, j,k,l≥1
pi jkl.

Proof. Clearly, g(0) = 0 and g(−(ai jkl)) = g((ai jkl))
Let (ai jkl), (bi jkl) ∈ ω4

∞(M,∆, p, ||., ..., .||)
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Then ∃ some ρ1, ρ2 > 0
such that

sup
p,q,r,s

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl/H

≤ 1

and

sup
p,q,r,s

[
M

(∥∥∥∥∥∥
∆bi jkl

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl/H

≤ 1.

Let ρ = ρ1 + ρ2, then by using Minkowski’s inequality, we have

sup
p,q,r,s

[
M

(∥∥∥∥∥
∆ai jkl + ∆bi jkl

ρ
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

≤
(

ρ1

ρ1 + ρ2

)
sup
p,q,r,s

[
M

(∥∥∥∥∥
∆ai jkl

ρ1
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

+

(
ρ2

ρ1 + ρ2

)
sup
p,q,r,s

[
M

(∥∥∥∥∥
∆bi jkl

ρ2
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

.

Now,

g((ai jkl) + (bi jkl))

= sup
i
|ai111 + bi111| + sup

j
|a1 j11 + b1 j11| + sup

k
|a11k1 + b11k1| + sup

l
|a111l + b111l|

+ in f

(ρ1 + ρ2)pi jkl/H > 0 : sup
p,q,r,s

[
M

(∥∥∥∥∥∥
∆ai jkl + ∆bi jkl

ρ1 + ρ2
, z1, z2, .., zn−1

∥∥∥∥∥∥

)]pi jkl/H

≤ 1


= sup

i
|ai111| + sup

j
|a1 j11| + sup

k
|a11k1| + sup

l
|a111l|

+ in f
{
(ρ1 + ρ2)pi jkl/H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥
∆ai jkl

ρ1 + ρ2
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

≤ 1
}

+ sup
i
|bi111| + sup

j
|b1 j11| + sup

k
|b11k1| + sup

l
|b111l|

+ in f
{
(ρ1 + ρ2)pi jkl/H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥
∆bi jkl

ρ1 + ρ2
, z1, ..., zn−1

∥∥∥∥∥
)]pi jkl/H

≤ 1
}

= sup
i
|ai111| + sup

j
|a1 j11| + sup

k
|a11k1| + sup

l
|a111l|

+ in f
{
(ρ)pi jkl/H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

≤ 1
}

+ sup
i
|bi111| + sup

j
|b1 j11| + sup

k
|b11k1| + sup

l
|b111l|

+ in f
{
(ρ)pi jkl/H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥
∆bi jkl

ρ
, z1, ..., zn−1

∥∥∥∥∥
)]pi jkl/H

≤ 1
}

= g(ai jkl) + g(bi jkl).

Let λ ∈ C then the continuity of the follows from the following inequality

g(λ(ai jkl)) = sup
i
|λai111| + sup

j
|λa1 j11| + sup

k
|λa11k1| + sup

l
|λa111l|

+ in f
{
(ρ)pi jkl/H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥
∆λai jkl

ρ
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

≤ 1
}

= |λ|(sup
i
|ai111| + sup

j
|a1 j11| + sup

k
|a11k1| + sup

l
|a111l|)

+ in f
{
(|λ|.r)pi jkl/H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, .., zn−1

∥∥∥∥∥
)]pi jkl/H

≤ 1
}
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= |λ|.g(x) where r =
ρ

|λ| .
Hence ω4

∞(M,∆, p, ‖., ..., .‖) is a paranormed space.
Similarly, we can show that ω4

0(M,∆, p, ||., ..., .||) and ω4(M,∆, p, ||., ..., .||) are also paranormed space. �

Theorem 3.3. Let M be a orlicz function and p = (pi jkl) be bounded biquadratic sequence of strictly positive
reals numbers. Then the classes of sequence ω4

0(M,∆, p, ||., ..., .||), ω4(M,∆, p, ||., ..., .||) and ω4
∞(M,∆, p, ||., ..., .||) are

complete paranormed spaces paranormed by

g(ai jkl) = sup
i
|ai111| + sup

j
|a1 j11| + sup

k
|a11k1| + sup

l
|a111l|

+ in f
{
ρ

pi jkl
H > 0 : sup

p,q,r,s

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥

)]pi jkl/H

≤ 1
}
.

Proof. Let (ai jkl) be a Cauchy sequence in ω4
∞(M,∆, p, ||., ..., .||).

Then g(as
i jkl − at

i jkl)→ 0 as s, t → ∞.
For given ε > 0, choose r > 0 and x0 > 0 be such that ε

rx0
and M( rx0

2 ) ≥ 1.
Now g(as

i jkl − at
i jkl)→ 0 as s, t → ∞ implies that there exists m0 ∈ N such that

g(as
i jkl − at

i jkl) <
ε

rx0
for all s, t ≥ m0.

Thus we have

sup
i
|as

i111 − at
i111| + sup

j
|as

1 j11 − at
1 j11| + sup

k
|as

11k1 − at
11k1| + sup

l
|as

111l − at
111l|

+ in f
{
ρ

pi jkl
H > 0 : sup

p,q,r,s

M



∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥∥∥




pi jkl/H

≤ 1
}

<
ε

rx0
.

This shows that (as
i111), (as

1 j11), (as
11k1) and (as

111l) are Cauchy sequence of real numbers. As the set of real numbers
is complete so there exists real numbers ai111, a1 j11, a11k1, a111l such that

lim
s→∞ as

i111 = ai111, lim
s→∞ as

1 j11 = a1 j11, lim
s→∞ as

11k1 = a11k1, lim
s→∞ as

111l = a111l.

Then we have

sup
i, j,k,l

M



∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

ρ
, z1, ..., zn−1

∥∥∥∥∥∥∥


 ≤ 1

⇒
M



∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

ρ
, z1, ..., zn−1

∥∥∥∥∥∥∥


 ≤ 1

⇒
M



∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

ρ
, z1, ..., zn−1

∥∥∥∥∥∥∥


 ≤ M(

rx0

2
)

⇒


∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

ρ
, z1, ..., zn−1

∥∥∥∥∥∥∥

 ≤
rx0

2

⇒


∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

g(as
i jkl − at

i jkl)
, z1, ..., zn−1

∥∥∥∥∥∥∥

 ≤
rx0

2
(Replace ρ by g(as

i jkl − at
i jkl))

⇒
(∥∥∥(∆as

i jkl − ∆at
i jkl), z1, ..., zn−1

∥∥∥
)
≤ rx0

2
.g(as

i jkl − at
i jkl)

⇒
(∥∥∥(∆as

i jkl − ∆at
i jkl), z1, ..., zn−1

∥∥∥
)
<

rx0

2
.
ε

rx0

⇒
(∥∥∥(∆as

i jkl − ∆at
i jkl), z1, ..., zn−1

∥∥∥
)
<
ε

2
.

This implies that (∆as
i jkl) is a cauchy sequence of real numbers.

Let lims→∞(∆as
i jkl) = yi jkl for all i, j, k, l ∈ N.
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Now,

∆as
1111 = as

1111 − as
2111 − as

1211 − as
1121 − as

1112 + as
2211 + as

2121

+ as
2112 − as

2221 − as
2212 + as

2222

lim
s→∞ as

2222 = lim
s→∞{∆as

i jkl − as
1111 + as

2111 + as
1211 + as

1121 + as
1112

− as
2211 − as

2121 − as
2112 + as

2221 + as
2212}

= y1111 − a1111 + a2111 + a1211 + a1121 + a1112 − a2211

− a2121 − a2112 + a2221 + a2212.

Thus lims→∞ as
2222 exists. Proceeding in this way we conclude that lims→∞(as

i jkl) exists.
Continuity of M, we have

lim
t→∞ sup

i, j,k,l

M



∥∥∥∥∥∥∥
∆as

i jkl − ∆at
i jkl

ρ
, z1, ..., zn−1

∥∥∥∥∥∥∥


 ≤ 1.

Let s ≥ m0, then taking infimum of such ρ′s we have g(as
i jkl − at

i jkl) < ε. Thus (as
i jkl − at

i jkl) ∈ ω4
∞(M,∆, p, ‖., ..., .‖).

Hence ω4
∞(M,∆, p, ‖., ..., .‖) is complete.

Similarly, we can show that ω4
0(M,∆, p, ||., ..., .||) and ω4(M,∆, p, ||., ..., .||) are also complete. �

Theorem 3.4. Let M be a orlicz function and p = (pi jkl) be bounded biquadratic sequence of strictly positive reals
numbers. Then

(i) ω4(M,∆, p, ‖., ..., .‖) ⊂ ω4
∞(M,∆, p, ‖., ..., .‖)

(ii) ω4
0(M,∆, p, ‖., ..., .‖) ⊂ ω4

∞(M,∆, p, ‖., ..., .‖).
Proof. This proof can be completed by simply manipulation. �

Theorem 3.5. Let M be a orlicz function and p = (pi jkl) be bounded biquadratic sequence of strictly positive real
numbers. Then the following relation holds

(i) If 0 < inf pi jkl ≤ pi jkl < 1, then ω4(M,∆, p, ‖., ..., .‖) ⊆ ω4(M,∆, ‖., ..., .‖).
(ii) If 0 < pi jkl ≤ sup pi jkl < ∞, then ω4(M,∆, ‖., ..., .‖) ⊆ ω4(M,∆, p, ‖., ..., .‖).

Proof. (i) Let (ai jkl) ∈ ω4(M,∆, p, ‖., ..., .‖), then

lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl

= 0.

Since 0 < inf pi jkl ≤ pi jkl ≤ 1

lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]

≤ lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl

Thus

lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]
= 0.

Therefore, (ai jkl) ∈ ω4(M,∆, ‖., ..., .‖).
Hence,

ω4(M,∆, p, ‖., ..., .‖) ⊆ ω4(M,∆, ‖., ..., .‖).
(ii) Let (ai jkl) ∈ ω4(M,∆, ‖., ..., .‖), then for each ρ > 0 we have

lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]
= 0 < 1.

Since 1 ≤ pi jkl ≤ sup pi jkl < ∞, we have

lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl
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≤ lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]

⇒ lim
p,q,r,s→∞

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl

= 0.

Therefore (ai jkl) ∈ ω4(M,∆, p, ‖., ..., .‖) for each p > 0.
Hence,

ω4(M,∆, ‖., ..., .‖) ⊆ ω4(M,∆, p, ‖., ..., .‖).
�

Theorem 3.6. Let 0 < inf pi jkl = pi jkl < sup pi jkl < ∞. Then for a Musielak- Orlicz function M which satisfies ∆2
condition

(i) ω4
0(∆, p, ‖., ..., .‖) ⊂ ω4

0(M,∆, p, ‖., ..., .‖),
(ii) ω4(∆, p, ‖., ..., .‖) ⊂ ω4(M,∆, p, ‖., ..., .‖),
(iii) ω4

∞(∆, p, ‖., ..., .‖) ⊂ ω4
∞(M,∆, p, ‖., ..., .‖).

Proof. This proof can be completed by simply manipulation. �

Theorem 3.7. The sequence space ω4
∞(M,∆, p, ‖., ..., .‖) is solid.

Proof. Let (ai jkl) ∈ ω4
∞(M,∆, p, ‖., ..., .‖), then

sup
p,q,r,s

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl − L

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl

< ∞.

Let (ai jkl) be a biquadratic sequence of scalars such that |αi jkl| ≤ 1 for all i, j, k, l ∈ N.
Thus, we have

sup
p,q,r,s

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆αi jklai jkl

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl

≤ sup
p,q,r,s

1
pqrs

∑p,q,r,s
i, j,k,l=1

[
M

(∥∥∥∥∥∥
∆ai jkl

ρ
, z1, ..., zn

∥∥∥∥∥∥

)]pi jkl

< ∞.
This shows that (αi jklai jkl) ∈ ω4

∞(M,∆, p, ‖., ..., .‖) for all sequence of scalars (αi jkl) with |αi jkl| ≤ 1.
Hence the space ω4

∞(M,∆, p, ‖., ..., .‖) is solid sequence space. �

Theorem 3.8. The sequence space ω4
∞(M,∆, p, ‖., ..., .‖) is monotone.

Proof. The result is obvious. �
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Abstract

This paper aims to establish the comparative study of β1 and α2 near-rings symmetrically and non-symmetrically.
Moreover, some theorems and examples have shown the necessity of the comparative research of near-rings.
Keywords and Phrases: β1 near-ring, α2 near-ring, Idempotent, Nilpotent, near-field.

1. Introduction
This paper is inspired by the work of S.Uma and G.Sugantha about the study of β1 near-ring and α2 near-ring
respectively. Here Nr stands for right near-ring i.e. (Nr,+, ·) and If Nr is an additive group (need not to be
commutative), and is multiplicative semi-group also it satisfies right distributivity, is known as right near-ring. A
Regular near-ring [2] is the ring that satisfies the following property:

for every x ∈Nr ∃ y ∈ Nr s.t. x = xyx.

A mapping φ defined from Nr to Nr is called a Mate Function [5] for Nr if for every x ∈ Nr, x = x φ(x)x .
Analogous to the comparative study of β1 and α2 near-rings, we are presenting some examples and also obtaining their
complete characterization [3]. For the basic concepts, notations, and terms used, we refer to [1, 2].

2. Notations
Throughout the paper these are some notations that will be used:

1. N denotes the set of all Nilpotents of Nr.
2. Z (Nr) = { a ∈ Nr ; ax = xa ∀ x ∈ Nr} denotes Centre of Nr.
3. All distributive elements of Nr is represented by Nd = { a ∈ Nr ; a(x + y) = ax + ay ∀ x, y ∈ Nr}.
4. Set of all idempotents of Nr is represented by E.
5. Zero-symmetric part of Nr is denoted by N0 = { a ∈ Nr ; a 0 = 0}.

3. Preliminaries
Here are some important definitions and lemmas which were reviewed and useful in the advanced study of related
topics.

Lemma 3.1 (Lemma 2.5 of [7]). For an ideal I of Nr, NrI ⊆ I and hence NrI Nr ⊆ I if Nr is a zero symmetric near-ring.

Proof. If any r ∈ I and a, b ∈ Nr then a(b + r) − ab ∈ I. We have Nr is a zero-symmetric near-ring so put b = 0 =⇒
a(0 + r) − a0 = ar ∈ I. Hence NrI ⊆ I. Also INr ⊆ I. Hence NrINr ⊆ INr ⊆ I =⇒ NrINr ⊆ I. �

Lemma 3.2 (Problem14 of [1]). For all a ∈ Nr, a2 = 0 =⇒ a = 0 iff there is no non-zero nilpotent elements in Nr.

Definition 3.1 ( Definition 1.31 of [2]). A sub near-ring R of Nr is called invariant near-ring If R Nr ⊆ R & Nr R ⊆ R.

Lemma 3.3 (Lemma 2.6 of [7]). Idempotents are central if E , 0 and Nr is a sub commutative near-ring.

Lemma 3.4 (Theorem 8.3 of [2]). If Nd , {0} and Nr x = Nr ∀ x ∈ Nr - {0} then a zero-symmetric near-ring Nr is a
near-field.

Lemma 3.5 (Lemma 3.2 of [5]). If φ is a mate function for Nr then every x ∈ Nr, xφ(x), φ(x)x ∈ E and Nr x = Nrφ(x)x
and xNr = xφ(x)Nr.

Definition 3.2 (Definition 9.4 of [2]). If abc = acb ∀ a, b, c ∈ Nr then the near-ring Nr is called weak commutative.

Lemma 3.6 (Proposition 2.9 of [6]). Let Nr be any Pseudo commutative near-ring and e is its right identity then Nr is
weak commutative.
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Theorem 3.1 (Theorem 1.62 of [2]). Let Nr be a near-ring and G be a sub direct product of sub directly irreducible
near-rings Nri

′s then Nr � G.

Theorem 3.2 (Theorem5.9 of [4]). Every zero-symmetric β1 near-ring with a mate function ′ f ′ has (*, IFP).

Theorem 3.3 ([2]).

1. Every sub-directly irreducible zero symmetric near-ring Nr without non-zero nilpotent is integral.
2. Let a be an idempotent of Nr and a , 0 then a = e where e is the right identity.

4. Definition of β1 and α2 near-rings with Examples
These are detailed definitions of β1 and α2 near-rings with some useful Examples.

Definition 4.1. A right near-ring Nr is said to be β1 near-ring

if xNry = Nr xy ∀ x, y ∈ Nr.

Definition 4.2. A right near-ring Nr is said to be α2 near-ring

if ∀ y ∈ Nr - {0} ∃ x ∈ Nr - {0} s.t. x = xyx.

Example 4.1. Let (Nr = {1,3,5,7}, ×8, ·) be a near-ring where {Nr,×8} be a particular Kleins four group then

(a) (Nr, ×8, ·) is the β1 near-ring where second operation
(·) is defined according Pilz ([2], scheme 4, p.408)

. 1 3 5 7
1 1 1 1 1
3 1 1 3 3
5 1 3 7 5
7 1 3 5 7

(b) (Nr, ×8, ·) is the α2 near-ring where second operation
(·) is defined according Pilz ([2], scheme 18, p.408)

. 1 3 5 7
1 1 1 1 1
3 3 3 3 3
5 1 1 5 5
7 3 3 7 7

(c) (Nr, ×8, ·) is not a β1 near-ring where second
operation (·) is defined according Pilz ([2], scheme 8,
p.408)

. 1 3 5 7
1 1 1 1 1
3 1 1 1 3
5 1 3 5 5
7 1 3 5 7

(d) (Nr, ×8, ·) is neither regular nor α2 near-ring where
second operation (·) is defined according to Pilz ([2],
scheme 2, p.408)

. 1 3 5 7
1 1 1 1 1
3 1 1 3 3
5 1 3 5 5
7 1 3 7 7

Example 4.2. Let ( Nr = {0,1,2,3,4,5}, +6, · ) be a near-ring where (Nr,+6) be the group of integers modulo 6 then

(a) (Nr,+6, ·) is zero-symmetric β1 near-ring with no
identity where second operation (·) is defined according
Pilz ([2], scheme 36, p. 409)

. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 4 2 0 4 2
2 0 2 4 0 2 4
3 0 0 0 0 0 0
4 0 4 2 0 4 2
5 0 2 4 0 2 4

(b) (Nr,+6, ·) is a near-ring which is not regular, also it
is not α2 near-ring where second operation (·) is defined
according Pilz ([2], scheme 34, p.409)

. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 5 1 0 5 1
2 0 4 2 0 4 2
3 0 3 3 0 3 3
4 0 2 4 0 2 4
5 0 1 5 0 1 5
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5. Properties of β1 and α2 near-rings
5.1. Similar Properties of β1 and α2 near-rings
In this section, we have studied some similar properties of β1 and α2 near-rings [4, 7].
Throughout this section Nr denotes the right near-ring and N∗r = Nr − {0}

Proposition 5.1. Every Isomorphic Image of β1 near-
ring is also a β1 near-ring. Moreover, every homomor-
phic image of β1 near-ring is also β1 near-ring.

Proof. The proof is straightforward. �

Proposition 5.2. Every Isomorphic Image of α2 near-
ring is also an α2 near-ring. However, every homomor-
phic image of α2 near-ring need not be an α2 near-ring.

Proof. The proof is straightforward. �

Theorem 5.1. Every β1 near-ring with a mate function
is sub directly irreducible near-ring iff it is a near-field.

Proof. Let Nr be a β1 near-ring with a mate function f
and A be the intersection of an arbitrary family of non-
zero ideals of Nr. Since Nr is subdirectly irreducible
near-ring =⇒ A , {0}. Now if any x ∈ A
s.t. x , 0 =⇒ xe = 0 ∀ e ∈ E (5.1)
by Theorem 3.2,

ex = 0 =⇒ e f (x)x = f (x)x∈E.

Thus x f (x)x = 0 [by(5.1)] =⇒ x = 0, which is not
possible. So, no non-zero idempotent of Nr is a zero-
divisor (5.2)
Let G be any non-zero Nr subgroup of Nr and let any
non-zero x ∈ G. Thus ∀ a, a1 ∈Nr, (a − a1x) f (x)x = 0
[by(5.2)]

=⇒ a − a1x = 0 =⇒ a = a1x ∈ NrG ⊂ G.

Thus Nr ⊂ G. Consequently, Nr has no non trivial Nr-
subgroups (5.3)
Let a ∈ Nr − {0}. Then by (5.3), Nra = Nr. Now, we
have if E ⊂ Z(Nr) and Z(Nr) ⊂ Nd. Therefore, Nd ,{0}.
Thus Nr is a near-field. The converse of this theorem is
straight forward. �

Theorem 5.2. Every α2 near-ring with sub commuta-
tivity is sub directly irreducible near-ring iff it is a near-
field.

Proof. Let Nr be an α2 near-ring with sub commutativ-
ity then we have the set of all idempotent is nontrivial
Let a be an idempotent of Nr and a , 0 then a = e
where e is the right identity. (By Theorem 3.3) Also
ae = ea = e =⇒ a = e because Nr is sub commutative
and E , {0}. Thus Nr has a unique non-zero idempotent
e which implies e represents the identity element of Nr.
Again since Nr is α2 near-ring ∀ a ∈ N∗r then ∃ x ∈ N∗r
s.t. x = xax =⇒ ax and xa are idempotent and hence
ax = xa = e.
Thus Nr is a near-field.
Conversely, if Nr is a near-field then Nr will be an
integral near-ring and a sub commutative α2 near-ring
is zero-symmetric reduced sub directly irreducible near-
ring. Hence, Nr is sub directly irreducible near-ring. �

Proposition 5.3. β1 near-ring need not be regular near-
ring.

Proof. Let (Nr = {1,3,5,7}, ×8, ·) be a near-ring where
{Nr,×8} be a particular Klein’s four group then (Nr,
×8, · ) is the β1 near-ring where second operation (·)
is defined according Pilz ([2], scheme 4, p.408),

. 1 3 5 7
1 1 1 1 1
3 1 1 3 3
5 1 3 7 5
7 1 3 5 7

but it is not regular near-ring. �

Proposition 5.4. α2 near-ring need not be regular near-
ring.

Proof. Let (Nr = {1,3,5,7}, ×8, ·) be a near-ring where
(Nr, ×8) be a particular Klein’s four group then (Nr,
×8, · ) is the α2 near-ring where second operation (·)
is defined according Pilz ([2], scheme 4, p.408),

. 1 3 5 7
1 1 1 1 1
3 3 3 3 3
5 1 1 5 5
7 3 3 7 7

but it is not regular near-ring. �
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Proposition 5.5. Let Nr be a β1 near-ring and G be a
sub direct product of sub directly irreducible near-rings
Nri
′s then Nr � G.

Proof. Let Nr be a β1 near-ring then we have, Nr

is isomorphic to a sub direct product of sub directly
irreducible near-rings Nri

′s [By Theorem 3.1] and under
the projection mapping πi every Nri

′s is a homomorphic
image of Nr [by Proposition 5.1].
We have every homomorphic image of β1 near-ring is
again β1 near-ring. Hence, every β1 near-ring is isomor-
phic to a sub direct product of sub directly irreducible
near-rings. �

Proposition 5.6. Every sub commutative α2 integral
near-ring is isomorphic to zero-symmetric reduced sub
directly irreducible near-ring.

Proof. Let Nr be an α2 near-ring with sub commuta-
tivity then the set of all idempotent is nontrivial. By
Theorem 3.3(2), each non-zero idempotent is a right
identity of Nr. Let any two non-zero idempotent a, e
∈ Nr then ae = ea =⇒ a = e because Nr is
sub commutative and E , {0}. Thus Nr has a unique
idempotent e, and e , 0 which implies e represents the
identity element of Nr. Again since Nr is α2 near-ring
∀ a ∈ N∗r then ∃ x ∈ N∗r s.t. x = xax. =⇒ ax and xa
are idempotent and hence ax = xa = e =⇒ Nr is a
near-field. Therefore by Theorem 5.2, we will get the
required result. �

.

5.2. Non-Similar Properties of β1 and α2 near-rings
In this section, we have studied some non-similar properties of β1 and α2 near-rings [4, 7]. Throughout this section Nr

denotes the right near-ring and Nr
∗ = Nr − {0}

Proposition 5.7. Every β1 near-ring which has identity
1, is zero-symmetric.

Proof. Let Nr be a β1 near-ring which has identity one.
Then for all x, y in Nr, xNry = Nr xy.
Put y = 1 then xNr1 = Nr x1 ∀ x ∈ Nr. When x = 0, 0Nr

= Nr0= {0}.
=⇒ 0x = 0 hence ∀ x ∈ Nr it follow that Nr is zero-
symmetric. �

Proposition 5.8. Let Nr be an α2 near-ring and I be any
ideal of a zero-symmetric α2 near-ring Nr then I is also
an α2 sub near-ring.

Proof. Let I be an ideal of the zero-symmetric α2 near-
ring Nr. Let a ∈ I∗. Since Nr is an α2 near-ring then ∃
b ∈ Nr* s.t. bab = b. Now bab ∈ Nr

∗I∗Nr
∗ ⊆ I∗ [By

Lemma 3.1]. Hence I is also an α2 sub near-ring. �

Proposition 5.9. Every regular near-ring need not be
β1 a near-ring.

Proof. Let (Nr = {1,3,5,7}, ×8, ·) be a near-ring where
{Nr,×8} be a particular Klein’s four group then (Nr, ×8,
· ) is the Regular near-ring where second operation (·) is
defined according to to Pilz ([2], scheme 4, p.408),

. 1 3 5 7
1 1 1 1 1
3 3 3 3 3
5 1 1 5 5
7 3 3 7 7

but it is not β1 near-ring. �

Proposition 5.10. Every Regular near-ring is an α2
near-ring.

Proof. Let Nr be a regular near-ring. Hence for any x ∈
Nr there exist x, y ∈ Nr such that xyx = x.
Let a = yxy then axa = (yxy)x(yxy) = y(xyx)yxy =

y(x)yxy = y(xyx)y = yxy = a =⇒ axa = a Hence
Nr is an α2 near-ring, which implies that every regular
near-ring is an α2 near-ring. �
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Theorem 5.3. Every β1 near-ring with a mate function
is isomorphic to a subdirect product of near-fields.

Proof. Let Nr be a β1 near-ring. By Proposition 5.5,
Nr is isomorphic to a subdirect product of sub directly
irreducible β1 near-rings Nri

′s. Since Nr has a mate
function it follows that each Nri also has a mate func-
tion. Again by Theorem 5.1, we have every β1 near-ring
with a mate function is sub directly irreducible near-ring
if it is a near-field. Hence Nr is isomorphic to a subdirect
product of near-fields. �

Theorem 5.4. Every α2 near-ring need not be isomor-
phic to a subdirect product of near-fields.

Proof. Let Nr be an α2 near-ring then by Theorem 5.2,
we have every α2 near-ring Nr with sub commutativity
is sub directly irreducible near-ring iff it is a near-field,
and every α2 near-ring is isomorphic to zero symmetric
reduced sub directly irreducible near-ring if it is near-
field. Hence in this case Nr is isomorphic to a subdirect
product of near-fields but if Nr is not an integral near-
ring then Nr need not be isomorphic to a subdirect
product of near-fields. �

6. Conclusion
This comparative study can help us define the organizational structure of both the near-rings as well as give the
differential points between them. By this comparative study, we will be able to establish the connection between these
rings, also subtle differences or unexpected similarities can be illuminated. As a result, A Comprehensive investigation
is shown in this paper about both the rings which can lead us to look at a broad approach of comparing and contrasting.
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Abstract

In this paper, we extend the method of successive approximations to second order Initial Value Problems (IVPs)
of the type y′′ = f (x, y), y(x0) = y0, y′(x0) = y1, without converting it to a system of first order differential equations.
We obtain an upper bound in the closed form for the difference between two successive iterates. Further, we calculate
an error bound for the solution and see that we get a tighter bound for the second order IVP as compared to its first
order counterpart.
2020 Mathematical Sciences Classification: 34A12, 34A40.
Keywords and Phrases: Gronwall Inequality, Initial Value Problem, Integral equations, Lipschitz condition,
Weierstrass M-test.

1. Introduction
Initial Value Problems (IVPs) are differential equations with some initial conditions that find a wide range of
applications in physics and modeling sciences. While every book on ordinary differential equations explains the
existence and uniqueness of solutions and methods to compute solutions, it is noteworthy to mention certain
developments in finding solutions to IVPs. A new family of explicit schemes for numerical solutions of IVPs are
constructed in Ramos et al. [12] by considering suitable rational approximations to the theoretical solution. By
varying the step size, Arefin et al. [5] analyzes the solutions of IVPs by discussing Euler’s, Modified Euler and Runge-
Kutta method. Further, Islam [9] presents Euler method and fourth-order Runge-Kutta method for solving IVPs by
investigating and computing errors between the two methods. With the theory for IVP in place, Kumar [10] has
illustrated the application of IVPs on a contour integral for Drivastava-Daoust functions of two variables. Having a lot
of literature on solving IVPs, it is important to analyze the success of these numerical methods. The popular Euler’s
method is studied for its accuracy by obtaining the error bounds by Akanbi [4]. With the help of adjoint sensitivity
software, Cao and Petzold [6] propose a general method for a posteriori error estimation in the solution of IVPs. By
comparing the adjoint method and the classical approach based on the first variational equation, Lang and Verwer[11]
address the global error estimation and control for IVPs. Using the preconditioned defect estimates and optimization
techniques, Fazal and Neumaier [8] compute the error bounds for approximate solutions of IVPs.

The method of successive approximations by Picard for first order IVPs of the type
y′ = f (x, y), y(x0) = y0 found in Agarwal and O’Regan [1], and Deo et al. [7] has been extended to IVPs of the
type y′′ = f (x, y), y(x0) = y0, y′(x0) = y1, without converting these to a system of first order differential equations.
The existence of solutions to such second-order IVPs can be found in Schrader [14]. The solutions of such second
order IVPs can be computed using the approach in Schrader [13]. Having calculated the first few terms and the
difference between successive terms, a pattern is observed for the difference between successive terms which is proved
by induction. Finally, an error estimate for solutions has been calculated.

2. Preliminary Results
Consider the first order IVP,

y′ = f (x, y), y(x0) = y0. (2.1)

Equation (2.1) is a first order IVP and is equivalent to the integral equation

y(x) = y0 +
∫ x

x0
f (t, y(t))dt. (2.2)

For this integral equation (2.2), picking y0(x) = y0, the successive iterates are computed as

ym+1(x) = y0 +
∫ x

x0
f (t, ym(t))dt, m = 0, 1, 2, · · · . (2.3)

For the above first order IVP we have Picard’s local existence theorem as follows:
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Theorem 2.1 ([2]). Let us suppose that there is a continuous and bounded function f (x, y) defined on the closed
rectangle S̄ :| x − x0 |≤ a, | y − y0 |≤ b. Let M be the bound of f on S̄ . Further, let f satisfy the Lipschitz condition on
S̄ with Lipschitz constant L. If y0(x) is a continuous function on S̄ , and if y(x) is the unique solution of the IVP (2.1),
then {ym(x)}, which is the sequence obtained from Picard’s iterative scheme (2.3) converges to y(x). This solution
holds true in

Jh :| x − x0 |≤ h = min
{

a,
b
M

}
.

Theorem 2.2 ([3]). Let the conditions of Theorem 2.1 be satisfied.
Then for all x ∈ Jh we have the following error estimate:

| y(x) − ym(x) |≤ N exp(Lh) min
{

1,
(Lh)m

m!

}
,m = 0, 1, 2, · · · , (2.4)

where max
x∈Jh
| y1(x) − y0(x) |≤ N.

The difference between two successive iterates is bounded and given by

| ym(x) − ym−1(x) |≤ N
(L | x − x0 |)m−1

(m − 1)!
,m = 1, 2, · · · . (2.5)

3. Generalizations to second order IVPs of the type y′′ = f(x, y), y(x0) = y0, y′(x0) = y1
We shall begin this section by establishing a result converting the second order ordinary differential equation to an
integral equation.

Theorem 3.1. The solution of the second order IVP

y′′ = f (x, y), y(x0) = y0, y′(x0) = y1, (3.1)

is equivalent to the solution of the Volterra integral equation

y(x) = y0 + (x − x0)y1 +
∫ x

x0
(x − t) f (t, y(t))dt. (3.2)

Proof. We can rewrite equation (3.1) as y′′(t) = f (t, y(t)), y(x0) = y0, y′(x0) = y1.
Integrating this equation with respect to t between the limits x0 and x, and using the initial conditions, together with
the fundamental theorem of calculus, we get

y′(x) = y1 +
∫ x

x0
f (t, y(t))dt.

Integration of this equation together with the initial conditions, and fundamental theorem of calculus, yields

y(x) = y0 + (x − x0)y1 +
∫ x

x0

∫ t2
x0

f (t1, y(t1))dt1dt2. (3.3)

We will convert the double integral in equation (3.3) to a single integral. To do this, consider

I1(x) =
∫ x

x0
f (t, y(t))dt, (3.4)

and,
I2(x) =

∫ x
x0
(x − t) f (t, y(t))dt. (3.5)

Differentiating equation (3.5) with respect to x by using Leibnitz rule for differentiation under the integral sign, we
get

dI2(x)
dx

=
∫ x

x0

∂

∂x
(x − t) f (t, y(t))dt + (x − x) f (x, y(x))

dx
dx
− (x − x0) f (x0, y(x0))

dx0

dx
,

which becomes
dI2(x)

dx
=

∫ x
x0

f (t, y(t))dt = I1(x). (3.6)

Differentiating equation (3.6) using Leibnitz rule, and using equation (3.4), we get

d2I2(x)
dx2 = f (x, y(x)). (3.7)

We note that I2(x0) = 0 and I′2(x0) = 0.
We can rewrite equation (3.4) as

I1(x) =
∫ x

x0
f (t1, y(t1))dt1. (3.8)
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Using equations (3.6) and (3.8), we have
I2(x) =

∫ x
x0
I1(t2)dt2 =

∫ x
x0

∫ t2
x0

f (t1, y(t1))dt1dt2. (3.9)
From equations (3.5) and (3.9), we see that

∫ x
x0

∫ t2
x0

f (t1, y(t1))dt1dt2 =
∫ x

x0
(x − t) f (t, y(t))dt. (3.10)

Using equation (3.10) in equation (3.3), we get the desired equation (3.2).
The Picard’s iterative scheme for (3.1) is given by

ym+1(x) = y0 + (x − x0)y1 +
∫ x

x0
(x − t) f (t, ym(t))dt, m = 0, 1, 2, . . . . (3.11)

Here we generalize Picard’s local existence theorem to the second order IVP (3.1).

Theorem 3.2. Let us suppose that there is a continuous and bounded function f (x, y) defined on the closed rectangle
S̄ :| x − x0 |≤ a, | y − y0 |≤ b. Let M be the bound of f on S̄ . Further, let f satisfy the Lipschitz condition on S̄ with
Lipschitz constant L. If y0(x) is a continuous function on S̄ , and if y(x) is the unique solution of the IVP (3.1), then
{ym(x)}, which is the sequence obtained from Picard’s iterative scheme (3.11) converges to y(x). This solution holds
true in

Jh :| x − x0 |≤ h = min
{

a,
b

M1

}
,

where M1 =| y1 | + Ma
2 .

Proof. Consider the sequence {ym+1(x)}, obtained from (3.11). We shall prove that each term of this sequence exists
and is continuous in Jh :| x − x0 |≤ h = min

{
a, b

M1

}
.

By the assumption on y0(x), the function F0(x) = f (x, y0(x)) is continuous in Jh, and hence y1(x) defined as
y1(x) = y0 + (x − x0)y1 +

∫ x
x0

(x − t) f (t, y0(t))dt is continuous in Jh.
Further,

| y1(x) − y0 | = |y0 + (x − x0)y1 +
∫ x

x0
(x − t) f (t, y0(t))dt − y0|

≤| x − x0 || y1 | +M∫ x
x0
| x − t | dt

≤| y1 | h +
Mh2

2

≤ h
[
| y1 | + Ma

2

]

≤ b.
Assuming | ym−1(x) − y0 |≤ b ∀m ≥ 2, it is sufficient to prove that | ym(x) − y0 |≤ b.
The function Fm−1(x) = f (x, ym−1(x)) is also continuous in Jh as ym−1(x) is continuous there.

Moreover,
| ym(x) − y0 | = |y0 + (x − x0)y1 +

∫ x
x0
(x − t) f (t, ym−1(t))dt − y0|

≤| x − x0 || y1 | +M∫ x
x0
| x − t | dt

≤| y1 | h +
Mh2

2

≤ h
[
| y1 | + Ma

2

]

≤ b.
Since y0(x) and y1(x) are continuous in Jh, and Jh is closed and bounded, there exists an N > 0, such that

sup
x∈Jh

| y1(x) − y0(x) |≤ N. We now turn to obtaining a bound for the difference between two successive iterates, which

we have found to be

| ym+1(x) − ym(x) |≤ N
Lm | x − x0 |2m

(2m)!
,m = 0, 1, 2, . . . . (3.12)

The estimate of bound for difference between successive iterates which is given by (3.12), is now proved via
induction.

The case for m = 0 is argued earlier.
So we now assume the result to be true for m = k ≥ 2, i.e., we assume the inductive step as

| yk+1(x) − yk(x) |≤ N Lk |x−x0 |2k

(2k)! , k = 0, 1, 2, . . . .
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We need to prove the result to be true for m = k + 1. That is, we need to prove
| yk+2(x) − yk+1(x) |≤ N Lk+1 |x−x0 |2(k+1)

(2k+2)! , k = 0, 1, 2, . . . .
The main ideas in establishing a bound for the difference between successive iterates begins by substitution of the

values of the solutions yk+2 and yk+1. Further f is Lipschitz, i.e., | f (x, y1)− f (x, y2) |≤ L | y1 − y2 | in S̄ . The Lipschitz
condition on f then brings us to the induction hypothesis step. The induction is then completed by using the binomial
theorem twice.

Now,

| yk+2(x) − yk+1(x) | =
∣∣∣∣
(
y0 + (x − x0)y1 +

∫ x
x0
(x − t) f (t, yk+1(t))dt

)

−
(
y0 + (x − x0)y1 +

∫ x
x0
(x − t) f (t, yk(t))dt

)∣∣∣∣
≤ ∫ x

x0
| x − t || f (t, yk+1(t)) − f (t, yk(t)) | dt

≤ L∫ x
x0
| x − t || yk+1(t) − yk(t) | dt

≤ NLk+1

(2k)!
∫ x

x0
| x − t | | t − x0 |2kdt

=
NLk+1

(2k)!
∫ x

x0
| x − t |

∣∣∣∣t2k −
(
2k
1

)
t2k−1x0 +

(
2k
2

)
t2k−2x2

0 −
(
2k
3

)
t2k−3x3

0

+ · · · + x2k
0

∣∣∣∣dt

=
NLk+1

(2k)!

∣∣∣∣
( xx2k+1

0

2k + 1
− xx2k+1

0 + kxx2k+1
0 − (2k)(2k − 1)xx2k+1

0

6

− x2k+2
0

2k + 2
+

2kx2k+2
0

2k + 1
− (2k − 1)x2k+2

0

2
+

(2k)(2k − 2)x2k+2
0

6
+ · · · − x2k+2

0

2

)

−
( x2k+2

2k + 1
− x0x2k+1 + kx2k x2

0 −
(2k)(2k − 1)x2k−1x3

0

6
− x2k+2

2k + 2

+
2kx2k+1x0

2k + 1
− (2k − 1)x2k x2

0

2
+

(2k)(2k − 2)x2k−1x3
0

6
+ · · · − x2x2k

0

2

)∣∣∣∣

=
NLk+1

(2k)!


x2k+2 − (2k + 2)x2k+1x0 +

(2k+1)(2k+2)x2k x2
0

2 − · · · + x2k+2
0

(2k + 1)(2k + 2)



≤ NLk+1 | x − x0 |2k+2

(2k)!(2k + 1)(2k + 2)

= N
Lk+1 | x − x0 |2(k+1)

(2k + 2)!
.

By principle of mathematical induction we have established (3.12), ∀m = 0, 1, 2, · · · , ∀x ∈ Jh.
Next,

∑∞
m=0

NLm | x − x0 |2m

(2m)!
= N

∑∞
m=0

(
√

L | x − x0 |)2m

(2m)!

≤ N
∑∞

m=0
(
√

Lh)2m

(2m)!

= N exp
(

Lh
2

)

< ∞.
By Weierstrass M-test, the series

∑∞
m=0(ym+1(x) − ym(x)) converges absolutely and uniformly to a continuous

function in interval Jh.
i.e., y(x) = lim

m→∞ ym(x).
This y(x) is a solution of the integral equation (3.2).
The uniqueness of solution easily follows from Gronwall’s inequality which can be found in Walter [15].
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For if z(x) is another solution in Jh, and (x, z(x)) ∈ S̄ , then by using the definitions of y(x) and z(x), we get

| y(x) − z(x) | =
∣∣∣∣
(
y0 + (x − x0)y1 +

∫ x
x0
(x − t) f (t, y(t))dt

)

−
(
y0 + (x − x0)y1 +

∫ x
x0
(x − t) f (t, z(t))dt

)∣∣∣∣
≤ ∫ x

x0
| x − t || f (t, y(t)) − f (t, z(t)) | dt

≤ L∫ x
x0
| x − t || y(t) − z(t) | dt

< ε + L∫ x
x0
| x − t || y(t) − z(t) | dt ∀ε > 0

≤ ε exp(|∫ x
x0
L | x − t | dt|).

The second inequality above is obtained from the assumption in Theorem 3.2 stating that f is Lipschitizian with
Lipschitz constant L. The last inequality is obtained using Gronwall’s lemma as the previous strict inequality lays the
condition for making it favourable to use Gronwall’s lemma.
By letting ε → 0, we get y(x) = z(x), proving uniqueness.

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied.
Then for all x ∈ Jh we have the following error estimate:

| y(x) − ym(x) |≤ N exp(
√

Lh) min

1,
(
√

Lh)2m

(2m)!

 ,m = 0, 1, 2, · · · , (3.13)

where max
x∈Jh
| y1(x) − y0(x) |≤ N.

Proof. For n > m, the triangle inequality gives,

| yn(x) − ym(x) | ≤ ∑n−1
k=m | yk+1(x) − yk(x) |

≤ ∑n−1
k=mNLk | x − x0 |2k

(2k)!

≤ ∑n−1
k=mNLk h2k

(2k)!

= N

(
√

Lh)2m

(2m)!
+

(
√

Lh)2m+2

(2m + 2)!
+

(
√

Lh)2m+4

(2m + 4)!
+ · · · (

√
Lh)2n−2

(2n − 2)!



≤ N
(
√

Lh)2m

(2m)!

1 +

√
Lh

(2m + 1)!
+

(
√

Lh)2

(2m + 2)!
+

(
√

Lh)3

(2m + 3)!
+ · · · + (

√
Lh)2n−2m−1

(2n − 1)!



≤ N(
√

Lh)2m

(2m)!
∑∞

k=0
(
√

Lh)k

(k)!

=
N(
√

Lh)2m

(2m)!
exp(

√
Lh).

We point out that the second inequality in the chain above is obtained from equation (3.12), while the last inequality
is due to the fact that every term in the bracket above it is positive. The other inequalities and equalities are mere
simplifications.

Letting n→ ∞, and by noting that lim
n→∞ yn(x) = y(x), we get

| y(x) − ym(x) |≤ N
(
√

Lh)2m

(2m)!
exp(

√
Lh). (3.14)

Further, we already have | yn(x) − ym(x) |≤ N exp(
√

Lh).
Letting n→ ∞, and by noting that lim

n→∞ yn(x) = y(x), we get

| y(x) − ym(x) |≤ N exp(
√

Lh). (3.15)

From equations (3.14) and (3.15), we obtain the desired error bound (3.13).
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4. Some Supporting Examples
Let S̄ :| x |≤ 1

3 , | y − 1 |≤ 1 be a closed rectangle.
Consider the IVP

y′ = −y, y(0) = 1. (4.1)

We know that the exact solution is y(x) = e−x. The first three iterates by Picard’s method are
y1(x) = 1 − x,

y2(x) = 1 − x +
x2

2!
,

y3(x) = 1 − x +
x2

2!
− x3

3!
.

The error estimates considering the third iterate is given by

| y(x) − y3(x) |≤ 0.000482 + R where R =
∑∞

k=8
(−1)k

3kk!
. (4.2)

For the IVP
y′′ = −y, y(0) = 1, y′(0) = 1, (4.3)

the exact solution is y(x) = cos x + sin x. The first three iterates by Picard’s method are

y1(x) = 1 + x − x2

2!
,

y2(x) = 1 + x − x2

2!
− x3

3!
+

x4

4!
,

y3(x) = 1 + x − x2

2!
− x3

3!
+

x4

4!
+

x5

5!
− x6

6!
.

The error estimates considering the third iterate is given by

| y(x) − y3(x) |≤ 0.00000009 + R, where R =
∑∞

k=8
1

3kk!
. (4.4)

Comparing equations (4.2) and (4.4), we see that we get a tighter error bound and thus a better approximate for the
solution of the second order IVP.

As a final illustration, consider another illustration given below: Let S 1 :| x |≤ 1
2 , | y − 1 |≤ 2 be a closed rectangle.

Consider the IVP
y′ = ex + y, y(0) = 1. (4.5)

The exact solution is computed to be y(x) = (x + 1)ex. The first three iterates by Picard’s method are
y1(x) = x + ex,

y2(x) =
x2

2
− 1 + 2ex,

y3(x) =
x3

3!
− x − 2 + 3ex.

The error estimates considering the third iterate is given by
| y(x) − y3(x) |≤ 0.0060848. (4.6)

For the IVP
y′′ = ex + y, y(0) = 1, y′(0) = 1, (4.7)

the exact solution is found to be
y(x) =

1
4

(2x − 1)ex +
1
4

e−x + ex.

The first three iterates by Picard’s method are

y1(x) =
x2

2!
+ ex,

y2(x) =
x4

4!
− x − 1 + 2ex,

y3(x) =
x6

6!
− x3

3!
− x2

2!
− 2x − 2 + 3ex.

The error estimates considering the third iterate is given by
| y(x) − y3(x) |≤ 0.0000018. (4.8)

Comparing equations (4.6) and (4.8), we see that we get a tighter error bound and thus a better approximate for the
solution of the second order IVP.
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5. Conclusion
We have developed Picard’s method of successive approximations for a particular type of second order IVP. We have
obtained a bound in a closed form for the difference between two successive solutions. Further, we have obtained a
tighter error bound on the solution as compared to the existing bound for first order IVPs. We have illustrated our
results with suitable examples.

Acknowledgement. We are very much grateful to the Editor and Referee for their fruitful suggestions to bring the
paper in its present form.
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Abstract

We first study Katugampola fractional q-integral and q-derivative in the space L1
q,p [a, b] and obtain some properties

of these operators, which include the image of power function, semi group property and composition of these
operators. Next, we look at the existence and uniqueness of solution to generalized fractional q-Cauchy type problems
involving Katugampola fractional q-derivative. Also, we obtain their compact form solutions using Adomian
decomposition method, in terms of q-Mittag-Leffler type functions.
2020 Mathematical Sciences Classification: 26A33, 39A13.
Keywords and Phrases: Fractional q-integral, Fractional q-derivative, Adomian decomposition method; q-difference
equation.

1. Introduction
The fractional calculus is a discipline of mathematics that explores the extension of integrals and derivatives to non
integer orders. The subject got enormous attention of many researchers and mathematicians during the last and
present century. Many different fractional integrals and derivatives have been introduced over the past few decades
viz. Hadamard, Katugampola, Prabhakar fractional derivatives [1, 14, 20, 21]. These derivatives found plentiful
applications in distinct areas of science and engineering.

In mathematics, defining an analytical expression by a quantity q that generalizes a given expression and reduces
back to the original expression in the limit q→ 1− is known as quantum calculus. Euler first introduced the q-calculus
on the tracks of Newtons work of infinite series, but when Jackson [12] first defined and studied the q-integral, the
q-calculus became a link between mathematics and physics. The fractional q-calculus has been applied in the field of
non-linear mathematical analysis [2, 3]. In recent times, many researchers have analysed the concepts of q-calculus
and have brought new results which are available in literature [3, 4, 15]. Initiating from the q-extension of Cauchy’s
formula [5], Al-Salam initiated fixing the notion of fractional q-calculus. After this Al-Salam [6] and Agarwal [7] took
it forward by studying certain fractional q-integrals and q-derivatives. The fractional Riemann-Liouvilli q-integral
operator was introduced by Al-Salam [6], from that time a couple of q-analogues of Riemann operator were studied
in [4, 22]. Recently, with the eruption of research in fractional calculus, new developments were made in the theory
of fractional q-difference calculus, especially in q-analogue of the properties of fractional integrals and derivatives
namely q-Katugampola fractional integral and derivative [19]. The books [10, 15] cover various basic definitions and
properties of Quantum Calculus.

The structure of remaining paper is as follows. In Section 2, we provide definitions for use in the following
sections. In Section 3, we give definitions of Katugampola fractional q-integral and q-derivative in the space L1

q,p [a, b].
In Section 4, we obtain certain basic properties of the fractional q-integral and q-derivative under consideration in the
spaces defined in Section 2. In Section 5, we look at the existence and uniqueness of a solution to q-Cauchy problems
involving fractional Katugampola q-derivative. In Section 6, we get solution to fractional problems of q-Cauchy type
involving fractional Katugampola q-derivative using Adomian decomposition method, in terms of q-Mittag-Leffler
type functions.

2. Definitions and preliminaries
In order to be complete, the following definitions are mentioned.

Definition 2.1. For p ∈ R, 0 < |q| < 1, L1
q,p [a, b] is the Banach space of all the functions defined on [a, b] , satisfying

[4]
‖ f ‖ =

∫ b
atp−1| f (t)|dqt < ∞.

Definition 2.2. ACp,q[a, b] denotes a class of (p, q) absolutely continuous functions f defined on [a, b] such that [18]

f (x) = C +
∫ x

atp−1ϕ(t)dqt,
(
ϕ ∈ L1

q,p[a, b]
)
,
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where C = f (a) and ϕ(x) = pδq
(
f (x)

)
, pδn

q =
(
x1−pDq

)n
=

(
x1−p dq

dqx

)n
.

ACn
p,q[a, b] is the space of all the functions f for which, f , pδq( f ), . . . , (pδq)n−1( f ) are q-regular at a and

(pδq)n−1( f ) ∈ ACp,q[a, b].

In [18], f ∈ ACn
p,q[a, b] iff there exists ϕ ∈ L1

q,p [a, b] and

f (x) =
∑n−1

k=0Ck
(
xp − ap)(k)

qp +
([p]q)1−n

Γqp (n)

∫ x
atp−1(xp − (tq)p)(n−1)

qp ϕ(t)dqt, (2.1)

where, ϕ(x) = (pδq)n f (x) and Ck =
([p]q)−k

Γqp (k+1)
(
(pδq)k f

)
(a).

Definition 2.3. For 0 < a < b, the definite q-integral is given by [15] :

(J0,q f )(x) =
∫ b

0 f (x)dqx := b(1 − q)
∑∞

k=0 f (bqk)qk,

and
(Ja,q f )(x) =

∫ b
a f (x)dqx =

∫ b
0 f (x)dqx −

∫ a
0 f (x)dqx. (2.2)

The q-integral value for a function f defined over the [a, b] is given by [24]

(Ja,q f )(x) =
∫ x

a f (t)dqt = (1 − q)(x − a)
∑∞

k=0 f
(
aΦqk (x)

)
qk, x ∈ [a, b], (2.3)

where, aΦq(x) = qx + (1 − q)a.

Jackson q-integral for a > 0 and positive integer n, becomes [22]∫ a
aqn f (x)dqx = a(1 − q)

∑n−1
k=0 f (aqk)qk. (2.4)

For α > 0 and λ > −1, the following Jackson integral holds true [17]:
∫ x

atp−1(xp − (qt)p)(α−1)
qp

(
tp − ap)(λ)

qp dqt =
1

[p]q

(
Γqp (α)Γqp (λ + 1)
Γqp (α + λ + 1)

)[(
xp − ap)(α+λ)

qp

]
. (2.5)

The q-derivatives of the generalized expression (xp − yp)(α)
qp with respect to x and y are [17]:

xDq
(
xp − yp)(α)

qp = xp−1[pα]q
(
xp − yp)(α−1)

qp ,

yDq
(
xp − yp)(α)

qp = −yp−1[pα]q
(
xp − (yq)p)(α−1)

qp .
(2.6)

For 0 < |q| < 1 and a function f , the q-derivativeDq with respect to x, we have [25]

Dq
∫ x

a f (x, t)dqt =
∫ x

aDq f (x, t)dqt + f (qx, x), x > a. (2.7)

For α, β ∈ R and a, b ∈ C, we have the following identities [8, 23]:

(a ± b)(α+β)
q = (a ± b)(α)

q (a ± bqα)(β)
q and [ab]q = [a]qb [b]q.

A generalized form of result given in [22] can be written as:

(i)
(
a − b(qp)k)(α)

qp = aα
(
1 − b

a
(qp)k

)(α)

qp
, a, b, α ∈ R+, k, n ∈ N. (2.8)

(ii)
(
(qp)n − (qp)k)(α)

qp = 0, (k ≤ n), α ∈ R+, k, n ∈ N. (2.9)

If µ, α, β ∈ R+, then the following identity holds [19]

∑∞
n=0

(
1 − µ(qp)1−n)(α−1)

qp

(
1 − (qp)1+n)(β−1)

qp

(
1 − qp)(α−1)

qp

(
1 − qp)(β−1)

qp

(qp)nα =

(
1 − µqp)(α+β−1)

qp

(
1 − qp)(α+β−1)

qp

. (2.10)

Banach Fixed Point Theorem. If
(
X, d

)
is a nonempty complete metric space and T : X → X is the map with

d
(
T x1, T x2

) ≤ λd(x1, x2), for all x1, x2 ∈ X and 0 ≤ λ < 1.

Then there exist a unique fixed point x∗ ∈ X for the operator T [14].

For<(α) > 0, the q-Mittag-Leffler function is defined by [13]

qEα,β (λ, x − a) =
∑∞

k=0λ
k

(x − a)αk
q

Γq(αk + β)
. (2.11)
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3. Katugampola fractional q-integral and q-derivative
Definition 3.1. For α > 0, x > 0 and f : [a, b]→ C , the Katugampola fractional q-integral is defined as:

(pJα
a,q f

)
(x) =

(1 − q)α−1

(1 − qp)(α−1)
qp

∫ x
atp−1(xp − (tq)p)(α−1)

qp f (t)dqt.

=
([p]q)1−α

Γqp (α)

∫ x
atp−1(xp − (tq)p)(α−1)

qp f (t)dqt.

(3.1)

Definition 3.2. If n− 1 < α ≤ n and p > 0, then the corresponding Katugampola fractional q-derivative is defined as:

(pDα
a,q f

)
(x) =

(
x1−pDq

)n(pJn−α
a,q

)
f (x) =

([p]q)1−n+α

Γqp (n − α)
(
x1−pDq

)n∫ x
atp−1(xp − (tq)p)(n−α−1)

qp f (t)dqt.

(pD0
a,q f

)
(x) = f (x).

or we can write this as:
(pDα

a,q f
)
(x) = pδn

q
( pJn−α

a,q f
)
(x), (3.2)

provided that f ∈ L1
q,p[a, b] and pJn−α

a,q f ∈ ACn
p,q[a, b].

Remark 3.1.

1. The operators pJα
a,q f and pDα

a,q f are q-extensions of classical generalized fractional integral and derivative
operators introduced by Katugampola [16].

2. For a = 0, (3.1) and (3.2) gives generalized fractional q-integral and q-derivative introduced by Momenzadeh
and Mahmudov [19].

3. For p→ 1, (3.1) and (3.2) reduce to Riemann-Liouville fractional q-integral and q-derivative respectively [4].
4. For p→ 0+ and q→ 1−, (3.1) and (3.2) become Hadamard fractional integral and derivative respectively [14].

Theorem 3.1. For f ∈ L1
q,p[a, b] and Jn−α

a,q f ∈ AC(n)
p,q[a, b], where α > 0, n = bαc + 1, we have

pD−αa,q f (x) = pJα
a,q f (x) =

([p]q)1−α

Γqp (α)

∫ x
atp−1(xp − (tq)p)(α−1)

qp f (t)dqt, f or x ∈ (a, b]. (3.3)

Proof. From (3.2) we have,

pD−αa,q f (x) =
(
x1−p dq

dqx

)n(pJn+α
a,q

)
f (x).

=
(
x1−p dq

dqx

)n ×
{(

[p]q

)1−(n+α)

Γqp (n + α)

∫ x
atp−1(xp − (tq)p)((n+α)−1)

qp f (t)dqt
}
.

=
(
x1−p dq

dqx

)n−1 ×
{(

[p]q

)1−(n+α)

Γqp (n + α)

(
x1−p dq

dqx

)∫ x
atp−1(xp − (tq)p)((n+α)−1)

qp f (t)dqt
}
.

By setting φ(x, t) = tp−1(xp − (tq)p)((n+α)−1)
qp f (t), we get φ(qx, x) = 0 for all x ∈ (a, b]. So, in view (2.7), we can apply

the differentiation inside the integral and repeat the process n-times, we obtain (3.3). �

Remark 3.2. If p = 1, then from (3.3) we get the result with Riemann-Liouville fractional q-integral [4, p. 125].

Theorem 3.2. If α ∈ R+ and λ ∈ (−1,∞), then the images of power function (xp − ap)(λ)
qp under pJα

a,q and pDα
a,q are

given by
pJα

a,q
(
xp − ap)(λ)

qp =
1

([p]q)α

(
Γqp (λ + 1)

Γqp (α + λ + 1)

)(
xp − ap)(α+λ)

qp . (3.4)

and
pDα

a,q
(
xp − ap)(λ)

qp =

(
[p]q

)α
Γqp (λ + 1)

Γqp (λ − α + 1)
(
xp − ap)(λ−α)

qp . (3.5)

Proof. For λ , 0, we use (2.5) and Definition 3.1 to obtain (3.4). In view of repeated application of (2.6) (n-times),
(3.2) and (3.4), we arrive at (3.5). �
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Remark 3.3. In particular, for λ = 0, using (2.6) and q-integration by parts, we get

(pJα
a,q1

)
(x) =

([p]q)1−α

Γqp (α)

∫ x
atp−1(xp − (tq)p)(α−1)

qp dqt =
([p]q)1−α

Γqp (α)

∫ x
a

tDq

(
(xp − tp)(α)

qp

)

−[pα]q
dqt.

=
−1

([p]q)αΓqP (α + 1)

∫ x
atDq

(
(xp − tp)(α)

qp

)
dqt =

1
([p]q)αΓqP (α + 1)

(
xp − ap)(α)

qp . (3.6)

Now with the help of (3.6), we have

(pDα
a,q1

)
(x) =

(
[p]q

)α

Γqp (−α + 1)
(
xp − ap)(−α)

qp .

4. Certain properties of Katugampola fractional q-integral and q-derivative
Lemma 4.1. If α, β ≥ 0 and 0 < a < x < b, then we have∫ a

0

(
xp − (qt)p)(β−1)

qp

(pJα
a,q f

)
(t)dqt = 0.

Proof. Starting with the Definition 3.1, for x = aqn, we have

( pJα
a,q f

)
(aqn) =

([p]q)1−α

Γqp (α)

∫ aqn

a tp−1((aqn)p − (tq)p)(α−1)
qp f (t)dqt.

Now, on using (2.4), (2.8) and then (2.9), we have

( pJα
a,q f

)
(aqn) =

([p]q)1−α

Γqp (α)

{
−(ap)α(1 − q)

∑n−1
k=0

(
(qp)n − (qp)k+1)(α−1)

qp f (aqk)(qp)k
}

= 0.

Thus, by the Definition 2.3 of definite q-integral, we get the required result. �

Theorem 4.1. For α, β ∈ R+, if f ∈ L1
q,p[a, b], then the semi-group property for Katugampola fractional q-integral

pJα
a,q is given by (

pJβ
a,q

pJα
a,q f

)
(x) =

(
pJα+β

a,q f
)
(x), (0 < a < x < b). (4.1)

Proof. Using (2.2) with Lemma 4.1, we have
(

pJβ
a,q

pJα
a,q f

)
(x) =

([p]q)1−β

Γqp (β)

∫ x
0tp−1(xp − (tq)p)(β−1)

qp

(pJα
a,q f

)
(t)dqt.

Therefore,
(

pJβ
a,q

pJα
a,q f

)
(x) =

([p]q)1−β([p]q)1−α

Γqp (β)Γqp (α)

∫ x
0tp−1(xp − (tq)p)(β−1)

qp

{∫ t
0up−1(tp − (uq)p)(α−1)

qp f (u)dqu
}

dqt

− ([p]q)1−β([p]q)1−α

Γqp (β)Γqp (α)

∫ x
0tp−1(xp − (tq)p)(β−1)

qp

{∫ a
0up−1(tp − (uq)p)(α−1)

qp f (u)dqu
}

dqt.

Now applying the Proposition 3.5 of [19], i.e;
(

pJβ
0,q

pJα
0,q f

)
(x) =

(
pJα+β

0,q f
)
(x), we obtain

(
pJβ

a,q
pJα

a,q f
)
(x) =

(
pJα+β

0,q f
)
(x)

− ([p]q)1−α([p]q)1−β

Γqp (α)Γqp (β)

∫ x
0tp−1(xp − (tq)p)(β−1)

qp

{∫ a
0up−1(tp − (uq)p)(α−1)

qp f (u)dqu
}

dqt,

or
(

pJβ
a,q

pJα
a,q f

)
(x) =

(pJα+β
a,q f

)
(x) +

([p]q)1−(α+β)

Γqp (α + β)

∫ a
0tp−1(xp − (tq)p)(α+β−1)

qp f (t)dqt

− ([p]q)1−α([p]q)1−β

Γqp (α)Γqp (β)

∫ x
0tp−1(xp − (tq)p)(β−1)

qp

{∫ a
0up−1(tp − (uq)p)(α−1)

qp f (u)dqu
}

dqt,

or (
pJβ

a,q
pJα

a,q f
)
(x) =

(
pJα+β

a,q f
)
(x) + ap(1 − q)

∑∞
k=0Ak f (aqk)(qp)k,

where,

Ak =
([p]q)1−(α+β)

Γqp (α + β)
(
xp − (aqk+1)p)(α+β−1)

qp
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− ([p]q)1−α([p]q)1−β

Γqp (α)Γqp (β)
xp(1 − q)

∑∞
n=0

(
xp − (xqn+1)p)(β−1)

qp

(
(xqn)p − (aqk+1)p)(α−1)

qp (qp)n.

Now using (2.8), we have

Ak = ([p]q)1−(α+β)((1 − qp)xp)α+β−1

×
{(

1 − ( a
x )p(qp)k+1)(α+β−1)

qp

(
1 − qp)(α+β−1)

qp

−∑∞
n=0

(
1 − (qp)n+1)(β−1)

qp

(
1 − qp)(β−1)

qp

(
1 − ( a

x )p(qp)k+1−n)(α−1)
qp

(
1 − qp)(α−1)

qp

(qp)nα
}
.

Next, on using (2.10) with µ = (aqk/x)p, we get Ak = 0 for all k ∈ N, and the Theorem4.1 is proved. �

Remark 4.1.

1. For p→ 1, we have the semi-group property corresponding to Theorem 4.1 with Reimann-Liouville q-fractional
integral operator as studied by Rajkovic et.al. [22].

2. If p→ 0+ and q→ 1−, then we have the semi-group property with Hadamard fractional integral [14, p. 114].
3. Also if q→ 1−, then we have semi-group property with Riemann-Liouville fractional integral [14, p. 73].

Theorem 4.2. For n − 1 < α ≤ n, n ∈ N and 0 < |q| < 1, if f ∈ L1
q,p[a, b] and pJn−α

a,q f ∈ ACn
p,q[a, b], then

(pDα
a,q

pJα
a,q f

)
(x) = f (x), x ∈ (a, b]. (4.2)

Proof. In view of semi-group property (4.1), we get
(pDα

a,q
pJα

a,q f
)
(x) =

(
x1−pDq

)n(pJn−α
a,q

)(pJα
a,q f

)
(x).

=
(
x1−pDq

)n(pJn
a,q f )(x).

Now, by repeated application of (2.7) (n − 1)-times, we have
(
x1−pDq

)n(pJn
a,q f

)
(x) =

(
x1−pDq

) × 1
Γqp (1)

∫ x
atp−1 f (t)dqt.

Finally, again using (2.7), we reach at (4.2). �

Theorem 4.3. For n − 1 < α ≤ n, n ∈ N and 0 < |q| < 1, if f ∈ L1
q,p[a, b] and pJn−α

a,q f ∈ ACn
p,q[a, b], then

(pJα
a,q

pDα
a,q f

)
(x) = f (x) −∑n

k=1

([p]q)k−α(pD(α−k)
a,q f

)
(a)

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp , f or x ∈ (a, b]. (4.3)

In particular, we have

(pJα
a,q

pDα
a,q f

)
(x) = f (x) − ([p]q)1−α(pD(α−1)

a,q f
)
(a)

Γqp (α)
(
xp − ap)(α−1)

qp , f or 0 < α ≤ 1.

Proof. According to Definition 3.1 and Definition 3.2 of pJα
a,q and pDα

a,q, we have

(pJα
a,q

pDα
a,q f

)
(x) =

([p]q)1−α

Γqp (α)

∫ x
a

(
xp − (tq)p)(α−1)

qp

{
dq

dqt

(
pδn−1

q (pJn−α
a,q f )

)
(t)

}
dqt.

Now, q-integrating by parts repeatedly and using the fact
(
xp − xp)(α−n)

qp = 0, leads to

(pJα
a,q

pDα
a,q f

)
(x) = −∑n

k=1

([p]q)k−α(pδn−k
q (pJn−α

a,q f )
)
(a)

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp

+
([p]q)1−(α−n)

Γqp (α − n)

∫ x
atp−1(xp − (tq)p)((α−n)−1)

qp

{(
pδn−n

q (pJn−α
a,q f )

)
(t)

}
dqt.

Thus, on using the semi-group property (4.1), we get (4.3). �

Theorem 4.4. For β ≥ α ≥ 0, if f ∈ L1
q,p[a, b], then

pDα
a,q

pJβ
a,q f (x) = pJβ−α

a,q f (x), x ∈ (a, b]. (4.4)

Moreover, if pDα−β
a,q f (x) exists in (a, b] and α > β ≥ 0, then

pDα
a,q

pJβ
a,q f (x) = pDα−β

a,q f (x). (4.5)
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Proof. First suppose that β ≥ α ≥ 0. Now, if α = n, a positive integer then in view of (3.1), (3.2) and repeated
application of (2.7) n-times, we have

pDn
a,q

pJβ
a,q f (x) = pJβ−n

a,q f (x).

If n − 1 < α < n, then for β = α + (β − α), we have from (4.1) and (4.2) that
pDα

a,q
pJβ

a,q f (x) = pDα
a,q

pJα
a,q

pJβ−α
a,q f (x) = pJβ−α

a,q f (x).
Now, for α > β, let m − 1 < α ≤ m and n − 1 < (α − β) ≤ n, then n ≤ m. So, by applying (3.2) and (4.1), we have

pDα
a,q

pJβ
a,q f (x) = pδm

q
pJm−α

a,q
pJβ

a,q f (x) = pδm
q

pJm−n
a,q

pJn−α+β
a,q f (x).

= pDn
a,q

pJn−α+β
a,q f (x) = pδn

q
pJn−α+β

a,q f (x) = pDα−β
a,q f (x).

�

Theorem 4.5. For β > 0 and n − 1 < β ≤ n, n ∈ N, if f ∈ L1
q,p[a, b] and pJn−β

a,q f ∈ ACn
p,q[a, b], then for any α ≥ 0

( pJα
a,q

pDβ
a,q f

)
(x) = pD−α+β

a,q f (x)−∑n
k=1

([p]q)k−α( pD(β−k)
a,q f

)
(a)

Γqp (α − k + 1)
(
xp−ap)(α−k)

qp , f or x ∈ (a, b]. (4.6)

Proof. First if α ≥ β, then from (3.4), (4.1) and (4.3), we get( pJα
a,q

pDβ
a,q f

)
(x) = pJα−β

a,q
( pJβ

a,q
pDβ

a,q f
)
(x)

= pJα−β
a,q f (x) −∑n

k=1

([p]q)k−α( pD(β−k)
a,q f

)
(a)

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp , for all x ∈ (a, b].

Now when β > α, then according to (3.5), (4.3) and (4.4), we obtain( pJα
a,q

pDβ
a,q f

)
(x) = pDβ−α

a,q
( pJβ

a,q
pDβ

a,q f
)
(x)

= pDβ−α
a,q f (x) −∑n

k=1

([p]q)k−α( pD(β−k)
a,q f

)
(a)

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp , for all x ∈ (a, b].

Finally, we reach at (4.6), in view of the Theorem 3.1. �

Theorem 4.6. For n − 1 < β ≤ n, n ∈ N, if f ∈ L1
q,p[a, b] and pJn−β

a,q f ∈ ACn
p,q[a, b], then

( pDα
a,q

pDβ
a,q f

)
(x) = pDα+β

a,q f (x) −∑n
k=1

([p]q)k−α( pD(β−k)
a,q f

)
(a)

Γqp (−α − k + 1)
(
xp − ap)(−α−k)

qp , f or x ∈ (a, b], (4.7)

provided that pDα+β
a,q f (x) exists for any α > 0.

Proof. Using the relation
( pDα

a,q
pDβ

a,q f
)
(x) = pDα+β

a,q
( pJβ

a,q
pDβ

a,q f
)
(x) and also using (3.5), (4.3) and (4.5), we arrive

at (4.7). �

Theorem 4.7. For n − 1 < α ≤ n, n ∈ N, if f ∈ L1
q,p[a, b], pJn−α

a,q f ∈ ACn
p,q[a, b], then

( pDβ
a,q

pDα
a,q f

)
(x) = pDβ+α

a,q f (x) −∑n
j=1

([p]q) j+β
(

pD(α− j)
a,q f

)
(a)

Γqp (−β − j + 1)
(
xp − ap)(−β− j)

qp , f or x ∈ (a, b].

provided that pDα+β
a,q f (x) exists for any β > 0.

Proof. Same as Theorem 4.6. �

Remark 4.2. Taking p → 1 in Theorem 4.2 to Theorem 4.7, the corresponding results with Riemann-Liouville
fractional q-integral and q-derivative can be obtained [4].

Theorem 4.8. For α > 0, n = bαc + 1 andDp,q =
(
x1−pDq

)
. If f ∈ ACn

p,q[a, b], then

Dα
p,q f (x) =

∑n−1
k=0

([p]q)−k+α

Γqp (k − α + 1)
Dk

p,q f (a)
(
xp − ap)(k−α)

qp

+

(
[p]q

)1−n+α

Γqp (n − α)

∫ x
atp−1(xp − (tq)p)(n−α−1)

qp Dn
p,q f (t)dqt, (4.8)

for all x ∈ (a, b].
Also, Dα

p,q f (a) = 0⇐⇒ Dk
p,q f (a) = 0, (k = 0, 1 . . . , n − 1). (4.9)
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Proof. For f ∈ ACn
p,q[a, b], (2.1) gives

f (x) =
∑n−1

k=0
([p]q)−k

Γqp (k + 1)
Dk

p,q f (a)
(
xp − ap)(k)

qp + pJn
a,qDn

p,q f (x). (4.10)

Now, ApplyDα
p,q to both sides of (4.10) and then using (4.4), we arrive at (4.8) and (4.9) follows from (4.8). �

Remark 4.3. For a = 0, pJα
a,q and pDα

a,q reduce to generalized fractional q-integral and q-derivative by Momenzadeh
and Mahmudov [19]. All the properties in this section will also hold for pJα

0,q and pDα
0,q, few of them are proved in

[19].

5. Existence and uniqueness of solution to generalized fractional q-Cauchy type problem
This section is devoted to the study of existence and uniqueness of solutions to the generalized fractional q-Cauchy
type problem involving Katugampola fractional q-Derivative pDα

a,q, given by
(pDα

a,qy
)
(x) = f

(
x, y(x)

)
, 0 < a < x < b, α > 0, (5.1)

with initial conditions (pDα−k
a,q y

)
(a) = bk

(
bk ∈ R; k = 1, 2, . . . n; n = −[−α]

)
. (5.2)

Lemma 5.1. For α > 0 and f : (a, b]→ C, if f ∈ L1
q,p[a, b] then pJα

a,q f ∈ L1
q,p[a, b] and

∥∥∥pJα
a,q f

∥∥∥ ≤ M ‖ f ‖ . (5.3)

Proof. For the function f defined in the interval (a, b] and f ∈ L1
q,p[a, b], using Definition 3.1 and definition of q-

integral given by (2.3) for x ∈ (qa, a], gives

∥∥∥pJα
a,q f

∥∥∥ ≤
(
[p]q

)1−α

Γqp (α)
(1 − q)

∫ x
atp−1(t − a)

×∑∞
i=0qi(a + (t − a)qi)p−1

(
tp − ((

a + (t − a)qi)q)p
)(α−1)

qp

∣∣∣∣ f
(
a + (t − a)qi)∣∣∣∣dqt.

=

(
[p]q

)1−α

Γqp (α)
(1 − q)2(x − a)2∑∞

j=0
∑∞

i=0qi+ j(a + (x − a)q j)p−1q j(a + (x − a)qi+ j)p−1

×
((

a + (x − a)q j)p − ((
a + (x − a)qi+ j)q)p

)(α−1)

qp

∣∣∣∣ f
(
a + (x − a)qi+ j)∣∣∣∣.

Using series manipulation by taking i→ i-j, we have

∥∥∥pJα
a,q f

∥∥∥ ≤
(
[p]q

)1−α

Γqp (α)
(1 − q)2(x − a)2∑∞

i=0qi(a + (x − a)qi)p−1
∣∣∣∣ f

(
a + (x − a)qi)∣∣∣∣

×∑i
j=0

(
a + (x − a)q j)p−1q j

((
a + (x − a)q j)p − ((

a + (x − a)qi)q)p
)(α−1)

qp
.

Now, let
(
[p]q

)1−α

Γqp (α)
(1 − q)(x − a)

∑i
j=0

(
a + (x − a)q j)p−1q j

((
a + (x − a)q j)p − ((

a + (x − a)qi)q)p
)(α−1)

qp
≤ M.

Then, ∥∥∥pJα
a,q f

∥∥∥ ≤ (1 − q)(x − a)M
∑∞

i=0qi(a + (x − a)qi)p−1
∣∣∣∣ f

(
a + (x − a)qi)∣∣∣∣.

In view of (2.3), we arrive at the desired result (5.3). �

Remark 5.1. In particular for p = 1, a = 0, we arrive at the same result for Riemann Liouville fractional q-integral
proved in [4].

Theorem 5.1. For α > 0, n − 1 < α ≤ n, if G is an open set in C and f : (a, b] ×G → R with f (x, y) ∈ L1
q,p[a, b] for

any y ∈ G. If y ∈ L1
q,p[a, b], then y(x) is solution to the generalized fractional q-Cauchy type problem (5.1)-(5.2) if and

only if y(x) is a solution to q-integral equation

y(x) =
∑n

k=1
bk

(
[p]q

)k−α

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp +

(
[p]q

)1−α

Γqp (α)

∫ x
atp−1(xp − (tq)p)(α−1)

qp f
(
x, y(t)

)
dqt. (5.4)

107



Proof. First, let y(x) satisfies generalized fractional q-Cauchy type problem. Then pDα
a,qy ∈ L1

q,p[a, b] and therefore
Theorem 4.3 gives

pJα
a,q

pDα
a,qy(x) = y(x) −∑n

k=1
bk([p]q)k−α

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp , f or x ∈ (a, b]. (5.5)

Also
pJα

a,q
pDα

a,qy(x) = pJα
a,q f

(
x, y(x)

)
=

(
[p]q

)1−α

Γqp (α)

∫ x
atp−1(xp − (tq)p)(α−1)

qp f
(
x, y(t)

)
dqt, for x ∈ (a, b]. (5.6)

Hence the necessity condition is proved on equating (5.5) and (5.6).

In sufficient part y(x) satisfies (5.4) for all x ∈ (a, b], therefore Lemma 5.1 gives, y(x) ∈ L1
q,p[a, b]. Here,

pJn−α
a,q y(x) =

∑n
k=1

bk
(
[p]q

)k−n

Γqp (n − k + 1)
(
xp − ap)(n−k)

qp +

(
[p]q

)1−n

Γqp (n)

∫ x
atp−1(xp − (tq)p)(n−1)

qp f
(
x, y(t)

)
dqt, (5.7)

for all x ∈ (a, b]. Hence from (2.1), pJn−α
a,q y(x) ∈ ACn

p,q[a, b]. Therefore pDα
a,qy(x) exits for all x ∈ (a, b]. Now

pDα
a,q

(
[p]q

)k−α

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp = pδn
q

pJn−α
a,q

(
[p]q

)k−α

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp .

= pδn
q

(
[p]q

)k−n

Γqp (n − k + 1)
(
xp − ap)(n−k)

qp = 0, k = 1, 2, . . . , n. (5.8)

Applying pDα
a,q on both the sides of (5.4), we have

pDα
a,qy(x) =

(pDα
a,q

pJα
a,q

)
f
(
x, y(x)

)
= f

(
x, y(x)

)
, a < x < b.

Now, using Theorem 4.7, gives(pDα
a,qy

)
(a) = lim

j→∞
(pDα

a,qy
)
(a + xq j).

y(x) = bk + lim
j→∞

pJα
a,q f

(
a + xq j, y(a + xq j)

)
. (5.9)

y(x) = bk + lim
j→∞

(
[p]q

)1−k

Γqp (k)

∫ a+xq j

a tp−1(xp − (tq)p)(k−1)
qp f

(
x, y(t)

)
dqt. (5.10)

For f (x, y) ∈ L1
q,p[a, b] the limit in (5.10) becomes zero. �

Theorem 5.2. For α > 0, n = αp and G an open set in C, unique solution to generalized fractional q-Cauchy problem
(5.1)-(5.2) in L1

q,p[a, a + h] exist, if function f : (a, b] ×G → R satisfy:

1. f (x, y) ∈ L1
q,p[a, b], for any y ∈ G.

2. For all x ∈ (a, b] and y1, y2 ∈ G, there exists a constant A > 0 such that∣∣∣ f (x, y1(x)) − f
(
x, y2(x)

)∣∣∣ ≤ A
∣∣∣y1(x) − y2(x)

∣∣∣.
and 0 < h ≤ b − a satisfies

A
(
[p]q

)1−α(1 − q)h
Γqp (α)

∑i
j=0

(
a + hq j)p−1q j

((
a + hq j)p − ((

a + hqi)q)p
)(α−1)

qp
< 1.

Proof. A solution of the generalized fractional q-Cauchy problem (5.1)-(5.2) in L1
q,p[a, a + h] is a fixed point of T :

L1
q,p[a, a + h]→ L1

q,p[a, a + h], as by Theorem 5.1, is equivalent to the Volterra q-integral equation (5.4). The operator
T is given by

Ty(x) =
∑n

k=1
bk

(
[p]q

)k−α

Γqp (α − k + 1)
(
xp − ap)(α−k)

qp +

(
[p]q

)1−α

Γqp (α)

∫ x
atp−1(xp − (tq)p)(α−1)

qp f
(
x, y(t)

)
dqt.

Therefore, we will prove the theorem by proving, for y ∈ L1
q,p[a, a + h], Ty ∈ L1

q,p[a, a + h] and T as contraction
mapping.

From Lemma 5.1, if y ∈ L1
q,p[a, a + h], then Ty ∈ L1

q,p[a, a + h].
Also, (5.3) gives ∥∥∥Ty1 − Ty2

∥∥∥ ≤ A
∥∥∥∥pJα

a,q(y1 − y2)
∥∥∥∥ ≤ w

∥∥∥y1 − y2
∥∥∥,

where, w = A
(
[p]q

)1−α
(1−q)h

Γqp (α)
∑i

j=0
(
a + hq j)p−1q j

((
a + hq j)p − ((

a + hqi)q)p
)(α−1)

qp
< 1.

Hence a unique y∗ ∈ L1
q,p[a, a + h] such that Ty∗ = y∗ exists, from the Banach fixed point theorem. On applying the

sufficient part of Theorem 5.1, the result is obtained . �
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6. Solution of generalized fractional q-Cauchy type problems involving Katugampola fractional q-derivative
using Adomian decomposition method

Now in this section, we solve fractional q-Cauchy type problems by using the Adomian decomposition method (ADM)
[9, 11] to understand the working. Let us first remember pivotal idea of Adomian decomposition method. ADM is a
type of algorithm, gleaned from a method of decomposition, to formulate the approximate and even explicit solution for
linear and non-linear operator equations with apt intial data. It merges the approach of ordinary or partial differentail
equations or systems of such equations, into novel basic method that is applicable to both of them viz intial and
boundary value problems.

Problem 6.1. Consider the following fractional q-Cauchy type problem:(
pDα

a,qy
)

(x) − λy(x) = f (x) (a < x ≤ b; n − 1 < α ≤ n; n ∈ N; λ ∈ R), (6.1)

with the initial condition (
pDα− j

a,q y
)

(a) = b j
(
b j ∈ R; j = 1, 2, . . . , n; n = −[−α]

)
. (6.2)

Solution. Applying pJα
a,q on both sides of (6.1) and then using Theorem 4.3 and initial condition, we get

y(x) =
∑n

j=1
b j

(
[p]q

) j−α

Γqp (α − j + 1)
(
xp − ap)(α− j)

qp + λ pJα
a,qy(x) + pJα

a,q f (x).

Decomposition of y(x) in the form of the sum of an infinite number of components can be written as

y(x) =
∑∞

k=0yk(x). (6.3)

We apply Adomian decomposition method to obtain components recursively as

y0 =
∑n

j=1
b j

(
[p]q

) j−α

Γqp (α − j + 1)
(
xp − ap)(α− j)

qp + pJα
a,q f (x), (6.4)

and
yk+1(x) = λ pJα

a,qyk(x). (6.5)

We obtain the components, by using (3.4) in recursive formulae (6.4) and (6.5)

yk(x) =
∑n

j=1b j
λk([p]q

) j−kα−α

Γqp (kα + α − j + 1)
(
xp − ap)(kα+α− j)

qp

+
∫ x

atp−1
λk

(
[p]q

)1−kα−α

Γqp (kα + α)
(xp − (tq)p)(kα+α−1)

qp f (t)dqt. (6.6)

We have the solution of the Cauchy problem (6.1), by using (6.6) in (6.3) as

y(x) =
∑n

j=1b j
∑∞

k=0
λk([p]q

) j−kα−α

Γqp (kα + α − j + 1)
(
xp − ap)(kα+α− j)

qp

+
∫ x

atp−1 f (t)
∑∞

k=0
λk([p]q

)1−kα−α

Γqp (kα + α)
(
xp − (tq)p)(kα+α−1)

qp dqt. (6.7)

In view of the definition of q-Mittag-Leffler function (2.11), with q→ qp, we have the solution

y(x) =
∑n

j=1b j

(
xp − ap)(α− j)

qp

(
[p]q

)α− j qp Eα,α− j+1

[
λ(

[p]q
)α ,

(
xp − apqp(α− j))

]

+
∫ x

a

(
xp − (tq)p)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − (tqα)p)

]
f (t)
t1−p dqt. (6.8)

In particular, the unique solution y(x) of homogeneous generalized fractional q-Cauchy type problem(
pDα

a,qy
)

(x) − λy(x) = 0 (a < x ≤ b;α > 0; λ ∈ R), (6.9)

with the initial conditions (6.2), in the space L1
q,p[a, a + h] is given by

y(x) =
∑n

j=1b j

(
xp − ap)(α− j)

qp

(
[p]q

)α− j qp Eα,α− j+1

[
λ(

[p]q
)α ,

(
xp − apqp(α− j))

]
.

�
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Following are the two examples based on this problem.

Example 6.1. The fractional q-Cauchy type problem(
pDα

a,qy
)

(x) − λy(x) = f (x),
(

pD(α−1)
a,q y

)
(a) = b (b ∈ R), (6.10)

with 0 < α < 1 and λ ∈ R has the solution

y(x) = b

(
xp − ap)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − apqp(α−1))

]

+
∫ x

a

(
xp − (tq)p)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − (tqα)p)

]
f (t)
t1−p dqt.

While the solution to the problem(
pDα

a,qy
)

(x) − λy(x) = 0,
(

pD(α−1)
a,q y

)
(a) = b (b ∈ R), (6.11)

takes the form

y(x) = b

(
xp − ap)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − apqp(α−1))

]
.

In particular, the fractional q-Cauchy type problem(
pD1/2

a,q y
)

(x) − λy(x) = f (x),
(

pD(−1/2)
a,q y

)
(a) = b (b ∈ R), (6.12)

has the solution given by

y(x) = b
(
[p]q

) 1
2

(
xp − ap)( 1

2 )
qp

qp E 1
2 ,

1
2

[
λ

(
[p]q

) 1
2

,
(
xp − apqp( 1

2 ))
]

+
∫ x

a

(
[p]q

) 1
2

(
xp − (tq)p)( 1

2 )
qp

qp E 1
2 ,

1
2

[
λ

(
[p]q

) 1
2

,
(
xp − (tq

1
2 )p)

]
f (t)
t1−p dqt.

The solution to the problem (
pD1/2

a,q y
)

(x) − λy(x) = 0,
(

pD(−1/2)
a,q y

)
(a) = b (b ∈ R), (6.13)

is given by

y(x) = b
(
[p]q

) 1
2

(
xp − ap)( 1

2 )
qp

qp E 1
2 ,

1
2

[
λ

(
[p]q

) 1
2

,
(
xp − apqp( 1

2 ))
]
.

Example 6.2. Let b, d ∈ R. The fractional q -Cauchy type problem(
pDα

a,qy
)

(x) − λy(x) = f (x),
(

pD(α−1)
a,q y

)
(a) = b,

(
pD(α−2)

a,q y
)

(a) = d, (6.14)
with 1 < α < 2 and λ ∈ R has the solution

y(x) = b

(
xp − ap)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − apqp(α−1))

]

+ d

(
xp − ap)(α−2)

qp

(
[p]q

)α−2 qp Eα,α−1

[
λ(

[p]q
)α ,

(
xp − apqp(α−2))

]

+
∫ x

a

(
xp − (tq)p)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − (tqα)p)

]
f (t)
t1−p dqt.

In particular, the solution to the problem(
pDα

a,qy
)

(x) − λy(x) = 0,
(

pD(α−1)
a,q y

)
(a) = b,

(
pD(α−2)

a,q y
)

(a) = d, (6.15)
with 1 < α < 2 and λ ∈ R has the form

y(x) = b

(
xp − ap)(α−1)

qp

(
[p]q

)α−1 qp Eα,α

[
λ(

[p]q
)α ,

(
xp − apqp(α−1))

]

+ d

(
xp − ap)(α−2)

qp

(
[p]q

)α−2 qp Eα,α−1

[
λ(

[p]q
)α ,

(
xp − apqp(α−2))

]
.
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7. Conclusion
In this paper, we have studied Katugampola fractional q-integral and q-derivative in the space L1

q,p [a, b] which are
q-extensions of Katugampola fractional q-integral and q-derivative defined by [17]. Then we derived existence
and uniqueness of solution to generalized fractional q-Cauchy type problems involving Katugampola fractional q-
derivative and obtained their solutions using Adomian decomposition method.
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Abstract

In this paper we have considered an economic production quantity model in which demand is assumed as a
function of selling price with unsteady deterioration rate. We have considered variable production rate and the
shortages are not allowed. The effect of inflation rate is also taken. Under this condition a profit function is formulated
and suitable numerical examples or sensitivity analysis also provided by changing some parameters of the system.
2020 Mathematical Sciences Classification: 90B05, 90B10, 90B15, 90B30.
Keywords and Phrases: EPQ model, demand, selling price, inflation, deteriorating items, variable production rate,
optimal function.

1. Introduction
In the industrial area there is a misunderstanding that production and inventory control are different functions. Though
inventory control refers to the process of ordering, storing, using them in the factory. With production management
one can control costs, manpower, raw material, warehousing the products and other capacity restriction and production
control helps to produce items in plant. On the other hand inventory control decides the future demand, maximizing
the total profit amount from minimizing the total investment with customer satisfaction. But in reality production and
inventory control are dependent factors as production is upheld by inventories or are themselves the result of inventory.
But in a particular case when items are purchased and resold then both of the terms have different meanings. Demand
and deterioration rate are the main assumptions in the basic economic production model and in the EOQ model.

During the past few years the deterioration rate with different demand in the inventory management has received
much attention from authors/researchers. For smooth and sufficient running of business affairs demand plays an
important role in every part of an inventory control system. Demand may depend on selling price as in the case of such
products like vegetables, fruits, and other food items which we use on a daily basis deteriorate and spoil during a short
period so deterioration cannot be ignored for adequate inventory to fulfill the demands. Selling price and demand are
dependent on each other as increment in selling price reduces demand and lower selling price has the reverse effect.

Patel[4] developed an economic production model for variable production rate and demand as an exponential
function of time. Yadav and Aggarwal[16] created an inventory model with selling price dependent demand under
inflation without shortage. An inventory model for deteriorating goods with time dependent quadratic demand and time
varying holding cost with partial backlogging studied by Sharma and Yadav [12]. Shaikh and Patel [14] constructed
an economic production model with demand is stock and price dependent and shortage are not allowed. Sharma
and Sharma [13] analyzed a model by taking demand is a function of selling price and deterioration is taken as a
quadratic function of time. Saha and Chakrabarti [8] studied an economic production model for variable production
rate and probabilistic demand is assumed. Ghare and Schrader[2] represented an inventory model for exponentially
decaying inventory with constant production. Kumar, Kundu and Goswami [3] produced an inventory model by
taking finite production rate, fuzzy demand and deterioration rate. Samantha and Roy[10] worked on an inventory
model for deteriorating items by assuming two types of production rate with shortage. Sana and chaudhary [11]
established a production model in an inexact process of production in a volume flexible inventory model. Saha and
Chakrabati [9] constructed a Supply Chain Inventory Model for Deteriorating Items with Price Dependent Demand
and Shortage under Fuzzy Environment .Teng and Chang [15]developed an economic production model with stock
and selling price dependent demand of deteriorating items. Patra and Mondal [6]represented a production model
by taking fuzzy demand and variable production rate and time dependent selling price. Patel and Patel[5] considered
demand dependent production rate and varying holding cost for deteriorating items in EPQ model. Cohen[1] explained
an inventory model with known demand for joint pricing and ordering policy for exponentially decaying inventory.
Preeti and Sharma [7] developed an inventory model for deteriorating items with power pattern demand and partial
backlogging with time dependent holding cost.
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In this paper we develop a production model for deteriorating items with unsteady deterioration rate with demand
is an exponential function of selling price under the effect of inflation rate in the particular time period. Numerical
examples are also provided to illustrate the model.

2. Notations and Assumptions
The model is considered under the following assumptions and notations

1. Customer demand rate which is an exponentially function of time depend on selling price of the item as
D(p(t)) = a − b(p(t)) where a is fixed demand; a, b > 0 and a >> b.

2. P(t) represents the selling price of the item at per unit time t and consider as P(t) = pert where p is the selling
price at time t = 0.

3. r is the inflation rate which is taken as constant during the cycle.
4. θt = Deterioration rate per unit time.
5. There is no replacement and repair of deteriorated items throughout the total time period of the inventory.
6. π(t) = initial level of inventory at any instant time ′t′.
7. Q1 = Inventory measure at timet1.
8. Q2 = Inventory measure at timet2 .
9. Shortages are not allowed.

10. T = total cycle time length of an inventory.
11. Z =total profit amount.
12. K is a variable production rate consider during cycle as

K =

{
k00 ≤ t ≤ t1

k0e−µ(t−t1)t1 ≤ t ≤ T

}
where µ is constant (0 < µ < 1). (2.1)

3. The Mathematical Model
The differential equations governing the system over the period (0,T ) are given below. Here the production rate k0 is
constant in the interval (0, t1) after that it shown increment during the interval (t1, t2).

d(π1)
d(t)

= k0 − (a − bpert)0 ≤ t ≤ t1, (3.1)

d(π2)
d(t)

+ θt.π2 = k0e−µ(t−t1) − (a − bpert)t1 ≤ t ≤ t2, (3.2)

d(π3)
d(t)

+ θt.π3 = −(a − bpert)t2 ≤ t ≤ T, (3.3)

with the initial conditions
π(0) = 0, π(t1) = Q1, π(t2) = Q2, π(T ) = 0. (3.4)

Now solutions of the differential equation by adjusting the constant of integration and initial conditions

π1(t) = (k0 − a)t + bp/r(ert − 1), (3.5)

π2(t) = k0t − at + bpt − k0t1 + at1 − bpt1 + µk0t1t + Q1 +
t2

2
(−µk0 + bpr − Q1θ)

+
t3

3
(−k0θ − bpθ + aθ) +

t4

8
(+µk0θ − bprθ) +

t2
1

2
(Q1θ − (6)µk0 − bpr) +

t3
1

6
(−k0θ + aθ − bpθ)

+
t4
1

8
(
−µk0θ

3
− bprθ) +

k0θt1t2

2
− aθt1t2

2
+

bpθt1t2

2
− Q1θ

2t2
1t2

4
+
µk0θt2

1t2

4
+

bprθt2
1t

4
− µk0θt1t3

3
, (3.6)

π3(t) = −a(t − θt
3

3
) + aT (1 +

θT 2

6
) + bp(t +

rt2

2
− θt

3

3
− rθt4

8
)

− bp(T +
rT 2

2
+
θT 3

6
+

rθT 4

8
) − aθTt2

2
+

bpθTt2

2
+

bprθT 2t2

4
. (3.7)

Using π(t1) = Q1, π(t2) = Q2 in equations (3.5), (3.6), we obtain

Q1 = (k0 − a)t1 +
bpert

r
− bp

r
, (3.8)

Q2 = −a(t − θt
3
2

3
) + aT (1 +

θT 2

6
) + bp(t +

rt2
2

2
− θt

3
2

3
− rθt4

2

8
)
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− bp(T +
rT 2

2
+
θT 3

6
+

rθT 4

8
) − aθTt2

2

2
+

bpθTt2
2

2
+

bprθT 2t2
2

4
. (3.9)

Now again Putting t =t2 in the solution of differential equation (3.6) and (3.7), we get

π2(t2) = k0t2 − at2 + bpt2 − k0t1 + at1 − bpt1 + µk0t1t2 + Q1 +
t2
2

2
(−µk0 + bpr − Q1θ)

+
t3
2

3
(−k0θ − bpθ + aθ) +

t4
2

8
(+µk0θ − bprθ) +

t2
1

2
(Q1θ − µk0 − bpr) +

t3
1

6
(−k0θ + aθ − bpθ)

+
t4
1

8
(
−µk0θ

3
− bprθ) +

k0θt1t2
2

2
− aθt1t2

2

2
+

bpθt1t2
2

2
− Q1θ

2t2
1t2

2

4
+
µk0θt2

1t2
2

4
+

bprθt2
1t2

4
− µk0θt1t3

2

3
, (3.10)

π3(t2) = −a(t2−
θt3

2

3
)+aT (1+

θT 2

6
)+bp(t2+

rt2
2

2
− θt

3
2

3
− rθt4

2

8
)−bp(T +

rT 2

2
+
θT 3

6
+

rθT 4

8
)− aθTt2

2

2
+

bpθTt2
2

2
+

bprθT 2t2
2

4
.

(3.11)
So by comparing equation (3.9) and (3.10), we have

t2 =
(a − bp)T
k0(1 + µt1)

, (3.12)

π2.1(t2) =
1
8

(+µk0 − bpr)θt4 +
1
3

(−k0θ − bpθ + aθ)t3 +
1
2

(−µk0 + bpr)t2 +
t2t2

1

4
(−µk0θ + bprθ)

+ (k0 − a + bp + µk0t1)t +
t4
1

8
(
−µk0θ

3
− bprθ) +

t3
1

3
(k0θ − aθ + bpθ) +

t2
1

2
(µk0 − bpr), (3.13)

(we are not considering higher power of θ here).
The different costs of the economic production model are as

Set up cost = A, (3.14)

Holding cost = Ch[
∫ t1

0 π1(t)dt +
∫ t2

t1
π2.1(t)dt +

∫ T
0 π3(t)dt], (3.15)

Deterioration rate = Cd[
∫ t2

t1
θtπ2(t)dt +

∫ T
t2
θtπ3(t)dt], (3.16)

S R = Cs[
∫ T

0 (a − bpert)dt], (3.17)

Development cost = αk0. (3.18)

Now the total profit ′Z′ during a cycle as following

Z = 1/T (S R − S ec − HC − DC − αk0). (3.19)

Now substituting the value from equation (3.13), (3.14), (3.15), (3.16), (3.17) in equation (3.18), we get the total
profit per unit in the term of t1 , t2, T. By putting the value t1 = vT and t2 =

(a−bp)T
k0(1+νt1) in equation (3.18), we will get the

total profit expression in terms of T .
For optimal solution we differentiate the equation with respect to T and then equate it to zero as expressed below:

∂Z(T )
∂T

= 0, (3.20)

which will satisfy the condition for optimal solution

∂2Z(T )
∂T

≥ 0. (3.21)

4. Numerical Example
We have considered the values given below of the variable to illustrate the proposed model: a = 50, r = 0.01, b =

1.9, p = 4, k0 = 100, µ = 0.04, v = 0.10, θ = 0.07, Ch = 7.5, Cd = 30, Cs = 50, A = 100, α = 0.1 by substituting
these values in equation (3.20) we get the optimal cycle length T = 0.97265 and total profit (Z) = 1906.600 .the
graphical representation between profit Z and T is also given which show the concavity of the profit function.
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Figure 4.1

5. Sensitivity Analysis
We have studied the sensitivity analysis by changing one parameter as ±20% and ±10% and keep the rest parameter
fixed on the basis of above mentioned values in the deterministic model.

Table 5.1: Sensitivity analysis associated with the model for various parameters

Parameter % change T Profit (Z)
a +20% T=0.9609375 2404.100

+10% T=0.966796875 2154.300
-10% T=0.9921875 1661.000
-20% T=1.028125 1417.800

θ +20% T=0.953125 1904.200
+10% T=0.96484375 1905.400
-10% T=0.986328125 1907.800
-20% T=0.99609375 1909.800

Ch +20% T=0.921875 1889.400
+10% T=0.9453125 1897.800
-10% T=1.009375 1915.700
-20% T=1.05625 1925.100

Cs +20% T=0.974609375 2330.600
+10% T=0.97265625 2118.600
-10% T=0.9765625 1694.600
-20% T=0.97632815 1482.600

k0 +20% T=0.9296875 1892.800
+10% T=0.9453125 1899.100
-10% T=1.00625 1915.800
-20% T=1.03125 1927.600

From the above analysis, the following observation can be made as when parameter a and Cs increase or decrease
the profit show increment or decrement respectively. From the above table we can see that when we change k0 decrease
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to increase the total profit decrease and the other factors are less effective.

6. Conclusion
In the present paper we have developed an economic production model for deteriorating items considering demand
as an exponential function of selling price with effect of inflation rate. The variable production rate is assumed with
unsteady deterioration rate. The sensitivity analysis with respect to parameters has been provided which shows the
increment/decrement in the value of profit. The proposed model can be extended for different demand rates and
deterioration.

Acknowledgement. The authors would like to express their gratitude to the editor and referees for their comment
and valuable suggestion that improved the quality of the article.
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[18] Ganesh Kumar, Sunita and Ramesh Inaniyan, Cubical polynomial time function demand rate and pareto type

perishable rate based inventory model with permissible delay in payments under partial backlogging, Jñānābha,
50(1) (2020), 115-133.

117
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Abstract

This paper deals with the derivation of the Saigo’s fractional q-integral operator of the basic analogue of the Fox’s
H-function defined by Saxena, Modi and Kalla [6]. In the present paper, an application of the Saigo’s fractional
q-integral operator to various q-integral of Fox’s H-function have been investigated. Some special cases have also
been deduced.
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1. Introduction
Saxena, Modi and Kalla [6] introduced a basic analogue of the H-function in terms of the Mellin-Barnes type basic
contour integral in the following form:

Hm,n
M,N

[
(a, A)
(b, B) x; q

]
= Hm,n

M,N

[
(a1, A1), ..., (aM , AM)
(b1, B1), ..., (bN , BN) x; q

]
, (1.1)

=
1

2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

πxs

sin πs
dqs, (1.2)

where
G(qλ) =

∏∞
n=0

1
(1 − qλ+n)

=
1

(qλ; q)∞
, (1.3)

and 0 ≤ m ≤ N; 0 ≤ n ≤ M; A j and B j are all positive integers. The contour of integration Ω is a line parallel to
Re(ws) = 0, in such a way that all of the poles of G(qb j−B j s) ; 1 ≤ j ≤ m are to the right and those of G(q1−a j+A j s) ;
1 ≤ j ≤ n to the left of Ω. The integral converges if Re

{
s log(x) − log sin πs

}
< 0 large values of |s| on the contour,

that is if
∣∣∣∣
{
arg(x) − w2w−1

1 − log |x|
}∣∣∣∣ < π where 0 < |q| < 1, log q = −w = −(w1 + iw2) , w1,w2 being real.

For A j = 1( j = 1, ...,M) and B j = 1( j = 1, ...,N) the definition (1.1) reduces to the q-analogue of the Meijer’s
G-function due to Saxena et.al [6].

Gm,n
M,N

[
a1, ..., aM

b1, ..., bN
x; q

]
=

1
2πi

∫
Ω

∏m
j=1G(qb j−s)

∏n
j=1G(q1−a j+s)

∏N
j=m+1G(q1−b j+s)

∏M
j=n+1G(qa j−s)G(q1−s)

πxs

sin πs
dqs, (1.4)

where 0 ≤ m ≤ N ; 0 ≤ n ≤ M and Re
{
s log− log sin πs

}
< 0.

Saxena and Kumar [7] introduced the basic analogue of Jµ(x), Yµ(x), Kµ(x), Hµ(x) in terms of Hq(.)− function as
follows:

Jµ(x; q) = {G(q)}2 H1,0
0,3


−

( µ2 , 1), (−µ2 , 1), (1, 1)

x2(1 − q)2

4
; q

 , (1.5)

where Jµ(x; q) denotes the q-analogue of Bessel function of first kind Jµ(x).

Yµ(x; q) = {G(q)}2 H2,0
1,4



(−µ−1
2 , 1)

( µ2 , 1), (−µ2 , 1), (−µ−1
2 , 1), (1, 1)

x2(1 − q)2

4
; q

 , (1.6)

where Yµ(x; q) denotes the q-analogue of Bessel function Yµ(x).

Kµ(x; q) = (1 − q) H2,0
0,3


−

( µ2 , 1), (−µ2 , 1), (1, 1)

x2(1 − q)2

4
; q

 , (1.7)
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where Kµ(x; q) denotes the q-analogue of Bessel function of third kind Kµ(x).

Hµ(x; q) =

(
1 − q

2

)1−α
H3,1

1,4


(α+1

2 , 1)

( µ2 , 1), (−µ2 , 1), (α+1
2 , 1), (1, 1)

x2(1 − q)2

4
; q

 , (1.8)

where Hµ(x; q) denotes the q-analogue of Struve function Hµ(x).
The object of the present paper is to evalute Saigo’s fractional q-integral operator involving the q-analogue of

Meijer’s G-function or Fox’s H-function. Some special cases have also been derived as the applications of the main
results.

2. Definitions
To explore our work, we use following definitions:

Definition 2.1. For λ ∈ C and 0 < |q| < 1, the q-shifted factorial is defined as

(λ; q)n =
∏n−1

k=0(1 − λqk) =
(λ; q)∞

(λqn; q)∞
; n ∈ N and (λ; q)0 = 1, (2.1)

in term of q-gamma function

(λ; q)n =
Γq(λ + n)

Γq(λ)
(1 − q)n; n > 0. (2.2)

Definition 2.2. The q-analogue of the power function is defined and denoted as

(a − b)n = an
(

b
a

; q
)

n
= an ∏∞

k=0


1 − ( b

a )qk

1 − ( b
a )qk+n

 ; (a , 0). (2.3)

Definition 2.3. The q-gamma function is defined as

Γq(λ) =
G(qλ)
G(q)

(1 − q)1−λ = (1 − q)λ−1(1 − q)1−λ; λ , 0,−1,−2, ..., (2.4)

where G(qλ) =
1

(qλ; q)∞
.

Definition 2.4. The q-integral of a function is defined [1] as∫ x
0 f (t)dqt = x(1 − q)

∑∞
k=0qk f (xqk), (2.5)

∫ ∞
x f (t)dqt = x(1 − q)

∑∞
k=1q−k f (xq−k). (2.6)

Definition 2.5. The q-bionomial series is defined [1] as

1Φ0

[
λ
− ; x; q

]
=

∑∞
n=0

(λ; q)n

(q; q)n
xn =

(λx; q)∞
(x; q)∞

. (2.7)

Definition 2.6. Heine’s q-analogue of Gauss summation theorem is given by Gasper and Rahman [1] is defined as

2Φ1

[
qa, qb

qc ; qc−a−b; q
]

=
∑∞

n=0
(qa; q)n(qb; q)n

(qc; q)n(q; q)n

(
qc−a−b

)n
=

Γq(c)Γq(c − a − b)
Γq(c − a)Γq(c − b)

, (2.8)

Definition 2.7. The q-analogue of Saigo’s fractional integral operator, given by Garg and Chanchlani [2] is defined
as for Re(α) > 0 and β, γ ∈ C

Iα,β,γq f (x) =
x−β−1

Γq(α)

∫ x
0

( tq
x

; q
)

α−1

∑∞
m=0

(qα+β; q)m(q−γ; q)m

(qα; q)m(q; q)m
q(γ−β)m (−1)m q

−


m
2

 ( t
x
− 1

)

m
f (t)dqt, (2.9)

and

Kα,β,γ
q f (x) =

q−α(α+1)/2−β

Γq(α)

∫ ∞
x

( x
t

; q
)

α−1
t−β−1∑∞

m=0
(qα+β; q)m(q−γ; q)m

(qα; q)m(q; q)m
q(γ−β)m (−1)m q

−


m
2


(

x
qt
− 1

)

m
f
(
tq1−α) dqt.

(2.10)

119



3. Main Results
In this section we shall evalute the Saigo’s fractional q-integrals involving the basic analogue of Fox’s H-functions.
Further the applications of Saigo’s fractional q-integrals have been deduced as special cases of the main results. The
main results are presented in the following theorems.

Theorem 3.1. If the equation (1.1) satisfied then for Re(α) > 0 and β, γ ∈ C, the Saigo’s fractional q-integral of Fox’s
Hq(.)− function is given by the following formula:

Iα,β,γq Hm,n
M,N

[
(a, A)
(b, B) wxλ; q

]
= x−β (1 − q)α Hm,n+2

M+1,N+2

[
(a, A), (0, λ), (β − γ, λ)

(b, B), (β, λ), (−α − γ, λ) wxλ; q
]
. (3.1)

Proof. Using the eq.(2.5), the Saigo’s fractional q-integral operator given by Garg and Chanchlani [2] reduces to

Iα,β,γq f (x) = x−β (1 − q)α
∑∞

m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
q(γ−β+1)m∑∞

k=0qk (qα+m; q)k

(q; q)k
f (xqk+m), (3.2)

⇒ Iα,β,γq Hm,n
M,N

[
(a, A)
(b, B) wxλ; q

]

= x−β (1 − q)α
∑∞

m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
q(γ−β+1)m∑∞

k=0qk (qα+m; q)k

(q; q)k
Hm,n

M,N

[
(a, A)
(b, B) wxλq(k+m)λ; q

]
, (3.3)

= x−β (1 − q)α
∑∞

m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
q(γ−β+1)m∑∞

k=0qk (qα+m; q)k

(q; q)k

× 1
2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

π
(
wxλqλk+λm

)s

sin πs
dqs. (3.4)

On interchaging the order of summation and integration, then by using eq.(2.7),
R.H.S. of (3.4) = x−β (1 − q)α

∑∞
m=0

(qα+β;q)m(q−γ;q)m
(q;q)m

q(γ−β+1)m

× 1
2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

π
(
wxλqλm

)s

(
qλs+1; q

)
α+m sin πs

dqs. (3.5)

Again interchanging the order of summation and integration, we get

R.H.S. of (3.4) =
x−β(1−q)α

2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)∏N

j=m+1G(q1−b j+B j s)
∏M

j=n+1G(qa j−A j s)G(q1−s)

π(wxλ)s

sin πs

×∑∞m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
(
qλs+1; q

)
α+m

q(γ+λs−β+1)mdqs. (3.6)

Also, we have result due to Garg and Chanchlani [2, eq.(2.11) and eq.(2.14), p.173],{
(1 − q)α

∑∞
m=0

(qα+β; q)m(q−η; q)m

(q; q)m
(
q1+µ; q

)
α+m

q(η+µ−β+1)m =
Γq(µ + 1)Γq(µ − β + η + 1)

Γq(µ − β + 1)Γq(µ + α + η + 1)

}
. (3.7)

Now making an appeal to (2.4) and (3.6), we derive

x−β

2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

π
(
wxλ

)s

sin πs
G(qλs+1)G(qλs−β+γ+1)

G(qλs−β+1)G(qλs+α+γ+1)
(1 − q)α dqs, (3.8)

= x−β (1 − q)α ×
{

Hm,n+2
M+1,N+2

[
(a, A), (0, λ), (β − γ, λ)

(b, B), (β, λ), (−α − γ, λ) wxλ; q
]}
, (3.9)

which completes the proof of the Theorem 3.1 . �

Special Case 3.1. On taking β = 0 in the Theorem 3.1 and using the result Iα,0,γq f (x) = Iγ,αq f (x) due to Garg and
Chanchlani [2, eq.(2.9), p.173]

⇒ Iα,0,γq Hm,n
M,N

[
(a, A)
(b, B) wxλ; q

]
= Iγ,αq Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
, (3.10)

Putting β = 0 in eq. (3.8) and replacing γ by u , α by v

Iu,v
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= (1 − q)v Hm,n+1

M+1,N+1

[
(a, A), (−u, λ)

(b, B), (−v − u, λ) wxλ; q
]
, (3.11)
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which is the Kober fractional q-integral of the Hq(.)− function, obtained by Saxena, Yadav, Purohit and Kalla, [8,
eq.(24), (2005), p.4]
Special Case 3.2. On taking β = −α in the Theorem 3.1 and using the result Iα,−α,γq f (x) = Iαq f (x) due to Garg and
Chanchlani [2, eq.(2.7), p.173], we derive

Iα,−α,γq Hm,n
M,N

[
(a, A)
(b, B) wxλ; q

]
= Iαq Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
, (3.12)

Putting β = −α in eq. (3.8) and replacing α by u, we obtain

Iu
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= xu (1 − q)u Hm,n+1

M+1,N+1

[
(a, A), (0, λ)

(b, B), (−u, λ) wxλ; q
]
, (3.13)

which is the Riemann-Liouville fractional q-integral of the Hq(.)− function, obtained by Kalla, Yadav and Purohit [3,
eq.(2.1), (2005), p.317].

Theorem 3.2. If the equation (1.1) satisfied then for Re(α) > 0 and β, γ ∈ C, the Saigo’s fractional q-integral of Fox’s
Hq(.)− function is given by the following formula:

Kα,β,γ
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= x−βq−α(α+1)/2 (1 − q)α

×Hm+2,n
M+2,N+1

[
(a, A), (β, λ), (γ, λ)

(b, B), (0, λ), (α + β + γ, λ) wxλq−αλ; q
]
, (3.14)

Proof. Using the eq.(2.6), the Saigo’s fractional q-integral operator given by Garg and Chanchlani [2] reduces to

Kα,β,γ
q f (x) = x−βq−α(α+1)/2 (1 − q)α

∑∞
m=0

(qα+β; q)m(q−γ; q)m

(q; q)m
qγm∑∞

k=0qβk (qα+m; q)k

(q; q)k
f (xq−α−k−m) (3.15)

⇒ Kα,β,γ
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= x−βq−α(α+1)/2 (1 − q)α

∑∞
m=0

(qα+β; q)m(q−γ; q)m

(q; q)m
qγm

×∑∞k=0qβk (qα+m; q)k

(q; q)k
Hm,n

M,N

[
(a, A)
(b, B) wxλq(−α−k−m)λ; q

]
(3.16)

= x−βq−α(α+1)/2 (1 − q)α
∑∞

m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
qγm∑∞

k=0qβk (qα+m; q)k

(q; q)k

× 1
2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

π
(
wxλq(−α−k−m)λ

)s

sin πs
dqs. (3.17)

On interchaging the order of summation and integration, then by using (2.7), the above expression (3.17) reduces
to

x−βq−α(α+1)/2 (1 − q)α
∑∞

m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
qγm

× 1
2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

π
(
wxλ

)s
q(−αλ−mλ)s

(
qβ−λs; q

)
α+m sin πs

dqs. (3.18)

Again interchanging the order of summation and integration, (3.18) gives

x−βq−α(α+1)/2 (1 − q)α

2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

×∑∞m=0
(qα+β; q)m(q−γ; q)m

(q; q)m
(
qβ−λs; q

)
α+m

q(γ−λs)m
π
(
wxλ

)s
q−αλs

sin πs
dqs, (3.19)

Also, we have result due to Garg and Chanchlani [2, eq.(2.11) and eq.(2.14), p.173],
{

(1 − q)α
∑∞

m=0
(qα+β; q)m(q−η; q)m

(q; q)m
(
q1+µ; q

)
α+m

q(η+µ−β+1)m =
Γq(µ + 1)Γq(µ − β + η + 1)

Γq(µ − β + 1)Γq(µ + α + η + 1)

}
. (3.20)
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Now using (2.4) and above result (3.19), we get

x−βq−α(α+1)/2

2πi

∫
Ω

∏m
j=1G(qb j−B j s)

∏n
j=1G(q1−a j+A j s)

∏N
j=m+1G(q1−b j+B j s)

∏M
j=n+1G(qa j−A j s)G(q1−s)

×G(qβ−λs)G(qγ−λs) (1 − q)α

G(q−λs)G(qα+β+γ−λs)

π
(
wxλ

)s
q−αλs

sin πs
dqs, (3.21)

= x−βq−α(α+1)/2 (1 − q)α Hm+2,n
M+2,N+1

[
(a, A), (β, λ), (γ, λ)

(b, B), (0, λ), (α + β + γ, λ) wxλq−αλ; q
]
, (3.22)

which completes the proof of the Theorem 3.2 . �

Special Case 3.3. On taking β = 0 in the Theorem 3.2 and using the result Kα,0,γ
q f (x) = q−α(α+1)/2Kγ,α

q f (x) due to
Garg and Chanchlani [2, eq.(2.10), p.173], we derive

Kα,0,γ
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= q−α(α+1)/2Kγ,α

q Hm,n
M,N

[
(a, A)
(b, B) wxλ; q

]
. (3.23)

Putting β = 0 in eq. (3.21) and replacing γ by u and α by v , we obtain

Ku,v
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= (1 − q)v Hm+1,n

M+1,N+1

[
(a, A), (u, λ)

(b, B), (v + u, λ) wxλq−vλ; q
]
, (3.24)

which is the Weyl fractional q-integral of the Hq(.)− function, obtained by Yadav, Purohit and Kalla [10, eq.(2.2),
(2008), p.136]
Special Case 3.4. On taking β = −α in the Theorem 3.2 and using the result Kα,−α,γ

q f (x) = Kα
q f (x) due to Garg and

Chanchlani [2, eq.(2.8), p.173], we get

Kα,−α,γ
q Hm,n

M,N

[
(a, A)
(b, B) wxλ; q

]
= Kα

q Hm,n
M,N

[
(a, A)
(b, B) wxλ; q

]
. (3.25)

Putting β = −α in eq. (3.21) and replacing α by u with w = λ = 1, we obtain

Ku
q Hm,n

M,N

[
(a, A)
(b, B) x; q

]
= xuq−u(u+1)/2 (1 − q)u Hm+1,n

M+1,N+1

[
(a, A), (−u, 1)
(b, B), (0, 1) xq−u; q

]
, (3.26)

which is the Weyl fractional q-integral of the Hq(.)− function, obtained by Yadav and Purohit [9, eq.(25), (2006),
p.239].

4. Conclusion
The Theorems 3.1 and 3.2, in this paper are believed to be new contribution to the theory of fractional q-calculus and
generalized special functions. The certain basic q-integrals of the Hq(.)-function, obtained as the application of the
main results.
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Abstract

Gajić and Rakoc̆ević proved a common fixed point theorem for non-self mappings on a Takahashi convex metric
space. In this paper, we prove a common fixed point theorem on a pair of non-self mappings obeying specified
conditions on a convex partial metric space. We also provide an illustrative example on the use of the theorem.
2020 Mathematical Sciences Classification: 54H25.
Keywords and Phrases: Convex partial metric space, common fixed point, non-self mapping, coincidentally
commuting.

1. Introduction and Preliminaries
Metric spaces were introduced by Fréchet [4] in 1906, and provide a procedure of measuring distances between points
in a set. Partial metric spaces were originally developed by Mathews [14] in 1994 as part of the study of denotational
semantics of dataflow networks. They are a generalization of metric spaces. While in metric spaces the distance
between a point and itsef is always equal to zero, in partial metric spaces this distance can be a positive real number.
Partial metric spaces have now found vast applications in computer, information and biological sciences [5].

Mathews [14] also proved that the Banach Fixed Point Theorem [2] for complete metric spaces extends to complete
partial metric spaces. Since then, researchers have proved fixed point theorems for various types of contraction
mappings that apply to partial metric spaces. Many of these involve self mappings. In this study, we propose a
fixed point theorem for a pair of non-self mappings in a complete partial metric space. In so doing, we extend a
theorem by Gajić and Rakoc̆ević [6].

In recent years, researchers extended Banach fixed point theorem [2] in different directions. Imdad and Kumar [8]
proved some fixed point theorems for two pairs of non-self mappings by employing Boyd and Wong type contractive
conditions and generalized some recent results due to Zaheer and Abdalla. Kumar [10] proved a fixed point theorem for
a pair of compatible F-contraction maps in an ordered complete partial metric spaces and generalized several results
in literature. Recently in 2021, Kumar and Sholastica [11] generalized some fixed point theorems for multivalued F-
contractions in partial metric spaces. Several authors generalized and extended existing results in partial metric space
and one can see for more details [12, 13, 15, 16, 17, 20] and the references therein.

We now introduce those results which will be of use in this paper.

Definition 1.1 ([14]). A partial metric on a non-empty set X is a mapping p : X × X → [0,∞) such that for all
x, y, z ∈ X,
P0: 0 ≤ p(x, x) ≤ p(x, y),
P1: x = y if and only if p(x, x) = p(x, y) = p(y, y),
P2: p(x, y) = p(y, x) and
P3: p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
A pair (X, p) is said to be a partial metric space.

From Definition 1.1, we deduce that for all x, y, z in a partial metric space (X, p), we have:
(i) p(x, y) = 0 implies x = y, (1.1)

(ii) p(x, y) ≤ p(x, z) + p(z, y). (1.2)

Proof. If p(x, y) = 0, then p(x, x) = 0 because 0 ≤ p(x, x) ≤ p(x, y) from P0. Similarly, p(x, y) = 0 implies p(y, y) = 0
because 0 ≤ p(y, y) ≤ p(x, y). Hence p(x, y) = 0 implies p(x, x) = p(x, y) = p(y, y) = 0. From P1 this means that
x = y.

From P3, we infer that
p(x, y) ≤ p(x, z) + p(z, y).

�
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As an example, let X = R+ and let p : R+ × R+ → R+, p(x, y) = max{x, y}. Then (X, p) is a partial metric space.
Each partial metric p on X generates a T0 topology τp on X with a base being the family of open balls {Bp(x, ε) :

x ∈ X, ε > 0} where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in a partial metric space (X, p) converges to x ∈ X if and only if

p(x, x) = lim
n→∞ p(x, xn).

Definition 1.2 ([14]). (i) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if and only if

lim
n,m→∞ p(xn, xm) < +∞.

(ii) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges to a point x ∈ X
such that

p(x, x) = lim
n,m→∞ p(xn, xm).

We define 0-complete partial metric spaces.

Definition 1.3 ([14]).
(i) A sequence {xn} in a partial metric space (X, p) is called 0-Cauchy if limn,m→∞ p(xn, xm) = 0.
(ii) A partial metric space (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in X converges, with

respect to τp, to a point x ∈ X such that p(x, x) = 0.

Lemma 1.1 ([14]). If p is a partial metric on X, then the mapping
ps : X × X → [0,+∞) given by

ps(x, y) = 2p(x, y) − p(x, x) − p(y, y)

is a metric.

In this paper we will denote ps as the metric derived from the partial metric p.

Lemma 1.2 ([14]).
(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).
(ii) (X, p) is complete if and only if (X, ps) is complete. Furthermore limn→∞ p(xn, x) = 0 if and only if

p(x, x) = limn→∞ p(xn, x) = limn,m→∞ p(xn, xm).

We define a convex partial metric space.

Definition 1.4 ([18]). Let (X, p) be a partial metric space and I = [0, 1] be the closed unit interval. A mapping
W : X × X × I → X is said to be a convex structure on X if for all (x, y, t) ∈ X × X × I,

p (u,W(x, y, t)) ≤ tp(u, x) + (1 − t)p(u, y)

for every u ∈ X. A partial metric space (X, p), together with the convex structure W, is called a convex partial metric
space.

If (X, p) is a convex partial metric space, then for every x, y ∈ X, we term

seg[x, y] := {W(x, y, t) : t ∈ [0, 1]}. (1.3)

In this study, we will use the following properties for a convex partial metric space with convex structure W.

Lemma 1.3. Let x, y ∈ X where (X, p) is a convex partial metric space with convex structure W. Let w ∈ seg[x, y].
Then for all u ∈ X, we have

(i) p(u,w) ≤ max{p(u, x), p(u, y)},
(ii) p(x,w) ≤ p(x, y).

Proof. Suppose Γ = max{p(u, x), p(u, y)}. Applying Definition 1.4, we have

p(u,w) ≤ tp(u, x) + (1 − t)p(u, y)
≤ tΓ + (1 − t)Γ
= Γ

= max{p(u, x), p(u, y)}.
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We have proved Lemma 1.3 (i).
Now let us set x = u in Lemma 1.3 (i). We get

p(x,w) ≤ max{p(x, x), p(x, y)}
= p(x, y), from P0 of Definition 1.1.

�

Definition 1.5 ([3]).
(i) A subset B of a partial metric space (X, p) is said to be bounded if there is a positive number M such that

p(x, y) ≤ M for all x, y ∈ B.
(ii) The diameter of a bounded set B is defined as

diam(B) = sup
u,v∈B
{p(u, v)}.

Let f : C → X be a mapping, where C ⊆ X. We say that f is a self mapping if C = X, otherwise f is called a
non-self mapping. If there is an element x ∈ C such that f x = x, we say that x is a fixed point of f in X.

Suppose we have two mappings f , g : C → X, with C ⊆ X. Let there be x ∈ C such that f x = gx = w. We say that
x is a coincidence point of f and g in X. If x = w, then we call x a common fixed point of f and g in X.

Suppose we have two mappings f , g : C → X with C ⊆ X. We say f and g are coincidentally commuting if for all
x ∈ C, we have

f x = gx⇒ f gx = g f x.

In this paper, we aim to extend the following theorem by Gajić and
Rakoc̆ević [6] which proves the existence of a common fixed point for non-self mappings in context of metric spaces
under specified conditions.

Theorem 1.1 ([6]). Let (X, d) be a complete Takahashi convex metric space with convex structure W which is
continuous in the third variable. Let C be a non-empty closed subset of X and ∂C be the boundary of C. Let
f , g : C → X and suppose ∂C , ∅. Let us assume that f and g satisfy the following conditions:

(i) For every x, y ∈ C, d(gx, gy) ≤ Mω(x, y) where Mω(x, y) =

max{ω1[d( f x, f y)], ω2[d( f x, gx)], ω3[d( f y, gy)], ω4[d( f x, gy)],
ω5[d(gx, f y]}, ωi : [0,+∞)→ [0,+∞), i ∈ {1, 2, 3, 4, 5} is a
non-decreasing semicontinuous function from the right, such that
ωi(r) < r for r > 0, and limr→∞[r − ωi(r)] = +∞,

(ii) ∂C ⊆ f (C),
(iii) g(C) ∩C ⊂ f (C),
(iv) f x ∈ ∂C ⇒ gx ∈ C and
(v) f (C) is closed in X.

Then there exists a coincidence point v in C. Moreover, if { f , g} are coincidentally commuting, then v remains a
unique common fixed point of f and g.

We now proceed to the main results.

2. Main Results
This paper seeks to extend Theorem 1.1 to partial metric spaces as follows:

Theorem 2.1. Let (X, p) be a complete convex partial metric space with convex structure W which is continuous in
the third variable. Let C be a non-empty subset of X with a non-empty boundary ∂C. Let g, f : C → X satisfy the
following conditions:
(i) For every x, y ∈ C, p(gx, gy) ≤ Mω(x, y) where Mω(x, y) =

max{ω1[p( f x, f y)], ω2[p( f x, gx)], ω3[p( f y, gy)], ω4[p( f x, gy)], ω5[p(gx, f y)]}
and ωi : [0,+∞) → [0,+∞), i ∈ {1, 2, 3, 4, 5} is a non-decreasing semi-continuous function from the right, such that
ωi(r) < r for r > 0,
(ii) ∂C ⊆ f (C),
(iii) g(C) ∩C ⊂ f (C),
(iv) f x ∈ ∂C implies gx ∈ C and
(v) f (C) is 0-complete in (X, p).
Then there exists a coincidence point v of f and g in C. Moreover, if { f , g} are coincidentally commuting, then v
remains a unique common fixed point of f and g and p(v, v) = 0.
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Proof. Commencing with an arbitrary point z ∈ ∂C, we construct a sequence {xn} of points in C as follows:
From assumption (ii), we can choose a point x0 ∈ C such that f x0 = z. From (iv), we have gx0 ∈ C. According to

(iii), we choose x1 ∈ C such that f x1 = gx0. We locate gx1.
We consider two scenarios. If gx1 ∈ C, then, using (iii), we can choose x2 ∈ C such that f x2 = gx1. On the other

end, if gx1 < C, because W is continuous in the third variable, there is λ1 ∈ [0, 1] such that
W(gx0, gx1, λ1) ∈ seg[gx0, gx1] ∩ ∂C. As W(gx0, gx1, λ1) ∈ ∂C, by (ii), we can choose x2 ∈ C such that f x2 =

W(gx0, gx1, λ1).
We proceed inductively as follows. If gxn ∈ C, then by assumption (iii), we can choose xn+1 ∈ C such that

f xn+1 = gxn.
If however gxn < C and n ≥ 1, it means there is a λn ∈ (0, 1) such that W(gxn−1, gxn, λn) ∈ seg[gxn−1, gxn] ∩ ∂C

and hence, by (ii), we can choose xn+1 ∈ C such that

f xn+1 = W(g(xn−1, gxn, λn) ∈ ∂C.

We prove that, for n ≥ 1,
gxn , f xn+1 ⇒ gxn−1 = f xn. (2.1)

Suppose we have gxn−1 , f xn. Then we have f xn ∈ ∂C, which by assumption (iv) means gxn ∈ C. This implies,
by the construction of the sequence, that gxn = f xn+1, which is a contradiction. Thus we have proved (2.1).

We now prove that the sequences { f xn} and {gxn} are bounded, that is, we want to show that the set

A =


∞⋃

i=0

f xi

 ∪

∞⋃

i=0

gxi



is bounded.
For each n ≥ 1, we set

An =


n−1⋃

i=0

f xi

 ∪


n−1⋃

i=0

gxi

 .

Let αn = diam(An). We shall now prove that

αn ≤ max{p( f x0, gx j), 0 ≤ j ≤ n − 1}. (2.2)

Let us consider the case where αn = 0, n ≥ 1. If this is the case, then we have for 0 ≤ i, j ≤ n − 1

diam


n−1⋃

i=0

f xi

 ∪


n−1⋃

i=0

gxi

 = 0,

implying
max{p( f xi, f x j)} = max{p( f xi, gx j)} = max{p(gxi, gx j)} = 0. (2.3)

Employing Equation (1.1), the equation (2.3) implies

f xi = gxi = f x0, (2.4)

for all 0 ≤ i ≤ n − 1. In particular, we have
f x0 = gx0, (2.5)

making x0 a coincidence point of f and g. If f and g are also coincidentally commuting, it means that at the coincidence
point x0, we have

f gx0 = g f x0 = ggx0. (2.6)

Applying the assumption, we have for some t ∈ {1, 4, 5},
p(ggx0, gx0)) ≤ Mω(gx0, x0)

= max{(ω1[p( f gx0, f x0)], ω2[p( f gx0, ggx0)],
ω3[p( f x0, gx0)], ω4[p( f gx0, gx0)], ω5[p(ggx0, f x0)])}

= max{(ω1[p(ggx0, gx0)], ω2[p(ggx0, ggx0)],
ω3[p(gx0, gx0)], ω4[p(ggx0, gx0)], ω5[p(ggx0, gx0)])}

= ωt[p(ggx0, gx0)]
< p(ggx0, gx0), for p(ggx0, gx0) > 0
⇒ p(ggx0, gx0) = 0
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⇒ ggx0 = gx0 [from Equation (1.1)],

making v = gx0 a fixed point of g. From (2.5) and (2.6),
v = gx0 = f x0 is also a fixed point of f , making v a common fixed point of f and g.

We show that v is unique. Suppose v′ is also a common fixed point. Then for some s ∈ {1, 4, 5}, we have

p(v′, v) = p(gu, gv) ≤ Mω(v′, v)
= max{(ω1[p( f v′, f v)], ω2[p( f v′, gv′)], ω3[p( f v, gv)],

ω4[p( f v′, gv)], ω5[p(gv′, f v)])}
= max{(ω1[p(v′, v)], ω2[p(v′, v′)], ω3[p(v, v)],

ω4[p(v′, v)], ω5[p(v′, v)])}
= ωs[p(v′, v)]
< p(u, v) for p(v′, v) > 0
⇒ p(v′, v) = 0
⇒ v′ = v.

Hence, when αn = 0, v = f x0 is the unique common fixed point of f and g and p(v, v) = 0.
Let us consider the situation where αn > 0. To prove (2.2), we consider the following cases.

Case 1. Consider the case where αn = p( f xi, gx j) for some 0 ≤ i, j ≤ n − 1.
(1.i) If i ≥ 1 and f xi = gxi−1, we have for some s ∈ {1, 2, . . . , 5}

αn = p( f xi, gx j) = p(gxi−1, gx j) ≤ Mω(xi−1, x j) ≤ ωs(αn) < αn

which is a contradiction. Hence, i = 0.
(1.ii) If however i ≥ 1 and f xi , gxi−1, it implies i ≥ 2

and f xi ∈ seg[gxi−2, gxi−1]. Hence, by Lemma 1.3 (i), we have

p( f xi, gx j) = p(gx j, f xi) ≤ max{p(gxi−2, gx j), p(gxi−1, gx j)}.
Hence

αn = p( f xi, gx j)
≤ max{p(gxi−2, gx j), p(gxi−1, gx j)}
≤ max{Mω(xi−2, x j),Mω(xi−1, x j)}
≤ ωt(αn)
< αn,

which is a contradiction. Therefore, i = 0.
Case 2. Consider αn = p( f xi, f x j) for some 0 ≤ i, j ≤ n − 1.

(2.i) If f x j = gx j−1, we have αn = p( f xi, gx j−1) and this case reduces to Case (1.i) implying i = 0.
(2.ii) If f x j , gx j−1 then as in Case (1.ii), we have j ≥ 2 and

f x j ∈ seg[gx j−2, gx j−1]. By Lemma 1.3 (i), we have

p( f xi, f x j) ≤ max{p(gx j−2, f xi), p(gx j−1, f xi)}. (2.7)

This means αn ≤ p(gx j−1, f xi) = p( f xi, gx j−1) for some 0 ≤ i, j ≤ n − 1, which leads to i = 0 according to the
argument in Case 1.
Case 3. Consider αn = p(gxi, gx j) for some 0 ≤ i, j ≤ n − 1. This case is not possible (see Case (1.i)).

Hence, we have proved (2.2).
Now for some 0 ≤ j ≤ n − 1 and some t ∈ {1, 2, . . . , 5}, we have

αn ≤ p( f x0, gx j)
≤ p( f x0, gx0) + p(gx0, gx j), from (1.2)
≤ p( f x0, gx0) + Mω(x0, x j)
≤ p( f x0, gx0) + ωt(αn)

implying αn − ωt(αn) ≤ p( f x0, gx0). (2.8)

By (i) in the assumption, there is r0 ≥ 0 such that for each s ∈ {1, 2, . . . , 5}, we have
r − ωs(r) > p( f x0, gx0) for r > r0.
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There is a subsequence {an} of {αn} and s ∈ {1, 2, . . . , 5} such that for each n, we have
an − ωs(an) ≤ p( f x0, gx0).
Thus, by (2.8), we have
an ≤ r0, n = 1, 2, . . .
and evidently
α = lim an = diam(A) ≤ r0.
This shows that the sequences { f xi} and {gxi} are bounded.
Now let us show that { f xi} and {gxi} are Cauchy sequences.
Let

Bn =


∞⋃

i=n

f xi

 ∪

∞⋃

i=n

gxi

 , n ≥ 2.

By (2.2), we have βn = diam{Bn} ≤ sup j≥n p( f xn, gx j). If f xn = gxn−1 then by Case (1.i) for some j ≥ n and some
r ∈ {1, 2, . . . , 5}, we have

βn = p( f xn, gx j) = p(gxn−1, gx j) ≤ ωr(βn−1). (2.9)

If f xn , gxn−1 , it means f xn ∈ seg{gxn−2, gxn−1}. Hence, as in Case (1.ii) for some j ≥ n and some s ∈ {1, 2, . . . , 5},
we have

βn = p( f xn, gx j)
= p(gx j, f xn)
≤ max{p(gxn−2, gx j), p(gxn−1, gx j)}
≤ ωs(βn−2). (2.10)

We note that βn ≥ βn+1 for each n. Hence, by (2.9) and (2.10), for all n ≥ 2 and t ∈ {1, 2, . . . , 5}, we have

βn ≤ ωt(βn−2). (2.11)

Let us set
lim
n→∞ βn = β. (2.12)

We claim β = 0. If β > 0, taking n→ ∞ in (2.11), we get β ≤ ωt(β) < β which is a contradiction. Hence, β = 0.
Consider a subsequence {gxnk } of {gxn}, for which gxnk = f xnk+1. From (2.9), we have

βn = p( f xn, gx j) for some j ≥ n

⇒ lim
n→∞ βn = β = lim

n, j→∞
p( f xn, gx j), for j ≥ n

= lim
n,k→∞

p( f xn, gxnk ), for nk ≥ n

= lim
n,k→∞

p( f xn, f xnk+1), for nk ≥ n

⇒ lim
n,m→∞ p( f xn, f xm) = 0.

Thus we have proved that { f xn} ⊂ C is a Cauchy sequence in (X, p), according to Lemma 1.2. From (iv) in the
assumption, f (C) is 0-complete. According to Definition 1.3, this means there is v ∈ fC such that

lim
n,m→∞ p( f xm, f xn) = lim

n→∞ p(v, f xn) = p(v, v) = 0. (2.13)

We have shown that f xn → v. Consider the subsequence {gnk } again. We have

gxnk = f xnk+1

⇒ lim
k→∞

gxnk+1 = lim
k→∞

f xnk+1 = v

⇒ gxn → v.

Hence, we can write
lim
n→∞ f xn = lim

n→∞ gxn = v. (2.14)

As v ∈ f (C), we can find w ∈ C such that f w = v. We show that w is a coincidence point of f and g.
Consider the following:

p(gw, gxn) ≤ max{ω1[p( f w, f xn)], ω2[p( f w, gw)], ω3[p( f xn, gxn)],
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ω4[p( f w, gxn)], ω5[p(gw, f xn)]}.
Taking n→ ∞ and noting that f w = v, we get for some s ∈ {1, 2, 3, 4, 5}

p(gw, v) ≤ max{ω1[p(v, v)], ω2[p(v, gw)], ω3[p(v, v)], ω4[p(v, v)],
ω5[p(gw, v)]}

≤ ωs p(gw, v)
< p(gw, v) for p(gw, v) > 0,
⇒ p(gw, v) = 0
⇒ gw = v.

As f w = gw = v, w is a coincidence point of f and g. If f and g are coincidentally commuting, it means
f (gw) = g( f w) implying f v = gv.
We consider the following:

p(gv, v) = p(gv, gw)
≤ max{ω1[p( f v, f w)], ω2[p( f v, gv)], ω3[p( f w, gw)],

ω4[p( f v, gw)], ω5[p(gv, f w)]}
= max{ω1[p(gv, v)], ω2[p(gv, gv)], ω3[p(v, v)],

ω4[p(gv, v)], ω5[p(gv, v)]}
≤ ωt[p(gv, v)] for some t ∈ {1, 2, 3, 4, 5},
< p(gv, v) for p(gv, v) > 0,
⇒ p(gv, v) = 0
⇒ gv = v = f v,

making v a common fixed point of f and g.
We show that v is unique. Suppose v′ is also a common fixed point of f and g. Then we have

p(gv, gv′) = p(v, v′)
≤ max{ω1[p( f v, f v′)], ω2[p( f v, gv)], ω3[p( f v′, gv′)],

ω4[p( f v, gv′)], ω5[p(gv, f v′)]}
= max{ω1[p(v, v′)], ω2[p(v, v)], ω3[p(v′, v′)],

ω4[p(v, v′)], ω5[p(v, v′)]}
≤ ωt[(p(v, v′)] for some t ∈ {1, 2, 3, 4, 5},
< p(v, v′) for p(v, v′) > 0,
⇒ p(v, v′) = 0
⇒ v = v′.

This shows v is unique and p(v, v) = 0. �

Remark 2.1. If (X, d) is a metric space with convex structure W, we get Theorem 1.1 by Gajić and Rakoc̆ević [6].

If we set f = I, the identity mapping, in Theorem 2.1, we get the following corollary.

Corollary 2.1. Let (X, p) be a complete convex partial metric space with convex structure W which is continuous in
the third variable. Let C be a non-empty subset of X with a non-empty boundary ∂C. Let g : C → X satisfy the
following conditions:
(i) For every x, y ∈ C, p(gx, gy) ≤ Mω(x, y) where Mω(x, y)
= max{ω1[p(x, y)], ω2[p(x, gx)], ω3[p(y, gy)], ω4[p(x, gy)], ω5[p(gx, y)]}
and ωi : [0,+∞) → [0,+∞), i ∈ {1, 2, 3, 4, 5} is a non-decreasing semicontinuous function from the right, such that
ωi(r) < r for r > 0,
(ii) x ∈ ∂C ⇒ gx ∈ C.

Then there exists a point v ∈ C which is a fixed point of g and p(v, v) = 0.

Finally, if in Theorem 2.1 we set ωi(r) = hr for i ∈ {1, 2, 3, 4, 5} with
0 ≤ h < 1, then we get the following corollary:
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Corollary 2.2. Let (X, p) be a complete convex partial metric space with convex structure W which is continuous in
the third variable. Let C be a non-empty subset of X with a non-empty boundary ∂C. Let g, f : C → X satisfy the
following conditions:
(i) For every x, y ∈ C let there be h ∈ (0, 1) such that
p(gx, gy) ≤ h max{p( f x, f y), p( f x, gx), p( f y, gy), p( f x, gy), p(gx, f y)},
(ii) ∂C ⊆ f (C),
(iii) g(C) ∩C ⊂ f (C),
(iv) f x ∈ ∂C ⇒ gx ∈ C and
(v) f (C) be 0-complete in (X, p).

Then there exists a coincidence point v in C. Moreover, if { f , g} are coincidentally commuting, then v remains a
unique common fixed point of f and g and p(v, v) = 0.

Theorem 2.1 is also valid if we alter the first sentence as in the following corollary.

Corollary 2.3. Let (X, p) be a complete convex partial metric space with convex structure W which is continuous in
the third variable. Let C be a non-empty closed subset of X, the closure being with respect to (X, ps). Let ∂C, the
boundary of C with respect to (X, ps), be non-empty. Let g, f : C → X satisfy the following conditions:

(i) For every x, y ∈ C, p(gx, gy) ≤ Mω(x, y) where Mω(x, y) =

max{ω1[p( f x, f y)], ω2[p( f x, gx)], ω3[p( f y, gy)], ω4[p( f x, gy)], ω5[p(gx, f y)]}
and ωi : [0,+∞) → [0,+∞), i ∈ {1, 2, 3, 4, 5} is a non-decreasing semi-continuous function from the right, such that
ωi(r) < r for r > 0,

(ii) ∂C ⊆ f (C),
(iii) g(C) ∩C ⊂ f (C),
(iv) f x ∈ ∂C implies gx ∈ C and
(v) f (C) is 0-complete in (X, p).
Then there exists a coincidence point v of f and g in C. Moreover, if { f , g} are coincidentally commuting, then v

remains a unique common fixed point of f and g and p(v, v) = 0.

We now provide an example for the use of our result. The example is based on the Corollary 2.3, as it is better
suited for the partial metric we are using.

Example 2.1. Let (X, p) be a partial metric space with X = [0,+∞) and p(x, y) = max{x, y} for all x, y ∈ X. We note
that (X, p) is a convex partial metric space with convex structure W(x, y, t) = tx + (1− t)y. Let C = [0, 2]. Let us define
f , g : C → X as

gx =

{
4x − 1, x ∈ [0, 1]
2, x ∈ (1, 2] f x =

{
16x − 1, x ∈ [0, 1]
4, x ∈ (1, 2]

From the given information, f (C) = [0, 15] is closed with respect to (X, ps). This makes f (C) is complete in (X, ps)
and hence complete in (X, p). Because f (C) is complete it is also 0-complete.

We have ∂C = {0, 2} ⊂ [0, 15] = f (C). We also have g(C) = [0, 3] and
g(C) ∩C = [0, 2] ⊂ [0, 15] = f (C).

For f x ∈ ∂C = {0, 2}, we have
x ∈ {0, log 3/ log 16} = {0, 0.3962} ⇒ gx ∈ {0, 0.7321} ⊂ [0, 2] = C.

We note that the mappings f and g are not continuous at x = 1 and the pair { f , g} is coincidentally commuting as
f g(0) = g f (0) = 0.

Consider the function
h(x) =

16x − 1
4x − 1

.

Using the L’Hopital rule, we have

lim
x→0

h(x) = lim
x→0

16x ln 16
4x ln 4

=
2 ln 4
ln 4

= 2.

We note that
h(x) =

16x − 1
4x − 1

=
(4x + 1)(4x − 1)

4x − 1
= 4x + 1.

Hence, we have h′(x) = 4x ln 4 > 0 implying that h(x) is an increasing function. Hence for x > 0, we have

h(x) =
16x − 1
4x − 1

> 2
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⇒(4x − 1) <
1
2

(16x − 1) <
3
4

(16x − 1). (2.15)

Without loss of generality, suppose y ≥ x.
Let x, y ∈ (1, 2]. Then

p(gx, gy) = 2 < 3 = 0.75 max{4, 4} =
3
4

p( f x, f y).

Let x ∈ [0, 1], y ∈ (1, 2]. Note that if x ∈ [0.5, 0.5804], then
4x − 1 ≤ 1.2358 < 1

2 × 4. Hence,

p(gx, gy) = max{4x − 1, 1}

=

{
1, x ∈ [0, 0.5]
4x − 1, x ∈ (0.5, 1]

<
1
2

{
4, x ∈ [0, 0.5804]
16x − 1, x ∈ (0.5804, 1]

=
1
2

max{ f x, f y}

=
1
2

p( f x, f y).

When x = 0, y ∈ (0, 1], using (2.15), we have

p(gx, gy) = max{0, 4y − 1} = 4y − 1

<
3
4

(16y − 1) =
3
4

max{0, 16y − 1} =
3
4

p( f x, f y).

If x, y ∈ (0, 1] using (2.15), we have

p(gx, gy) = max{4x − 1, 4y − 1} = 4y − 1

<
3
4

(16y − 1) =
3
4

max{16x − 1, 16y − 1} =
3
4

p( f x, f y).

Finally if (x, y) = (0, 0) we have

p(gx, gy) = max{0, 0} = 0

≤ 3
4

max{0, 0} =
3
4

p( f x, f y).

Hence for all x, y ∈ C, we have,

p(gx, gy) ≤ max{ω1[p( f x, f x)], ω2[p( f x, f x)], ω3[p( f x, f x)],
ω4[p( f x, f x)], ω5[p( f x, f x)]},

where ωs(r) =
3
4

r for s ∈ {1, 2, 3, 4, 5}. Thus all conditions of Theorem 2.1 are satisfied and 0 is the unique fixed point
of f and g. Furthermore p(0, 0) = 0.

3. Conclusion
We proved a common fixed point theorem on a pair of non-self mappings obeying specified conditions on a convex
partial metric space. This theorem extend and generalizes the results due to Gajić and Rakoc̆ević [6] and many others
in literature.
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Abstract
This paper deals with the study of the recurrent and bi-recurrent, Neo-normal / normal and special normal

projective Finsler spaces admitting an affine motion. The relation between two Ricci tensors has been established
in a normal projective Finsler space and in a special normal projective Finsler space, the recurrence tensor of a bi-
recurrent vector field generating an affine motion can not be independent of the directional arguments and is always
non-symmetric. Also, some special types of affine motion generated by a vector field whose covariant derivative is
recurrent have been discussed in this paper.
2020 Mathematical Sciences Classification: 53B40, 53C60.
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1. Introduction
Normal projective recurrent Finsler spaces have been studied by Yano [7]. He introduced the covariant derivative of
any vector field with respect to T i(x, y) with respect to x j ash

j

T i = ∂ jT i − (∂mT i)Πm
h jy

h + T mΠ i
m j, (1.1)

where
Π i

jk(x, y) = Gi
jk −

1
n + 1

∂̇rGr
jkyi (1.2)

is normal projective connection coefficient, homogeneous of degree zero and satisfies the following relations:

∂̇rΠ
i
jkyr = 0,

Π i
jk = Π i

k j. (1.3)
The commutation formula involving the process of covariant differentiation given by Eq. (1.1) gives rise to

projective normal curvature tensor field N i
jkh(x, y) which satisfies the following identities and contractions:

N i
jkh + N i

kh j + N i
h jk = 0,

N i
ikh = Nkh,

∂̇rN i
jkhyr = 0,

N i
jkh = −N i

k jh. (1.4)
Mishra and Mehar [1] considered a space equipped with normal projective connection coefficients Π i

kh whose
curvature tensor N i

jkh is recurrent with respect to normal projective connection coefficients Π i
kh and called it as an

RNP-Finsler space. They obtained several results concerning projective motion in such a space. Mishra et al. [2]
studied the projective motion in a Finsler space with the vanishing covariant derivative of the curvature tensor N i

jkh

with respect to normal projective connection coefficient Π i
kh , called them as S NP-Finsler space. Pande [3] observed

that the recurrent Finsler spaces and symmetric Finsler spaces characterised by the recurrence of Berwald curvature
tensor Hi

jkh and the vanishing of the covariant derivative of Berwald curvature tensor Hi
jkh with respect to Berwalds

connection coefficients Gi
kh exactly coincide with RNP and S NP- Finsler space. Subsequently, Pande and Dwivedi

[4] studied an RNP-Finsler space and obtained many identities in an RNP-Finsler space, most of these identities are
also true in a recurrent Finsler space with respect to Berwalds connection coefficients. The different types of affine and
projective motions generated in a general Finsler space along with many identities for these motions has been discussed
by Qasem and Saleem [5]. Singh [6] has discussed the affine motion in birecurrent Finsler space and obtained various
results. This paper deals with the recurrent and bi-recurrence, Neo-normal / normal and special normal projective
Finsler spaces admitting an affine motion.
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2. Normal, Neo- normal and Special Normal Projective Finsler Space
Yano [7] defined the normal projective curvature tensor N i

jkh as follows

N i
jkh = ∂hΠ

i
k j + Π i

l jhΠ
l
kpyp + Π i

lhΠ
l
k j − k/h, (2.1)

where

Π i
jkh = ∂̇ jΠ

i
kh = Gi

jkh −
1

n + 1
(δi

jG
r
khr + y jGr

jkhr) (2.2)

and
Gi

l jkh = ∂̇lGi
jkh. (2.3)

Π i
jkh constitute the components of a tensor and Yano [7] denoted this tensor by U i

jkh. Thus

U i
jkh = Gi

jkh −
1

n + 1
(∂i

jG
r
khr + y jGr

jkhr). (2.4)

The tensor U i
jkh satisfies the following identities and contractions:

U i
jkh = U i

jhk,

U i
jki = Gi

jki,

U i
jkhy j = 0,

U i
jkhyh =

1
n + 1

yiGh
jkh,

U i
ikh =

2
n + 1

Gi
ikh. (2.5)

We now give the following definitions which shall be used in the later discussions:

Definition 2.1. The Finsler manifold Fn of non-zero curvature is said to be of Normal projective recurrent curvature
if the normal projective curvature tensor satisfies

∇mN i
jkh = λmN i

jkh, (2.6)

for some non-null covariant vector field λm , the vector field λm is called the recurrence vector of the manifold.

Definition 2.2. The point transformation x̄i = xi + vi(x)dt considered at each point in the normal projective recurrent
space is called special projective affine motion iff

£vΠ
i
jk = 0, (2.7)

where £v denotes the operator of Lie-derivative.

Definition 2.3. The Finsler manifold Fn admits a Neo-normal concurrent affine motion if it admits the infinitesimal
transformation of the type

x̄i = xi+ ∈ vi,

∇ jvi = ρ(x, y)δi
j, (2.8)

along with (2.7).

Definition 2.4. The Finsler manifold Fn shall be called special normal projective if it satisfies Eq (2.6) and Eq.(2.7)
together, whereas the manifold shall be called Neo-normal projective if it satisfies Eq. (2.6) and Eq.(2.8).

The relation in between the normal projective curvature tensor and the Berwalds curvature tensor is given by
Pande [3] as

N i
jkh = Hi

jkh −
1

n + 1
yi∂̇ jHr

rkh. (2.9)

We now allow a contraction in Eq. (2.9) with respect to indices i and j , and get

Nr
rkh = Hr

rkh, (2.10)

where we have taken into account the fact that the tensor Hr
rkh is positively homogeneous of degree zero in yi.

Transvecting (2.9) by y j , we get
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N i
jkhy j = Hi

kh. (2.11)

The normal projective curvature tensor N i
jkh and the projective curvature tensor W i

jkh are connected by

W i
jkh = N i

jkh + (∂̇k Mh j − Mkhδ
i
j k/h), (2.12)

where
Mkh = − 1

n2 − 1
(n.Nkh + Nhk), (2.13)

and
N jh = Nr

jhr. (2.14)

Contracting Eq. (2.9) with respect to the indices i and h, we get

N jk = H jk − 1
n + 1

{
∂̇ j(Hr

rkiy
i) − Hr

rk j

}
. (2.15)

We now simplify this equation to get

N jk = H jk − 1
n + 1

[
∂̇ j

{
(Hik − Hki)yi

}
− (H jk − Hk j)

]
. (2.16)

Equation (2.16) can further be simplified in the following form

N jk =
n

n + 1
H jk − 1

n + 1
Hk j +

n − 1
n + 1

∂̇ j∂̇k.H (2.17)

Thus, we can state:

Theorem 2.1. In a normal projective Finsler space the relation in between the two Ricci tensors N jk and H jk is given
by (2.17).

3. An Nh- Recurrent Space
We consider a normal projective Finsler space whose N-curvature tensor N i

jkh satisfies Eq. (2.6). If we assume that the
metric tensor gi j is N-covariant constant, then Eq.(2.6) immediately gives

i

m

N jikh = λmN jikh. (3.1)

Contracting Eq.(3.1) with respect to the indices i and j and thereafter using Eq.(1.4b), we get
i

m

Nkh = λmNkh. (3.2)

The equation (3.2) implies that the Ricci-tensor N jk of an Nh-recurrent space is also recurrent. The Finsler space
characterised by Eq.(3.2) shall be called Ricci- recurrent space. These observations enable us to state that every Nh-
recurrent space is Ricci recurrent but not conversely because we cannot get back Eq. (2.6) from Eq.(3.2). However, if
the space is assumed to be of dimension 3, then its curvature tensor Ni jkh may be assumed to be of the form

Ni jkh = gikL jh + gihLik − k/h, (3.3)

where
Lik =

1
n − 2

(Nik − r
2

gik),

r =
1

n − 1
N i

i . (3.4)

Now, we consider a Finsler space Fn(n > 3) whose associative curvature tensor satisfies Eq.(3.3). Such spaces
have been introduced by Matsumoto who calls them as N3-like Finsler space. If an N3-like Finsler space is Ricci
recurrent which is characterised by Eq.(3.2) then obviously it is Nh- recurrent space. Thus we can state

Theorem 3.1. An Nh-recurrent space is always a Ricci-recurrent space.
Transvecting Eq. (2.6) by y j, we get i

m

N i
jkhyi = λmN i

jkhy j. (3.5)
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Further, transvecting Eq. (3.5) by yk, we get
i

m

N i
jkhy jyk = λmN i

jkhy jyk. (3.6)

The contraction of Eq. (3.5) with respect to indices i and j gives
i

m

N i
jkhy j = λmN i

ikhy j. (3.7)

Thus, we can state:

Theorem 3.2. The tensors N i
kh, N i

h of an Nh- recurrent Finsler space are h-recurrent provided we be in a position to
write N i

jkhyi = N i
kh and N i

jkhy jyk = N i
h.

Following Yano [7] and using Eq. (2.6), we have the following result in a projective normal Finsler space

λ jN i
khly

j + λkN i
h jl + λhN l

jkl + ys
{
(∂̇rΠ

i
lh)Nr

jks + (∂̇rΠ
l
lk)Nr

hks + (∂̇rΠ
i
l j)N

r
khs

}
= 0. (3.8)

4. Special Normal Projective Finsler Space Admitting An Affine Motion
Let us consider an infinitesimal transformation generated by a birecurrent vector characterized by

i

j

i

k

vi = u jkvi. (4.1)

The Lie-derivative of Π i
jk is given by

£vΠ
i
jk(x, y) =

i

j

i

k

vi + N i
jkhvh + (∂̇hΠ

i
lk)(

i

r

vh)yr. (4.2)

Using Eq. (4.1) and Eq. (2.2) in Eq.(4.2), we get

£vΠ
i
jk = u jkvi + N i

jkhvh + Π i
hJk(

i

r

vh)yr.

If the vector field vi generates an affine motion, then the Lie-derivative of Π i
jk vanishes and hence

u jkvi + N i
jkhvh + Π i

h jk(
i

r

vh)yr = 0. (4.3)

Transvecting Eq.(4.3) by yk and using Eq.(2.2) thereafter, we get

u jkviyk + N i
jkhvhvk = 0. (4.4)

Transvecting Eq. (4.4) by yi, we get
u jkviykyi + N i

jkhvhvkyi = 0. (4.5)

From Eq. (4.5), we have atleast one of the two conditions

u jkyk = 0,

yivi = 0. (4.6)

Under the following assumption only
N i

jkhyi = 0. (4.7)

Equation (4.6b) can not be true, for partial differentiation of Eq.(4.6b) with respect to y j automatically gives vi = 0
which is not possible because this vector has always been assumed to be a non-zero vector. Therefore, we finally come
to the conclusion that condition (4.6) necessary holds. Thus, we can state:

Theorem 4.1. If the birecurrent vector field vi characterised by Eq. (4.1) generates an affine motion in a special
normal projective Finsler space, then condition (4.6) is not necessary whereas it becomes necessary under the
condition (4.7).

Conversely, let us suppose that the recurrence tensor u jk of a birecurrent vector field vi characterised by Eq. (4.1)
in a special normal projective Finsler space satisfies Eq. (4.6) and further this vector field generates an infinitesimal
transformation. The Lie derivative of the connection coefficient Π i

jk with respect to such a transformation is given by
Eq. (4.3). Transvecting Eq. (4.3) by yk, we get

(£vΠ
i
jk)yk = N i

jkhvhyk. (4.8)
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Differentiating Eq. (4.6) partially with respect to ym, we get

yk(∂̇mu jk) + u jk = 0. (4.9)

Eq. (4.1) partially with respect to ym, we get

∂̇m(∇ j∇kvi) = (∂̇mu jk)vi. (4.10)

Further, using the commutation formula (4.8), we get

∂̇ j(Π i
mkrv

r) + Π i
m jr∇kvr − Π r

m jk∇rvi = (∂̇mu jk)vi. (4.11)

We now transvect Eq. (4.9) with yk and get

Π i
m jr∇kvr + (∂̇mΠ

i
mkr)v

r = yk(∂̇mu jk)vi. (4.12)

Using Eq. (4.10), Eq. (4.9) reduces to

Π r
m jk∇rvi + (∂̇ jΠ

i
mkr)v

r = yk(∂̇mu jk)vi. (4.13)

Here, although the tensor Π r
m jk is symmetric in its last two lower indices yet the recurrence u jk appearing in (4.13)

is non-symmetric. Thus, we can state

Theorem 4.2. In a special normal projective Finsler space the recurrence tensor u jk of a birecurrent vector field vi

characterised by (4.1) is always non-symmetric.
Taking the skew symmetric part of (4.1) and then using commutation formula, we get

−(∂̇rvi)Nr
jkhyh + vhN i

jkh = (u jk − uk j)vi. (4.14)

Transvecting the Bianchi identity by vh, we get

N i
jkhvh + N i

kh jv
h + N i

h jkvh = 0. (4.15)

Using Eq. (4.15) in Eq. (4.14), we get

−(∂̇rvi)Nr
jkhyh = {N i

h jk + (u jk − uk j)}vh. (4.16)

If the birecurrent vector field characterised by Eq. (4.1) be assumed this stage to be independent of directional
arguments then from Eq. (4.16), we get

Hi
kh j + N i

h jk = uk j − u jk. (4.17)

Therefore, we can state.

Theorem 4.3. In a special normal projective Finsler space, the recurrence tensor u jk of a birecurrent vector field vi

always satisfies Eq.(4.17) if the vector field vi be assumed to be independent of directional arguments.
If the recurrence tensor u jk of a birecurrent vector field vi generating an affine motion be assumed to be independent

of directional arguments then from Eq.(4.9) we immediately get u jk = 0 and this observation leads to a contradiction.
Hence, we can state:

Theorem 4.4. In a special normal projective Finsler space, the recurrence tensor of a birecurrent vector field
generating an affine motion can not be independent of the directional arguments.

We have already seen in the above discussion that whenever the recurrence tensor u jk satisfies Eq.(4.6), we get Eq.
(4.12), which shows that the recurrence tensor is necessarily non-symmetric. Thus we conclude:

Theorem 4.5. In a special normal projective Finsler space if a birecurrent vector field generates an affine motion then
its recurrence tensor is always non-symmetric.

5. Special Type of Affine Motion
In this section, we will propose an affine motion generated by a vector field vi whose covariant derivative is recurrent,
i.e.

∇ j∇kvi = λ j∇kvi, (5.1)

where λ j is a non-null covariant vector field. In this connection first of all we establish the following:

Theorem 5.1. A vector field vi(x j) satisfying first two of the following conditions must satisfy the third.
(A) vmN i

jkm = µ j∇kvi,
(B) ∇ j∇kvi = λ j∇kvk,
(C) Π i

jkr(∇svr)ys = 0 ,
where λ j and µ j are non-zero covariant vector fields.
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Proof. Let us suppose that the vector field vi(x j) satisfies (A) and (B) both. The Lie-derivative of Π i
jk with respect to

infinitesimal transformation generated by a vector field vi(x j) is given by Eq.(4.2) which in view of (A) and (B) may
be written as

£vΠ
i
jk = (λ j + µ j)∇kvi + Π i

h jk(∇rvh)yr. (5.2)

Since Π i
jk and Π i

jkr are symmetric with respect to the indices j and k in Eq. (5.2), (λ j + µ j)∇kvi should also be
symmetric in these two indices, i.e.

(λ j + µ j)∇kvi = (λk + µk)∇ jvi. (5.3)

Equation (5.3) automatically implies at least one of the following conditions:

∇kvi = 0,

λ j + µ j = 0i,

∇kvi = (λk + µk)vi. (5.4)

for some non-zero vector field vi. If (5.4a) holds, Equation (5.2) reduces to (C). Thus the condition(C) holds good.
Now let us suppose that a vector field vi(x j) satisfies the condition (B). Differentiating (B) partially with respect to yh

and using the relevant commutation formula, we get

∇ j∂̇h(∇kvi) + vrΠ i
khr = (∂̇hλ j)(∇kvi) + λ j

{
∇k(∂̇hvi) + vrΠ i

khr

}
. (5.5)

Since λ j and vi both are supposed to be independent of directional arguments, hence from Eq.(5.5)

∇ j∂̇h(∇kvi) + vrΠ i
khr = λ jvrΠ i

khr. (5.6)

We now further consider the case when Eq. (5.5) is assumed to satisfy any one of the following two conditions:

∂̇h(∇kvi) = 0,

(∂̇hλ j) = 0. (5.7)

If Eq. (5.7) holds then Eq.(5.5) assumes the form

∇ j∂̇h(∇kvi) = λ j

{
∇k(∂̇hvi) + vrΠ i

khr

}
. (5.8)

We now differentiate Eq. (5.7) partially with respect to yh and use the relevant commutation formula to get ∇hvi =

0, it is a trivial case. Hence in order to consider non-trivial case, we consider Eq. (5.7). In such a case Eq.(5.5)
becomes

vrΠ i
khr = (∂̇hλ j)(∇kvi) + λ j

{
∇k(∂̇hvi) + vrΠ i

khr

}
. (5.9)

If λ j be used to be unity then from Eq. (5.9), we get

(∂̇h)(∇kvi) + ∇k(∂̇hvi) = 0. (5.10)

If we also assume the existence of Eq. (5.7) then from Eq.(5.10), we get

∇k(∂̇hvi) = 0. (5.11)

All the possibilities and assumptions lead us to the following statements. �

Theorem 5.2. If a vector field vi(x j) satisfies Eq. (5.7) then the recurrence vector is independent of directional
arguments and also in this case the vector vi is also independent of the directional arguments.

Theorem 5.3. The condition (A) is necessary for a vector field vi(x j) satisfying the condition (B) where vi is
independent of the directional arguments, to generate an affine motion.

Let us consider a vector field vi(x j) satisfying

αN i
jkh = βkh∇ jvi, (5.12)

in a Finsler space of recurrent curvature characterised by Eq. (2.6).
Dividing Eq. (5.12) by α and putting βkh

α
= γ̄kh , we get

N i
jkh = γ̄kh∇ jvi. (5.13)

Differentiating Eq. (5.13) normal projective covariantly with respect to xm, we get

∇mN i
jkh = (∇hγ̄kh)∇ jvi + γ̄kh∇m∇ jvi. (5.14)
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Using Eqs. (2.6) and (5.13) in Eq.(5.14), we get

(λmγ̄kh − ∇mγ̄kh)∇ jvi = γ̄kh∇m∇ jvi. (5.15)

Since the tensor field γ̄kh is non vanishing, we may therefore, choose a tensor field satisfying γ̄kh f kh = 1.
Transvecting Eq. (5.15) by f kh, we shall have the condition (B), where

vm = (λmγ̄kh − ∇mγ̄kh) f kh. (5.16)

Transvecting Eq. (5.13) by vh, we get
N i

jkhvh = γ̄khvh∇ jvi. (5.17)

If we write γ̄khvh = αk then equation (5.17) can be seen to be identical with condition (A). Therefore, we can state:

Theorem 5.4. A vector field vi generates an affine motion in a symmetric space characterised by ∇mN i
jkh = 0 if there

exists a non-zero scalar field α and a non-zero vector field βkh satisfying Eq. (5.12).

Theorem 5.5. If a Finsler space of recurrent curvature admits a vector field vi satisfying Eq.(5.12) then the vector
field vi is orthogonal to the recurrence vector if there exists a non-zero scalar field α and a non-zero tensor field Akh

satisfying Eq.(5.12) where Akh = ∇hαk − ∇kαh
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Abstract

In this paper, we apply the concept of subordination to introduce certain subclasses of close-to-convex and quasi-
convex functions with fixed point in the unit disc E = {z :| z |< 1}. We establish the upper bounds of the first four
coefficients for these classes. This work will motivate the other researchers of this field to study some more relevant
classes.
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1. Introduction
LetA be the class of analytic functions f in the unit disc E = {z :| z |< 1} and which are of the form f (z) = z+

∑∞
k=2akzk.

By S, we denote the class of functions f ∈ A, which are univalent in E. LetU be the class of Schwarzian functions of
the form u(z) =

∑∞
k=1ckzk, which are analytic in the unit disc E and satisfying the conditions u(0) = 0 and | u(z) |< 1.

Before defining our main classes, firstly we discuss the following standardized classes of univalent functions:

S∗ =

{
f (z) ∈ A : Re

(
z f ′(z)
f (z)

)
> 0, z ∈ E

}
, the class of starlike functions.

K =

{
f (z) ∈ A : Re

(
(z f ′(z))′

f ′(z)

)
> 0, z ∈ E

}
, the class of convex functions.

The classes S∗ and K are related by the Alexander relation [3] as f ∈ K if and only if z f ′ ∈ S∗.
Kaplan [7] introduced the concept of close-to-convex functions. A function f ∈ A is said to be close-to-convex

if there exists a convex function h such that Re
(

f ′(z)
h′(z)

)
> 0 or equivalently there exists a starlike function g such that

Re
(

z f ′(z)
g(z)

)
> 0. The class of close-to-convex functions is denoted by C. Further, Noor [11] established the class C∗

of quasi-convex functions as

C∗ =

{
f : f ∈ A,Re

(
(z f ′(z))′

h′(z)

)
> 0, h ∈ K , z ∈ E

}
.

Every quasi-convex function is convex and close-to-convex and so is univalent. Also f ∈ C∗ if and only if z f ′ ∈ C.
Let f and g be two analytic functions in E. Then f is said to be subordinate to g (symbolically f ≺ g) if there

exists a Schwarzian function u(z) ∈ U such that f (z) = g(u(z)).

The class P[C,D] consists of the functions p analytic in E with p(0) = 1 and subordinate to
1 + Cz
1 + Dz

, (−1 ≤ D <

C ≤ 1). This class was established by Janowski [5] and so the functions in the class P[C,D] are known as Janowski-
type functions. Kanas and Ronning [6] introduced an interesting classA(w) of analytic functions of the form

f (z) = (z − w) +
∑∞

k=2ak(z − w)k

and normalized by the conditions f (w) = 0, f ′(w) = 1, where w is a fixed point in E.
Also the classes of w-starlike functions and w-convex functions were defined in [6] as follows:

S∗(w) =

{
f ∈ A(w) : Re

(
(z − w) f ′(z)

f (z)

)
> 0, z ∈ E

}
,

and

K(w) =

{
f ∈ A(w) : 1 + Re

(
(z − w) f ′′(z)

f ′(z)

)
> 0, z ∈ E

}
.

The class S∗(w) is defined by the geometric property that the image of any circular arc centered at w is starlike
with respect to f (w) and the corresponding class K(w) is defined by the property that the image of any circular arc
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centered at w is convex. For w = 0, the classes S∗(w) and K(w) agree with the well known classes of starlike and
convex functions, respectively. Also it is obvious that f ∈ K(w) if and only if (z−w) f ′ ∈ S∗(w). Various authors such
as Acu and Owa [1], Al-Hawary [2] and Olatunji and Oladipo [12] have worked on the classes of analytic functions
with fixed point.

For −1 ≤ B < A ≤ 1, Singh and Singh [15] discussed the subclasses of S∗(w) and K(w) defined as

S∗(w; A, B) =

{
f ∈ A(w) :

(z − w) f ′(z)
f (z)

≺ 1 + A(z − w)
1 + B(z − w)

, z ∈ E
}

,

and

K(w; A, B) =

{
f ∈ A(w) :

((z − w) f ′(z))′

f ′(z)
≺ 1 + A(z − w)

1 + B(z − w)
, z ∈ E

}
.

For A = 1, B = −1, the classes S∗(w; A, B) and K(w; A, B) reduce to S∗(w) and K(w), respectively.
To avoid repetition throughout this paper, we assume that −1 ≤ D < C ≤ 1, −1 ≤ B < A ≤ 1, z ∈ E.
Motivated and stimulated by the above defined classes, we now introduce the following subclasses of w-close-to-

convex and w-quasi-convex functions with subordination:

Definition 1.1. A function f (z) ∈ A(w) is said to be in the class C(w; A, B; C,D) if
(z − w) f ′(z)

g(z)
≺ 1 + C(z − w)

1 + D(z − w)
,

where g(z) = (z − w) +
∑∞

k=2bk(z − w)k ∈ S∗(w; A, B).
The following points are to be noted:
(i) C(0; A, B; C,D) ≡ C(A, B; C,D), the subclass of close-to-convex functions studied by Singh and Mehrok [13].
(ii) C(0; 1,−1; C,D) ≡ C(C,D), the subclass of close-to-convex functions studied by Mehrok [8].
(iii) C(w; 1,−1; C,D) ≡ C(w; C,D), the subclass of w-close-to-convex functions.
(iv) C(w; 1,−1; 1,−1) ≡ C(w), the class of w-close-to-convex functions.
(v) C(0; 1,−1; 1,−1) ≡ C, the class of close-to-convex functions.

Definition 1.2. A function f (z) ∈ A(w) is said to be in the class C1(w; A, B; C,D) if

(z − w) f ′(z)
h(z)

≺ 1 + C(z − w)
1 + D(z − w)

,

where h(z) = (z − w) +
∑∞

k=2dk(z − w)k ∈ K(w; A, B).
The following observations are obvious:
(i) C1(0; A, B; C,D) ≡ C1(A, B; C,D), the subclass of close-to-convex functions studied by Singh and Mehrok [13].
(ii) C1(0; 1,−1; C,D) ≡ C1(C,D), the subclass of close-to-convex functions studied by Mehrok and Singh [9].
(iii) C1(w; 1,−1; C,D) ≡ C1(w; C,D), the subclass of w-close-to-convex functions.
(iv) C1(w; 1,−1; 1,−1) ≡ C1(w), the subclass of w-close-to-convex functions.
(v) C1(0; 1,−1; 1,−1) ≡ C1, the subclass of close-to-convex functions studied by Abdel-Gawad and Thomas [4].

Definition 1.3. A function f (z) ∈ A(w) is said to be in the class C∗(w; A, B; C,D) if
((z − w) f ′(z))′

h′(z)
≺ 1 + C(z − w)

1 + D(z − w)
,

where h(z) = (z − w) +
∑∞

k=2dk(z − w)k ∈ K(w; A, B).
We have the following observations:
(i) C∗(0; A, B; C,D) ≡ C∗(A, B; C,D), the subclass of quasi-convex functions studied by Singh and Singh [14].
(ii) C∗(0; 1,−1; C,D) ≡ C∗(C,D), the subclass of quasi-convex functions discussed by Singh and Singh [14].
(iii) C∗(w; 1,−1; C,D) ≡ C∗(w; C,D), the subclass of w-quasi-convex functions.
(iv) C∗(w; 1,−1; 1,−1) ≡ C∗(w), the class of w-quasi-convex functions.
(v) C∗(0; 1,−1; 1,−1) ≡ C∗, the class of quasi-convex functions.

Definition 1.4. A function f (z) ∈ A(w) is said to be in the class C∗1(w; A, B; C,D) if

((z − w) f ′(z))
g′(z)

≺ 1 + C(z − w)
1 + D(z − w)

,

where g(z) = (z − w) +
∑∞

k=2bk(z − w)k ∈ S∗(w; A, B).
The following points are obvious:
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(i) C∗1(0; A, B; C,D) ≡ C∗1(A, B; C,D), the subclass of quasi-convex functions studied by Singh and Singh [14].
(ii) C∗1(0; 1,−1; C,D) ≡ C∗1(C,D), the subclass of quasi-convex functions discussed by Singh and Singh [13].
(iii) C∗1(w; 1,−1; C,D) ≡ C∗1(w; C,D), the subclass of w-quasi-convex functions.
(iv) C∗1(w; 1,−1; 1,−1) ≡ C∗1(w), the subclass of w-quasi-convex functions.
(v) C∗1(0; 1,−1; 1,−1) ≡ C∗1, the subclass of quasi-convex functions.

In this paper, we seek upper bounds of the first four coefficients for the functions belonging to the classes
C(w; A, B; C,D), C1(w; A, B; C,D), C∗(w; A, B; C,D) and C∗1(w; A, B; C,D). This paper will motivate the other
researchers to investigate some more interesting classes.

2. Preliminary Results

Lemma 2.1 ([12]). For u(z) =
∑∞

k=1ck(z − w)k and p(z) =
1 + Cu(z)
1 + Du(z)

= 1 +
∑∞

k=1 pk(z − w)k, we have,

|pn| ≤ (C − D)
(1 + d)(1 − d)n , n ≥ 1, |w| = d.

Lemma 2.2 ([15]). If g(z) = (z − w) +
∑∞

k=2bk(z − w)k ∈ S∗(w; A, B), then

|b2| ≤ (A − B)
1 − d2 , (2.1)

|b3| ≤ (A − B)
2(1 − d2)2 [(1 + d) + (A − B)], (2.2)

|b4| ≤ (A − B)
6(1 − d2)3 [(A − B) + (1 + d)][(A − B) + 2(1 + d)], (2.3)

and
|b5| ≤ (A − B)

24(1 − d2)4 [(A − B) + (1 + d)][(A − B) + 2(1 + d)][(A − B) + 3(1 + d)]. (2.4)

Lemma 2.3 ([15]). If h(z) = (z − w) +
∑∞

k=2dk(z − w)k ∈ K(w; A, B), then

|d2| ≤ (A − B)
2(1 − d2)

, (2.5)

|d3| ≤ (A − B)
6(1 − d2)2 [(1 + d) + (A − B)], (2.6)

|d4| ≤ (A − B)
24(1 − d2)3 [(A − B) + (1 + d)][(A − B) + 2(1 + d)], (2.7)

and
|d5| ≤ (A − B)

120(1 − d2)4 [(A − B) + (1 + d)][(A − B) + 2(1 + d)][(A − B) + 3(1 + d)]. (2.8)

3. Main Results
Theorem 3.1. If f ∈ C(w; A, B; C,D), then

|a2| ≤ (A − B) + (C − D)
2(1 − d2)

, (3.1)

|a3| ≤ [(A − B) + (1 + d)][(A − B) + 2(C − D)]
6(1 − d2)2 , (3.2)

|a4| ≤ [(A − B) + (1 + d)][(A − B) + 2(1 + d)][(A − B) + 3(C − D)]
24(1 − d2)3 , (3.3)

and
|a5| ≤ [(A − B) + (1 + d)][(A − B) + 2(1 + d)][(A − B) + 3(1 + d)][(A − B) + 4(C − D)]

120(1 − d2)4 . (3.4)
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Proof. From Definition 1.1, by principle of subordination, we have
(z − w) f ′(z)

g(z)
= p(z) =

1 + Cu(z)
1 + Du(z)

= 1 +
∑∞

k=1 pk(z − w)k, (3.5)

where u(z) =
∑∞

k=1ck(z − w)k.
Expansion of (3.5) leads to
1 + 2a2(z − w) + 3a3(z − w)2 + 4a4(z − w)3 + 5a5(z − w)4 + ...

= [1+ p1(z−w)+ p2(z−w)2 + p3(z−w)3 + p4(z−w)4 + ...][1+b2(z−w)+b3(z−w)2 +b4(z−w)3 +b5(z−w)4 + ...]. (3.6)

On equating the coefficients of (z − w), (z − w)2, (z − w)3 and (z − w)4 in (3.6), it yields

2a2 = p1 + b2, (3.7)

3a3 = p2 + b2 p1 + b3, (3.8)

4a4 = p3 + b2 p2 + b3 p1 + b4, (3.9)

and
5a5 = p4 + b2 p3 + b3 p2 + b4 p1 + b5. (3.10)

By taking modulus and application of triangle inequality, the equations (3.7), (3.8), (3.9) and (3.10) transform to

2|a2| ≤ |p1| + |b2|, (3.11)

3|a3| ≤ |p2| + |b2||p1| + |b3|, (3.12)

4|a4| ≤ |p3| + |b2||p2| + |b3||p1| + |b4|, (3.13)

and
5|a5| ≤ |p4| + |b2||p3| + |b3||p2| + |b4||p1| + |b5|. (3.14)

Using Lemma 2.1 and inequality (2.1) in (3.11), the result (3.1) is obvious.
Again using Lemma 2.1 and inequalities (2.1) and (2.2) in (3.12), the simplification leads to the result (3.2).
Further using ineequalities (2.1), (2.2) and (2.3) and applying Lemma 2.1, the result (3.3) can be easily obtained from
(3.13). �

On using inequalities (2.1), (2.2), (2.3) and (2.4) and application of Lemma 2.1 in (3.14), it leads to the result (3.4).
For A = 1, B = −1, Theorem 3.1 yields the following result:

Corollary 3.1. If f ∈ C(w; C,D), then

|a2| ≤ 2 + (C − D)
2(1 − d2)

,

|a3| ≤ (3 + d)[1 + (C − D)]
3(1 − d2)2 ,

|a4| ≤ (2 + d)(3 + d)[2 + 3(C − D)]
12(1 − d2)3 ,

and
|a5| ≤ (2 + d)(3 + d)(5 + 3d)[1 + 2(C − D)]

30(1 − d2)4 .

On putting A = 1, B = −1,C = 1,D = −1, Theorem 3.1 agrees with the following result:

Corollary 3.2. If f ∈ C(w), then

|a2| ≤ 2
1 − d2 ,

|a3| ≤ 3 + d
(1 − d2)2 ,

|a4| ≤ 2(2 + d)(3 + d)
3(1 − d2)3 ,

and
|a5| ≤ (2 + d)(3 + d)(5 + 3d)

6(1 − d2)4 .
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Theorem 3.2. If f ∈ C1(w; A, B; C,D), then

|a2| ≤ (A − B) + 2(C − D)
4(1 − d2)

,

|a3| ≤ [(A − B) + (1 + d)][(A − B) + 3(C − D)] + 3(C − D)(1 + d)
18(1 − d2)2 ,

|a4| ≤ (A − B)[(A − B) + (1 + d)][(A − B) + 2(1 + d) + 4(C − D)] + 12(C − D)(1 + d)[(A − B) + 2(1 + d)]
96(1 − d2)3 ,

and

|a5| ≤ 60(C − D)(1 + d)2[(A − B) + 2(1 + d)]
600(1 − d2)4

+
(A − B)[(A − B) + (1 + d)]{20(C − D)(1 + d) + [(A − B) + 2(1 + d)][(A − B) + 5(C − D) + 3(1 + d)]}

600(1 − d2)4 .

Proof. With the application of principle of subordination in Definition 1.2 and using Lemma 2.1 and Lemma 2.3, the
results of Theorem 3.2 can be easily obtained by following the procedure of Theorem 3.1. �

For A = 1, B = −1, the following result can be obtained from Theorem 3.2:

Corollary 3.3. If f ∈ C1(w; C,D), then

|a2| ≤ 1 + (C − D)
2(1 − d2)

,

|a3| ≤ (3 + d)[2 + 3(C − D)] + 3(C − D)(1 + d)
18(1 − d2)2 ,

|a4| ≤ 6(C − D)(1 + d)(2 + d) + (3 + d)[2(C − D) + (2 + d)]
24(1 − d2)3 ,

and

|a5| ≤ 30(C − D)(2 + d)(1 + d)2 + (3 + d)[10(C − D)(1 + d) + (2 + d){5(C − D) + 3d + 5}]
150(1 − d2)4 .

For A = 1, B = −1,C = 1,D = −1, Theorem 3.2 yields the following result:

Corollary 3.4. If f ∈ C1(w), then

|a2| ≤ 3
2(1 − d2)

,

|a3| ≤ 15 + 7d
9(1 − d2)2 ,

|a4| ≤ 13d2 + 45d + 42
24(1 − d2)3 ,

and

|a5| ≤ 60(2 + d)(1 + d)2 + (3 + d)[3d2 + 41d + 50]
150(1 − d2)4 .

Theorem 3.3. If f ∈ C∗(w; A, B; C,D), then

|a2| ≤ (A − B) + (C − D)
4(1 − d2)

, (3.15)

|a3| ≤ [(A − B) + (1 + d)][(A − B) + 2(C − D)]
18(1 − d2)2 , (3.16)

|a4| ≤ [(A − B) + (1 + d)][(A − B) + 2(1 + d)][(A − B) + 3(C − D)]
96(1 − d2)3 , (3.17)

and
|a5| ≤ [(A − B) + (1 + d)][(A − B) + 2(1 + d)][(A − B) + 3(1 + d)][(A − B) + 4(C − D)]

600(1 − d2)4 . (3.18)
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Proof. From Definition 1.3, by principle of subordination, we have
((z − w) f ′(z))′

h′(z)
= p(z) =

1 + Cu(z)
1 + Du(z)

= 1 +
∑∞

k=1 pk(z − w)k, (3.19)

where u(z) =
∑∞

k=1ck(z − w)k.
(3.19) can be expanded as
1 + 4a2(z − w) + 9a3(z − w)2 + 16a4(z − w)3 + 25a5(z − w)4 + ...

= [1+p1(z−w)+p2(z−w)2+p3(z−w)3+p4(z−w)4+...][1+2d2(z−w)+3d3(z−w)2+4d4(z−w)3+5d5(z−w)4+...]. (3.20)
On equating the coefficients of (z − w), (z − w)2, (z − w)3 and (z − w)4 in (3.20), it yields

4a2 = p1 + 2d2, (3.21)
9a3 = p2 + 2d2 p1 + 3d3, (3.22)

16a4 = p3 + 2d2 p2 + 3d3 p1 + 4d4, (3.23)

and
25a5 = p4 + 2d2 p3 + 3d3 p2 + 4d4 p1 + 5d5. (3.24)

On applying Lemma 2.1, Lemma 2.3 and following the procedure of Theorem 3.1, the results (3.15), (3.16), (3.17)
and (3.18) can be easily obtained. �

On putting A = 1, B = −1 in Theorem 3.3, the following result is obvious:

Corollary 3.5. If f ∈ C∗(w; C,D), then

|a2| ≤ 2 + (C − D)
4(1 − d2)

,

|a3| ≤ (3 + d)[1 + (C − D)]
9(1 − d2)2 ,

|a4| ≤ (2 + d)(3 + d)[2 + 3(C − D)]
48(1 − d2)3 ,

and
|a5| ≤ (2 + d)(3 + d)(5 + 3d)[1 + 2(C − D)]

150(1 − d2)4 .

On putting A = 1, B = −1,C = 1,D = −1 in Theorem 3.3, the following result is obvious:

Corollary 3.6. If f ∈ C∗(w), then

|a2| ≤ 1
1 − d2 ,

|a3| ≤ 3 + d
3(1 − d2)2 ,

|a4| ≤ (2 + d)(3 + d)
6(1 − d2)3 ,

and
|a5| ≤ (2 + d)(3 + d)(5 + 3d)

30(1 − d2)4 .

Theorem 3.4. If f ∈ C∗1(w; A, B; C,D), then

|a2| ≤ 2(A − B) + (C − D)
4(1 − d2)

,

|a3| ≤ [(A − B) + (1 + d)][3(A − B) + 2(C − D)] + 2(A − B)(C − D)
18(1 − d2)2 ,

|a4| ≤ 6(C − D)(1 + d)[2(A − B) + (1 + d)] + (A − B)[(A − B) + (1 + d)][4(A − B) + 8(1 + d) + 9(C − D)]
96(1 − d2)3 ,

and

|a5| ≤ 24(C − D)(1 + d)2[2(A − B) + (1 + d)]
600(1 − d2)4

+
(A − B)[(A − B) + (1 + d)]{36(C − D)(1 + d) + [(A − B) + 2(1 + d)][5(A − B) + 16(C − D) + 15(1 + d)]}

600(1 − d2)4 .
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Proof. With the application of principle of subordination in Definition 1.4 and using Lemma 2.1 and Lemma 2.2, the
results of Theorem 3.4 can be easily obtained by following the procedure of Theorem 3.3. �

For A = 1, B = −1, Theorem 3.4 gives the following result:

Corollary 3.7. If f ∈ C∗1(w; C,D), then

|a2| ≤ 4 + (C − D)
4(1 − d2)

,

|a3| ≤ (3 + d)[3 + (C − D)] + 2(C − D)
9(1 − d2)2 ,

|a4| ≤ 3(1 + d)(5 + d)(C − D) + 8(2 + d)(3 + d)
48(1 − d2)3 ,

and

|a5| ≤ 6(C − D)(5 + d)(1 + d)2 + (3 + d)[18(C − D)(1 + d) + (2 + d){16(C − D) + 25 + 15d}]
150(1 − d2)4 .

For A = 1, B = −1,C = 1,D = −1, Theorem 3.4 gives the following result:

Corollary 3.8. If f ∈ C∗1(w), then

|a2| ≤ 3
2(1 − d2)

,

|a3| ≤ 19 + 5d
9(1 − d2)2 ,

|a4| ≤ 7d2 + 38d + 39
24(1 − d2)3 ,

and

|a5| ≤ 4(5 + d)(1 + d)2 + (3 + d)[5d2 + 41d + 50]
50(1 − d2)4 .

4. Conclusion
In the present work, we have estimated the bounds for the first four coefficients of the new defined subclasses of
close-to-convex functions and quasi-convex functions with fixed point. Till now, no researcher has worked on such
classes and so this work will pave the way for the other researchers to study some more interesting classes of analytic
functions with fixed point.
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the paper.
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Jñānābha, Vol. 52(1) (2022), 149-154

A NOTE ON THE DISTRIBUTION OF ZEROS OF POLYNOMIALS AND CERTAIN CLASS OF
TRANSCENDENTAL ENTIRE FUNCTIONS

By
Sanjib Kumar Datta1 and Tanchar Molla2

1Department of Mathematics, University of Kalyani, P.O.:Kalyani, Dist:Nadia-741235, West Bengal, India
2Department of Mathematics, Dumkal College, P.O: Basantapur, P.S: Dumkal, Dist: Murshidabad- 742406, West

Bengal, India
Email:sanjibdatta05@gmail.com, tanumath786@gmail.com

(Received : September 04, 2021; Revised in format : September 14, 2021; Accepted : April 23, 2022)

Abstract

In the paper we wish to find a region containing all the zeros of a polynomial. Our result in some special
case sharpen some very well known results obtained for this purpose. Also, we obtain a zero free region about
an arbitary point for a certain class of transcendental entire functions by restricting the coefficients of its Taylor’s
series expansions to some conditions.
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1. Introduction
To find a region containing all the zeros of a polynomial, Cauchy {cf. [15]} introduced the following classical result:
Theorem A ([15]). If P(z) =

∑n
j=0a jz j is a polynomial of degree n, then all the zeros of P(z) lie in |z| ≤ 1 +

max0≤ j≤(n−1)| a j

an
|.

Theorem A was improved in several ways by many researchers {cf. [6], [12] & [16]}. As an improvement of
Theorem A, Joyal et al. [10] gave the following theorem:
Theorem B ([10]). If P(z) =

∑n
j=0a jz j (an = 1) is a polynomial of degree n and β = max

0≤ j<n−1
|a j|, then all the zeros of

P(z) lie in

|z| ≤ 1
2

{
1+|an−1| +

√
(1−|an−1|)2 + 4β

}
.

Theorem B gives no improvement of Theorem A if β =|an−1|.
Again, in a different direction G. Enström and S. Kakeya [8] established following result known as Enström-

Kakeya theorem.
Theorem C ([8]). If P(z) =

∑n
j=0a jz j is a polynomial of degree n with real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an,

then all the zeros of P(z) lie in |z| ≤ 1.
Many improvements and generalizations of Theorem C for polynomials and analytic functions are seen in the

existing literature {cf. [1]- [5],[7],[8],[10], [11] & [14]}.
We recall that an entire function f of one complex variable z is a function analytic in the finite complex plane C

and therefore it can be represented by an everywhere convergent power series like
f (z) = c0 + c1z + ... + cnzn + ...

where ci, i = 0, 1, ..., n, ... are real or complex constants. Thus entire functions can be thought of as the natural
generalization of polynomials.

The prime concern of this paper is to improve Theorem A as well as Theorem B in some special case and also
derive a zero free region of a certain class of transcendental entire functions with restricted coefficients. We do not
explain the standard theories, notations and definitions of entire functions as those are available in [17].

2. Lemma
In this section we present a lemma which will be needed in the sequel.

Lemma 2.1. Let { fn(z)}, n = 1, 2, ... be a sequence of functions that are analytic in a region D and that converges
uniformly to a function f (z) in every closed sub region of D. Let z0 be an interior point of D. If z0 is a limit point of the
zeros of fn(z), then z0 is a zero of f (z). Conversely, if z0 is an m-fold zero of f (z), every sufficiently small neighborhood
of z0 contains exactly m zeros (counted with their multiplicities) of each fn with n > N for a sufficiently large integer
N.

Remark 2.1. Lemma 2.1 is known as Hurwitz theorem in C.
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3. Theorems
In this section we present the main results of the paper.

Theorem 3.1. Let P(z) = anzn + an−1zn−1 + ... + a1z + a0 be a polynomial of degree n > 1 and M =

max {|a0|, |a1 − a0|, ..., |an−1 − an−2|}.Then all the zeros of P(z) are contained in the closed disc |z| ≤ R where

R =
1

2|an|
{
|an|+|an − an−1| +

√
(|an|−|an − an−1|)2 + 4|an|.M

}
.

Proof. Let
Q(z) = (1 − z)P(z)

i.e, Q(z) = −anzn+1 + (an − an−1)zn + (an−1 − an−2)zn−1 + ... + (a1 − a0)z + a0.

Then,
|Q(z)| ≥ |an||z|n+1−|(an − an−1)zn + (an−1 − an−2)zn−1 + ... + (a1 − a0)z + a0|

≥ (|an||z|−|an − an−1|)|z|n−|(an−1 − an−2)zn−1 + ... + (a1 − a0)z + a0|. (3.1)

Now for |z| = r(> 1), it follows that
|(an−1 − an−2)zn−1 + (an−2 − an−3)zn−2 + ... + (a1 − a0)z + a0|
≤|an−1 − an−2|rn−1+|an−2 − an−1|rn−2 + ...+|a1 − a0|r+|a0|

≤ M.rn
{

1
r

+
1
r2 + ... +

1
rn

}
where M = max {|a0|, |a1 − a0|, ..., |an−1 − an−2|}

≤ M.rn∑∞
j=1

1
r j

= M.rn 1
r − 1

.

Hence from (3.1), we get for |z| = r(> 1) that

|Q(z)| ≥ (|an|r−|an − an−1|)rn − M.rn 1
r − 1

=
rn

r − 1

{
|an|r2 − (|an|+|an − an−1|)r+|an − an−1| − M

}
> 0

if |an|r2 − (|an|+|an − an−1|)r+|an − an−1| − M > 0

i.e, if r >
1

2|an|
{
|an|+|an − an−1| +

√
(|an|−|an − an−1|)2 + 4|an|.M

}
.

Thus, no zero of Q(z) outside the unit circle lies in

|z| > 1
2|an|

{
|an|+|an − an−1| +

√
(|an|−|an − an−1|)2 + 4|an|.M

}
.

Since zeros of P(z) are the zeros of Q(z), all the zeros of P(z) lie in

|z| ≤ 1
2|an|

{
|an|+|an − an−1| +

√
(|an|−|an − an−1|)2 + 4|an|.M

}
.

This proves the theorem. �

Remark 3.1. If M >|an − an−1|, Theorem 3.1 is an improvement of both Theorem A & Theorem B. The following
example justifies the validity of the sharpness of Theorem 3.1.

Example 3.1. Let P(z) = 4z6 + 3z5 + 2z4 − z2 − z − 4.
Here, a0 = −4, a1 = −1, a2 = −1, a3 = 0, a4 = 2, a5 = 3 & a6 = 4.
Hence all the zeros of P(z) by Theorem 3.1 lie in |z| ≤ 1.69 whereas by Theorem B lie in |z| ≤ 1.88 and by Theorem

A lie in |z| ≤ 2.

Theorem 3.2. Let f (z) = a0 + an1 zn1 + ...+ anl z
nl + anm znm + ... be an entire function with a0 , 0 and n1, n2, ..., nl, nm, ...

are positive integers such that 1 ≤ n1 < ... < nl < nm < .... Also let for some positive integer l
|anl | ≥|anm | ≥ ... .

Then no zero of f (z) lies in

|z| < |an0 |
|an0 | + M

where M = max{|an1 |, |an2 |, ..., |anl |}.
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Proof. Let
fk(z) = a0 + an1 zn1 + ... + anl z

nl + anm znm + ... + ank z
nk .

Also, let

F(z) = znk fk(
1
z

)

i.e, F(z) = a0znk + an1 znk−n1 + ... + anl z
nk−nl + anm znk−nm + ... + ank .

Now for |z| = r(> 1), we get that

|an1 znk−n1 + an2 znk−n2 + ... + anl z
nk−nl + anm znk−nm + ... + ank |

≤|an1 |rnk−n1+|an2 |rnk−n2 + ...+|anl |rnk−nl+|anm |rnk−nm + ...+|ank |

≤ Mrnk

{
1

rn1
+

1
rn2

+ ... +
1

rnl
+

1
rnm

+ ... +
1

rnk

}
where M = max{|an1 |, |an2 |, ..., |anl |}

≤ Mrnk

{
1
r

+
1
r2 + ... +

1
rl +

1
rm + ... +

1
rk

}
since ni ≥ i &

1
rni
≤ 1

ri for i = 1, 2, 3, ..., k

≤ Mrnk
∑∞

j=1
1
r j

= M.rnk
1

r − 1
.

Hence for |z| = r(> 1), it follows that

|F(z)| ≥|a0|rnk − Mrnk
1

r − 1
> 0 if r >

|an0 | + M
|an0 |

.

Therefore,

|F(z)| > 0 if |z| > |an0 | + M
|an0 |

.

Consequently,

| fk(z)| > 0 if |z| < |an0 |
|an0 | + M

.

Thus, no zero of the partial sum fk(z) is contained in |z| < |an0 |
|an0 |+M . Hence by Lemma 2.1, f (z) does not vanish in

|z| < |an0 |
|an0 | + M

.

Thus the theorem is established. �

Remark 3.2. The following example with related figure ensures the validity of Theorem 3.2.

Example 3.2. Let f (z) = z sin z2 + 4z3 − 3z2 + z + 4.
Then the Taylor’s series expansion of f (z) is

f (z) = 4 + z − 3z2 + 5z3 − z7

3!
+

z11

5!
− z15

7!
+ ....

Here, a0 = 4 & M = 5.
Hence by Theorem 3.2, f (z) does not vanish in

|z| < 0.44 .

Justification
Taking f1(z) = 4 & f2(z) = z sin z2 + 4z3 − 3z2 + z, it follows that

| f2(z)| <| f1(z)| for |z| = 0.44.

Hence by very well known Rouche’s theorem, f (z) has no zero in |z| < 0.44.
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y

| z |< 0.44

Figure 3.1: Zero free region of f (z) = z sin z2 + 4z3 − 3z2 + z + 4 about origin

Theorem 3.3. Let f (z) = a0 + a1z + a2z2 + ... be an entire function with a0 , 0. Also, let for some positive integers l,m

|a2l| ≥|a2l+2| ≥|a2l+4| ≥ ...
and

|a2m+1| ≥|a2m+3| ≥|a2m+5| ≥ ... .

Then f (z) does not vanish in |z| < |a0 |
|a0 |+2M where M = max

0≤i≤l
0≤ j≤m

{|a2i|, |a2 j+1|}.

Proof. Let
fn(z) = a0 + a1z + a2z2 + ... + anzn

and
F(z) = zn fn(

1
z

).

Again, let

Q(z) = (z2 − 1)F(z)

i.e, Q(z) = (z2 − 1)(a0zn + a1zn−1 + a2zn−2 + ... + a2lzn−2l + a2l+1zn−2l−1 + ... + a2mzn−2m

+ a2m+1zn−2m−1 + ... + an)

i.e, Q(z) = a0zn+2 + a1zn+1 + (a2 − a0)zn + (a3 − a1)zn−1 + ... + (a2l+1 − a2l−1)zn−2l+1

+ (a2l+2 − a2l)zn−2l + ... + (a2m+1 − a2m−1)zn−2m+1 + (a2m+2 − a2m)zn−2m + ... − an−1z − an

i.e, Q(z) = a0zn+2 + P(z) . (3.2)

Now for |z| = r(> 1), we get that

|P(z)| =|a1zn+1 + (a2 − a0)zn + (a3 − a1)zn−1 + ... + (a2l+1 − a2l−1)zn−2l+1 + (a2l+2 − a2l)zn−2l+

... + (a2m+1 − a2m−1)zn−2m+1 + (a2m+2 − a2m)zn−2m + ...... − an−1z − an|
≤|a1|rn+1 + (|a2|+|a0|)rn + (|a3|+|a1|)rn−1 + ... + (|a2l+1|+|a2l−1|)rn−2l+1 + (|a2l+2|+|a2l|)rn−2l+

... + (|a2m+1|+|a2m−1|)rn−2m+1 + (|a2m+2|+|a2m|)rn−2m + ......+|an−1|r+|an|

≤ 2Mrn+2
{

1
r

+
1
r2 + ... +

1
rn+2

}
where M = max

0≤i≤l
0≤ j≤m

{|a2i|, |a2 j+1|}

≤ 2Mrn+2∑∞
k=1

1
rk

= 2Mrn+2 1
r − 1

.

Hence for |z| = r(> 1), it follows from (3.2) that

|Q(z)| ≥|a0|rn+2 − 2Mrn+2.
1

r − 1
> 0 if r >

|a0| + 2M
|a0|

i.e, |Q(z)| > 0 if |z| > |a0| + 2M
|a0| .
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Then f (z) does not vanish in |z| < |a0 |
|a0 |+2M where M = max

0≤i≤l
0≤ j≤m

{|a2i|, |a2 j+1|}.

Proof. Let
fn(z) = a0 + a1z + a2z2 + ... + anzn

and
F(z) = zn fn(

1
z

).

Again, let
Q(z) = (z2 − 1)F(z)

i.e, Q(z) = (z2 − 1)(a0zn + a1zn−1 + a2zn−2 + ... + a2lzn−2l + a2l+1zn−2l−1 + ... + a2mzn−2m

+ a2m+1zn−2m−1 + ... + an)

i.e, Q(z) = a0zn+2 + a1zn+1 + (a2 − a0)zn + (a3 − a1)zn−1 + ... + (a2l+1 − a2l−1)zn−2l+1

+ (a2l+2 − a2l)zn−2l + ... + (a2m+1 − a2m−1)zn−2m+1 + (a2m+2 − a2m)zn−2m + ... − an−1z − an

i.e, Q(z) = a0zn+2 + P(z) . (3.2)
Now for |z| = r(> 1), we get that

|P(z)| =|a1zn+1 + (a2 − a0)zn + (a3 − a1)zn−1 + ... + (a2l+1 − a2l−1)zn−2l+1 + (a2l+2 − a2l)zn−2l+

... + (a2m+1 − a2m−1)zn−2m+1 + (a2m+2 − a2m)zn−2m + ...... − an−1z − an|
≤|a1|rn+1 + (|a2|+|a0|)rn + (|a3|+|a1|)rn−1 + ... + (|a2l+1|+|a2l−1|)rn−2l+1 + (|a2l+2|+|a2l|)rn−2l+

... + (|a2m+1|+|a2m−1|)rn−2m+1 + (|a2m+2|+|a2m|)rn−2m + ......+|an−1|r+|an|

≤ 2Mrn+2
{

1
r

+
1
r2 + ... +

1
rn+2

}
where M = max

0≤i≤l
0≤ j≤m

{|a2i|, |a2 j+1|}

≤ 2Mrn+2∑∞
k=1

1
rk

= 2Mrn+2 1
r − 1

.

Hence for |z| = r(> 1), it follows from (3.2) that

|Q(z)| ≥|a0|rn+2 − 2Mrn+2.
1

r − 1
> 0 if r >

|a0| + 2M
|a0|

i.e, |Q(z)| > 0 if |z| > |a0| + 2M
|a0| .
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Therefore,

|F(z)| > 0 if |z| > |a0| + 2M
|a0|

i.e, | fn(
1
z

)| > 0 if |z| > |a0| + 2M
|a0|

i.e, | fn(z)| > 0 if |z| < |a0|
|a0| + 2M

.

Thus, it follows by Lemma 2.1 that

| f (z)| > 0 if |z| < |a0|
|a0| + 2M

.

This completes the proof of the theorem. �

Remark 3.3. The following example with related figure ensures the validity of Theorem 3.3.

Example 3.3. Let f (z) = z2 sin 2z + cos z.
Now the Taylor’s series expansion of f (z) is

f (z) = 1 − z2

2
+ 2z3 +

z4

24
− 4z5

3
− ... .

Here, it follows that
|a0| ≥|a2| ≥|a4| ≥ ...

and
|a3| ≥|a5| ≥|a7| ≥ ... .

Hence by Theorem 3.3, f (z) does not vanish in

|z| < 0.2 .

Therefore,

|F(z)| > 0 if |z| > |a0| + 2M
|a0|

i.e, | fn(
1
z

)| > 0 if |z| > |a0| + 2M
|a0|

i.e, | fn(z)| > 0 if |z| < |a0|
|a0| + 2M

.

Thus, it follows by Lemma 2.1 that

| f (z)| > 0 if |z| < |a0|
|a0| + 2M

.

This completes the proof of the theorem. �

Remark 3.3. The following example with related figure ensures the validity of Theorem 3.3.

Example 3.3. Let f (z) = z2 sin 2z + cos z.
Now the Taylor’s series expansion of f (z) is

f (z) = 1 − z2

2
+ 2z3 +

z4

24
− 4z5

3
− ... .

Here, it follows that
|a0| ≥|a2| ≥|a4| ≥ ...

and
|a3| ≥|a5| ≥|a7| ≥ ... .

Hence by Theorem 3.3, f (z) does not vanish in

|z| < 0.2 .

x

y

| z |< 0.2

Figure 3.2: Zero free region of f (z) = z2 sin 2z + cos z about origin

4. Future prospect
In the line of the works as carried out in the paper one may think of the zero free region of transcendental entire
functions having general infinite series except Taylor series.
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Abstract

Summability is a branch of mathematical analysis in which an innite series which is usually divergent can converge
to a finite sum s (say) by ordinary summation techniques and become summable with the help of dierent summation
means or methods. C method was given by Ernesto Cesȧro such that ordinary Cesȧro summation was written as (C, l)
summation whereas generalised Cesȧro summation was given as (C, α). In 1913, Hardy [3] proved a theorem on
(C, a), a > 0 summability of the series. In this paper, comparison of relative strength of absolute summabilities for
functions has been investigated on different sets of parameters.
2020 Mathematical Sciences Classification: 42B05,42B08.
Keywords and Phrases: (D, k) means, (C, α) means, (C, α, b) means, (D, k)(C, α) product means, Fourier
Series,Conjugate Series, Lebesgue Integral.

1. Introduction
Kuttner [4] introduced the summability method (D, α) for functions and investigated some of its properties. Pathak
[13] discussed relative strength of summability |(D, k)(C, l)|p and absolute Cesro summability. Mishra and Srivastava
[7] introduced the Summability method (C, α, β) for functions by generalizing (C, α) summability method. In this
paper, we discuss relative strength of summability |(D, k)(C, α, β)|p and absolute Cesro summability for functions and
investigate a relation between different sets of parameters (α ≥ 0, p ≥ 1, β > −1).

2. Some Definitions
Let f (x) be any function which is Lebesgue-measurable, and that f : [0, +∞) → R, and integrable in (0, x) for any
finitex and which is bounded in some right hand neighborhood of origin. Integrals of the form

∫ ∞
0 are throughout to

be taken as limx→∞
∫ x

0 ,
∫ x

0 being a Lebesgue integral.
Let k > 0. If, for t > 0, the integral

g(t) = g(k)(t) = kt
∫ ∞

0

xk−1

(x + t)k+1 f (x)dx (2.1)

exists and if g(t)→ s as t → ∞, we say that function f (x) is summable (D, k) to the sum s and we write f (x)→ s(D, k)
as x→ ∞.

We note that, for any fixed t > 0, k > 0, it is necessary and sufficient for convergence of (2.1) that
∫ ∞

1

f (x)
x2 dx, (2.2)

should converge.
The (C, α, β) transform of f (x), which we denote by ∂α,β(x) is given by

Γ(α + β + 1)
Γ(α)Γ(β + 1)

1
xα+β

∫ x
0(x − y)α−1yβ f (y)dy, (α > 0, β > −1) (2.3)

If this exists for x > 0 and ∂α,β(x) tends to a limit sas x → ∞, we say that f (x) is summable (C, α, β) to s, and we
write f (x)→ s(C, α, β). We also write

Uk,α,β(t) = kt
∫ ∞

0

xk−1

(x + t)k+1 ∂α,β(x)dx, (2.4)

If this exists, and tends to a limit s as t → ∞, we say that the function f (x) is summable (D, k)(C, α, β) to s.
When β = 0, (D, k)(C, α, β) and (D, k)(C, α) denote the same method .
If α ≥ 0, p ≥ 1, β > −1, we say that f (y) is is summable |C, α, β|p (absolutely summable (C,α, β)) with index p

given by a result due to Deepmala et al. [1], if
∫ ∞

T yp−1

∣∣∣∣∣∣
d
dy
∂α,β(y)

∣∣∣∣∣∣
p

dy < ∞ for some T ≥ 0. (2.5)
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This is analogue (The (C, α, β) transform of f (x) ) for functions of definition for sequences given by Flett [2].
In any result involving |C, α, β|p for values of α < 1, we restrict ourselves to the case in which f (y) is an indefinite
Lebesgue integral of a function a(y), say; this ensures that the derivative

(
d
dy∂α,β(y)

)
exists almost everywhere (by a

result due to Mishra and Mishra [6]).
Such a restriction is not, however, needed when α ≥ 1. By analogy with Flett [2], it might at first sight appear and

one should define |C, α, β|p-summability by
∫ ∞

0 yp−1
∣∣∣∣∣

d
dy
∂α,β(y)

∣∣∣∣∣
p

dy < ∞, (α ≥ 0, β > −1, p > 1). (2.6)

Further suppose that k > 0, β > −1, α > 0 and p ≥ 1. Then we say that the function f (y) is summable
|(D, k)(C, α, β)|p or absolutely summable (D, k)(C, α, β) with index p, if the integral defined by

Uk,α,β(y) = ky
∫ ∞

0

xk−1

(x + y)k+1 ∂α,β(x)dx

converges for all y > 0, and
∫ ∞

1 y−1
∣∣∣∣∣y

d
dy

Uk,α,β

∣∣∣∣∣
p

dy < ∞. (2.7)

3. Main Results
In this section, we have the following theorems on the relative strength between |C, γ, β|pand |(D, k)(C, α, β)|p.

Theorem 3.1. Let α > γ ≥ 0, p ≥ 1, β > −1. If f (x) is summable |C, γ, β|p, then it is summable|C, α, β|p.

Theorem 3.2. α ≥ 0, p ≥ 1, γ ≥ 0. If f (x) is summable |C, γ, β|p, and the integral defined by Uk,α−1,β(y) exists
for all y > 0,then f (x) is summable |(D, k)(C, α, β)|pif k ≤ 1. Also the convergence of

∫ ∞
1
∂α,β(x)

x2 dxis implied by
|C, γ, β|psummability of f (x).

We first prove this theorem under definition (2.7). However ,if the result holds with (2.7), then it must also hold
under the definition of (2.5). This follows from the following two Lemmas

Lemma 3.1. Let p ≥ 1, γ > 1. Suppose that f (x) ∈ L(0, x) for finite x > 0.Suppose that |C, γ, β|p,according to the
definition (2.5). Define

f̄ (x) =

{
f (x) for x ≥ T
0 for x < T . (3.1)

Let ∂̄γ,β(y) denote the expression corresponding to ∂γ,β(y) with f (x) replaced by f̄ (x). Then
∫ ∞

0 yp−1
∣∣∣∣∣

d
dy
∂γ,β(y)

∣∣∣∣∣
p

dy < ∞. (3.2)

Thus f̄ (x) is summable |C, γ, β|punder the definition (2.7).(By a result due to Mishra and Mishra [5]).

Lemma 3.2. Let the hypothesis be as in Lemma 3.1, and define f (x) as above. Let k > 0, β > −1andα > 0.Then
|(D, k)(C, α, β)|psummability of { f (x)} and

{
f (x)

}
are equivalent.

Proof of Lemma 3.1. It is given that , for some T > 0,
∫ ∞

T xp−1
∣∣∣∣∣

d
dx
∂α,β(x)

∣∣∣∣∣
p

dx < ∞. (3.3)

Since, if (3.3) holds for given T , it holds for any greater T , it must hold for all sufficiently large T . Now since
γ > 1, therefore by standard properties of fractional integrals, we have

∫ T
0 (T − u)γ−2uβ | f (u)| du < ∞, (3.4)

for almost all T (and thus , in particular, for some arbitrary large T ), we may thus suppose that T should be chosen so
that (3.3) and (3.4) hold. Since ∂̄γ,β(x) = 0 for x < T, (3.2) will follow if

∫ ∞
T xp−1

∣∣∣∣∣
d
dx
∂γ,β(x)

∣∣∣∣∣
p

dx < ∞.
Since (3.3) holds, this will follow from Minkowski’s inequality if we prove that

∫ ∞
T xp−1

∣∣∣∣∣
d
dx

{
∂̄γ,β(x) − ∂γ,β(x)

}∣∣∣∣∣
p

dx < ∞. (3.5)
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Now , it follows at once from the definition that, forx > T,

∂̄γ,β(x) − ∂γ,β(x) =
Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

1
xγ+β

∫ T
0 (x − y)γ−1yβ f̄ (y)dy − Γ(γ + β + 1)

Γ(γ)Γ(β + 1)
1

xγ+β

∫ T
0 (x − y)γ−1yβ f̄ (y)dy

=
Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

1
xγ+β

∫ T
0 (x − y)γ−1

{
f̄ (y) − f (y)

}
dy

=
Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

1
xγ+β

∫ T
0 (x − y)γ−1yβ f (y)dy.

It follows easily that
Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

1
xγ+β+1

∫ T
0

[
β(x − y) + (x − γy)

]
(x − y)γ−2yβ f (y)dy.

For relevant values of variables ∣∣∣x − y
∣∣∣ ≤ x + γy ≤ x + γx, so that

∣∣∣∣∣
d
dx

{
∂̄γ,β(x) − ∂γ,β(x)

}∣∣∣∣∣ ≤
∣∣∣∣∣
Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

1
xγ+β+1

∫ T
0

[
β(x − y) + (x − γy)

]
(x − y)γ−2yβ f (y)dy

∣∣∣∣∣

≤ Γ(γ + β + 1)
Γ(γ)

(β + γ + 1)x
xγ+β+1

∫ T
0 (x − y)γ−2yβ | f (y)| dy.

If γ ≤ 2, then for x > T , we have (x − y)γ−2 ≤ (T − y)γ−2, so that
Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

(β + γ + 1)x
xγ+β

∫ T
0 (x − y)γ−2yβ | f (y)| dy

= Const.
xβ+γ by (3.4).
If γ ≥ 2, then (x − y)γ−2 ≤ xγ−2, so that

Γ(γ + β + 1)
Γ(γ)Γ(β + 1)

(β + γ + 1)x
xβ+2

∫ T
0 | f (y)| dy

= Const.
xβ+2 .
Since γ > 1, (3.5) will follow in any case.

Proof of Lemma 3.2. We use notations as in Lemma 3.1, and write further Ūk,α,β(y) for the expression corresponding
to Uk,α,β(y) but with f (x) replaced by f̄ (x) (by a result due to Mishra et al. [9]).

We know that for any fixed y > 0, k > 0, β > −1, α > 0 convergence of
Uk,α,β(y) = ky

∫ x
0

xk−1

(x+y)k+1 ∂α,β(x)dx, is equivalent to the convergence of
∫ ∞

1
∂α,β(x)

x2 dx.Then the conclusion will follow
from Minkowski’s inequality, if we show that

∫ ∞
1 yp−1

∣∣∣∣∣
d
dy

{
Uk,α,β(y) − Ūk,α,β(y)

}∣∣∣∣∣
p

dy < ∞, (3.6)

where we take (3.6) as including the assertion that the integral defined by Uk,α,β(y) − Ūk,α,β(y) converges for all y > 0.
For large y,we have

Γ(γ + β + 1)
Γ(α)Γ(β + 1)

1
yα+β

∫ T
0 (y − x)α−1xβ f (x)dx =

1
yα+β

yα−1
∫ T

0 (y − x)α−1xβ | f (x)| dx

= O(
1

yα+β
)
∫ T

0 xβdx

= O(
T

yα+β
)β+1 = O(

1
y

)β+1, (T < y). (3.7)

Hence the convergence of ky
∫ x

0
xk−1

(x+y)k+1 ∂α,β(x)
{
∂α,β(x) − ∂̄α,β(x)

}
dx, follows at once by a result due to Mishra and

Mishra [5]. Now (3.6) is equivalent to
∫ ∞

1 yp−1dy

∣∣∣∣∣∣c
∫ ∞

0

xk−1

(x + y)k+2 (x − ky)
{
∂α,β(x) − ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

< ∞. (3.8)

Let T0 be any sufficiently large constant. Then (3.8) will follow from Minkowski’s inequality, if we show that
∫ ∞

1 yp−1dy

∣∣∣∣∣∣c
∫ T0

0

xk−1

(x + y)k+2 (x − ky)
{
∂α,β(x) − ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

< ∞. (3.9)
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∫ ∞
1 yp−1dy

∣∣∣∣∣∣c
∫ ∞

T0

xk−1

(x + y)k+2 (x − ky)
{
∂α,β(x) − ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

< ∞. (3.10)

For x < T0 , we have |x − ky| ≤ x + kx ≤ x(k + 1) ≤ T0(k + 1) = C (Const.) .
By (3.9), we have

∫ ∞
1 yp−1dy

∣∣∣∣∣∣c
∫ T0

0

xk−1

(x + y)k+2 (x − ky)
{
∂α,β(x) − ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

= O(1)
∫ ∞

1 yp−1dy
∣∣∣y−k−2T k

0

∣∣∣p

= O(1)
∫ ∞

1 y−kp−p−1dy

= O(1)
[
y−kp−p

]∞
1

= O(1).

Hence (3.9) follows .
By (3.7), the expression on the left of (3.10) does not exceed a constant. Thus

∫ ∞
1 yp−1dy

∣∣∣∣∣∣c
∫ ∞

T0

xk−1

(x + y)k+2 (x − ky)
{
∂α,β(x) − ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

=
∫ ∞

1 yp−1dy
∣∣∣∣∣c
∫ ∞

T0
(x + y)−2o(

1
x

)β+1dx
∣∣∣∣∣
p

=
∫ ∞

1 yp−1dy
∣∣∣∣∣c
∫ ∞

T0
(x + y)−2o(

1
x

)β+1dx
∣∣∣∣∣
p

= o(1)
∫ ∞

1 yp−1dy
∣∣∣∣
∫ ∞

T0
(x + y)−2x−β−1dx

∣∣∣∣
p

(3.11)

By an obvious change of variables the expression (3.11) is equal to

o(1)
∫ ∞

1 yp−1dy
∣∣∣∣
∫ ∞

y t−2(t − y)−β−1dt
∣∣∣∣
p

= o(1)
∫ ∞

1 yβp−p−1dy

= o(1)C = C.

The result follows.
Proof of Theorem 3.2. We divide the proof into the following cases .

Case I. α > γ,
Case II. α = γ,
Case III. α < γ.
Here we observe that Case I and II follow from Case III, with the aid of Theorem 3.1 .
For, if α ≥ γ, Choose any γ

′
> α, summability |C, γ, β|pimplies summability

∣∣∣C, γ′ , β
∣∣∣
pby Theorem 3.1, and it

follows from Case III, that this implies |(D, k)(C, α, β)|p. Hence it is sufficient to consider the Case III only.
Proof of Case III. Since f (x) → s(C, α, β) implies that f (x) → s(C, α

′
, β) for α

′
> α > o, there is no loss of

generality in considering the Case γ = α + k, kis a positive integer. We have, by Mishra & Mishra [5]

d
dy

Uk,α,β(y) = C
∫ ∞

T0

xk−1

(x + y)k+2 (x − ky)∂α,β(x)dx. (3.12)

Now, by definition
Γ(α + β + 1)

Γ(α + p + γ)(γ + β + 1)
1

yα+β+p

∫ x
0(x − t)α−γ+p−1tγ+β∂α,β(t)dt.

Putting p = 1 and α = γ, we see that
(α + β + 1)

xα+β+1

∫ x
0tα+β∂α,β(t)dt. (3.13)

We also write
∫ ∞

x
∂α,β(t)

t2 dt.

It is clear that, whenever
∫ ∞

1
∂α,β(x)

x2 dx converges,
Rα,β(x) is defined for x > 0, and that Rα,β(x)→ 0 as x→ ∞.
It follows immediately from (3.13) that

∂α+1,β(x) = − (α + β + 1)
xα+β+1

∫ x
0tα+βt2dRα,β(t)dt

= o(x1)
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and hence that, for p ≥ 1.
∂α+1,β(x) = o(x1). (3.14)

Now by (3.12), we have
d
dy

Uk,α,β(y) = C
∫ ∞

0

xk−α−β−1

(x + y)k+2 (x − ky)xα+β∂α,β(x)dx. (3.15)

Integrating (3.15) by parts k times,we deduce with the help of (3.14) that
d
dy

Uk,α,β(y) = (−1)kC
∫ ∞

0 xα+β+k∂α+k,β(x)
{

dk

dxk

[
xk−α−β−1

(x + y)k+2 (x − ky)
]}

dx.. (3.16)

It is easily verified that the expression in curly brackets (3.16) is

o
(

xk−α−β−1

(x + y)k+1

)
. (3.17)

Let
∫ x

0tα+β+k dk

dxk

[
tk−α−β−1

(t+y)k+2 (t − ky)
]

dt.
In fact, for fixed k > 0, due to result of Mishra et al. [11], we have uniformly for x > 0, y > 0,

R(x, y) = 0
(

xk

(x + y)k+1

)
. (3.18)

This may be proved by induction onk, if k = 0, we have
∫ x

0tα+β

[
tk−α−β−1

(t + y)k+2 (t − ky)
]

dt

=
∫ x

0

tk−1

(t + y)k+2 (t − ky)dt

=
∫ x

0

d
dt

(
− tk

(t + y)k+1

)
dt

=
xk

(x + y)k+1 ,

hence the result is evident. Suppose that k ≥ 1, and assume the result true for k − 1. Integrating by parts, we have

R(x, y) = xα+β+k dk−1

dxk−1

[
xk−α−β−1

(x + y)k+2
(x − ky)

]
− (α + β + k)

∫ x
0tα+β+k+1 ∂

k−1

∂tk−1

{
tk−α−β−1

(t + y)k+2
(t − ky)

}
dt.

the first term is of required order by (3.17) (with k replaced by k-1), and the second by induction hypothesis. Mishra
et al. [12] also obtained a result of this type in degree of approximation using variation spaces.

Now integrating (3.16) by parts, we have
d
dy

Uk,α,β(y)

=
∫ ∞

0 R(x, y)
(

d
dx
∂α+k,β(x)

)
dx

=
∫ ∞

0 R(x, y)
(

d
dx
∂γ,β(x)

)
dx.

Since the integrated term tends to 0 as ∂γ,β(x) is bounded and R(x, y)→ 0asx→ ∞.
Now we have ∣∣∣∣∣

d
dy

Uk,α,β(y)
∣∣∣∣∣
p

≤ c

∣∣∣∣∣∣∣
∫ ∞

0

{
R(x, y)xp−1

} 1
p

(
d
dx
∂γ,β(x)

) {
R(x, y)

x

} 1
q

dx

∣∣∣∣∣∣∣

p

.

Applying Holder’s inequality with indices p and p
p−1 , we have

∣∣∣∣∣
d
dy

Uk,α,β(y)
∣∣∣∣∣
p

≤ c
∫ ∞

0

{
R(x, y)xp−1

} ∣∣∣∣∣
d
dx
∂γ,β(x)

∣∣∣∣∣
p {∫ ∞

0

|R(x, y)|
x

dx
}p−1

.

Using (3.18) and putting x = ty, we see that the expression in curly brackets

≤ C
∫ x

0

xk−1

(x + y)k+1 dx =
C
y

∫ x
0

tk−1

(1 + t)k+1 dt =
C
y
,
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(Since the integral converges). Hence
∫ ∞

0 yp−1
∣∣∣∣∣

d
dy

Uk,α,β(y)
∣∣∣∣∣
p

≤
∫ ∞

0 dy
∫ ∞

0 xp−1
∣∣∣∣∣

d
dx
∂γ,β(x)

∣∣∣∣∣
p

|R(x, y)| dx

= C
∫ ∞

0 xp−1
∣∣∣∣∣

d
dx
∂γ,β(x)

∣∣∣∣∣
p

dx |R(x, y)| dy.

Again using (3.18) , the inner integral

≤ Cxk
∫ ∞

0

1
(x + y)k+1 dy, (3.19)

on putting y = xt, the expression on the right of (3.19) is equal to

C
∫ ∞

0

1
(1 + t)k+1 dt = C.

Now
∫ ∞

1

∂α,β(x)
x2 dx =

∫ x
1

xα+β∂α+β(x)
xα+β+2 dx

=
∂α+1,β(x)

(α + β + 1)x
− ∂α+1,β(1)

(α + β + 1)
+

(α + β + 2)
(α + β + 1)

∫ x
1

∂α+1,β(x)
x2 dx.

But we have ∫ ∞
1 xp−1

∣∣∣∣∣
d
dx
∂α+1,β(x)

∣∣∣∣∣
p

dx < ∞.

Also, we have
∫ x

1

(
d
dx
∂α+1,β(x)

)
dx. (3.20)

By Hölder’s inequality with indices p and q, we have
∣∣∣∣∣∣
∫ x

1

(
d
dx
∂α+1,β(x)

)
dx

∣∣∣∣∣∣ ≤
(∫ x

1xp−1
∣∣∣∣∣

d
dx
∂α+1,β(x)

∣∣∣∣∣
p

dx
) 1

p
(∫ x

1

1
x

dx
) 1

q

= O(log x)
1
q . (3.21)

From (3.20) and (3.21), we see that∫ ∞
1
∂α,β(x)

x2 dx is convergent.

4. Conclusion
The paper concludes that, if function f (x) is summable |C, γ, β|p, then it is summable|C, α, β|p under the conditions
α > γ ≥ 0, p ≥ 1, β > −1.This gives comparison of two absolute summabilities .
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Abstract

In this paper, we prove some fixed point result for mapping satisfying a generalized contractive condition of
rational type in partially ordered metric space. Our results generalize and extend some already proved result in the
literature.
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1. Introduction
Fixed point theory is one of the most important tool in the study of nonlinear analysis in which Banach contraction
principle (BCP) the most versatile result. The BCP plays an important role for solving functional equation in different
fields of mathematics. Many authors extended and generalized the BCP. In recent times, fixed point results in partially
ordered metric space have been used to solve nonlinear equations in different branches of mathematics . The first result
in partially ordered set was given by Wolk [17] in 1975 and later by Monjardet [10] in 1981. Ran and Reurings [15]
studied the existence of fixed point result in partially ordered metric space and gave some application to solve linear
as well as nonlinear matrix equations. Nieto et al. [[11], [12], [13]] extended their results for non-decreasing mapping
and found the solution of first order ordinary differential equation with periodic boundary conditions. Agarwal et
al. [1] also generalized contraction conditions in partially ordered metric space and gave some new fixed point
results. In partially ordered metric space, the concept of mixed monotone mappings was introduced by Bhaskar and
Lakshmikantham [3]. They obtained some coupled fixed point results and also applied their result to obtain unique
solution for first order ordinary differential equation with periodic boundary conditions. Many authors have obtained
fixed point, coupled fixed point, common fixed point and coupled common fixed point results in partially ordered
metric space (see [2], [4], [5], [7], [8], [9], [14], [16]).

In [6] Dass and Gupta proved the following fixed point theorem.

Theorem 1.1. Let (U, %) be a comlplete metric space and Q : U −→U be a self mapping such that their exist β1, β2 ≥ 0
with β1 + β2 < 1 satisfying

%(Qµ,Qν) ≤ β1
%(ν,Qν)[1 + %(µ,Qµ)]

1 + %(µ, ν)
+ β2%(µ, ν)

for all µ, ν ∈ U. Then Q has a fixed point.

Cabrera et al. [4] extended the result of Dass and Gupta [6] and established a fixed point result in partially ordered
metric spaces.

The purpose of this paper is to establish some fixed point result for generalized contraction mapping satisfying a
generalized rational type expression in the framework of partially ordered metric space. Also, we establish a result for
existence and uniqueness of fixed point for such class of mappings.

The following definitions are needed to prove our main result.

Definition 1.1. Suppose (U,≤) be a partially ordered set and let Q : U → U be a self mapping. Q is said to be
monotone non-decreasing if for all µ, ν ∈ U,

µ ≤ ν implies Qµ ≤ Qν.

Definition 1.2. Let (U,≤) be a partially ordered set and let Q : U −→ U be a self mapping. Then
(1) Element µ, ν ∈ U are comparable, if µ ≤ ν or ν ≤ µ holds.
(2) A non-empty set U is called well ordered set, If two elements of it are comparable.
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2. Main Result
Theorem 2.1. Let (U,≤) be a partially ordered set and suppose that there exist a metric % in U such that (U, %) is a
complete metric space. Let Q is a continuous self mapping on U,Q is monotone non-decreasing mapping such that

%(Qµ,Qν) ≤ β1
%(ν,Qν)[1 + %(µ,Qµ)]

1 + %(µ, ν)
+ β2

%(µ,Qµ).%(ν,Qν)
%(µ, ν)

+ β3[%(µ,Qµ) + %(ν,Qν)]

+ β4[%(µ,Qν) + %(ν,Qµ)] + β5%(µ, ν) (2.1)

for all µ, ν ∈ U, µ , ν, µ ≥ ν and for some β1, β2, β3, β4, β5 ∈ [0, 1) with 0 ≤ β1 + β2 + 2β3 + 2β4 + β5 < 1, if there
exist µ0 ∈ U with µ0 ≤ Qµ0, then Q has a fixed point.

Proof. If Qµ0 = µ0, then the theorem is proved. So, suppose that µ0 < Qµ0. Since, Q is monotone non-decreasing
mapping. Therefore, by using mathematical induction, we get

µ0 < Qµ0 ≤ Q2µ0 ≤ ... ≤ Qnµ0 ≤ Qn+1µ0 ≤ ... .
This gives a sequence {µn} in U such that µn+1 = Qµn, for every n ≥ 0.
Since, Q is monotone non-decreasing mapping, we have

µ0 ≤ µ1 ≤ µ2 ≤ ... ≤ µn ≤ µn+1 ≤ ... .
If there exist n ≥ 1 such that µn+1 = Qµn = µn, µn is a fixed point then the proof is finished.
So, Suppose that µn+1 , µn, for all n ≥ 0.
Since µn ≤ µn+1 for any n ∈ N.
For n ≥ 1, using contractive condition (2.1), we get

%(µn, µn+1) = %(Qµn−1,Qµn)

≤ β1%(µn,Qµn)[1 + %(µn−1,Qµn−1)]
1 + %(µn−1, µn)

+
β2%(µn−1,Qµn−1).%(µn,Qµn)

%(µn−1, µn)
+ β3[%(µn−1,Qµn−1) + %(µn,Qµn)] + β4[%(µn−1,Qµn) + %(µn,Qµn−1)] + β5%(µn−1, µn)

≤ β1%(µn, µn+1)[1 + %(µn−1, µn)]
1 + %(µn−1, µn)

+
β2%(µn−1, µn).%(µn, µn+1)

%(µn−1, µn)
+ β3[%(µn−1, µn) + %(µn, µn+1)] + β4[%(µn−1, µn+1) + %(µn, µn)] + β5%(µn−1, µn).

Finally, we obtain

%(µn, µn+1) ≤
(

β3 + β4 + β5

1 − (β1 + β2 + β3 + β4)

)
%(µn−1, µn).

Now, Using mathematical induction, we have

%(µn, µn+1) ≤
(

β3 + β4 + β5

1 − (β1 + β2 + β3 + β4)

)n

%(µ0, µ1).

Put K =
β3+β4+β5

1−(β1+β2+β3+β4) < 1. Now, suppose that {µn} is a cauchy sequence. For m ≥ n, we have

%(µn, µm) ≤ %(µn, µn+1) + %(µn+1, µn+2) + ...... + %(µm−1, µm)
≤ (Kn + Kn+1 + .... + Km−1)%(µ0, µ1)

≤
(

Kn

1 − K

)
%(µ0, µ1).

Taking Lim n,m→∞, we get

lim
n,m→∞ %(µn, µm) = 0 (∵ K < 1).

Thus, {µn} is a cauchy sequence.
Now, since (U,%) is a complete metric space. Therefore,

lim
n→∞ µn = µ, for some µ ∈ U.

Also, Q is continuous. Therefore,

Qµ = Q( lim
n→∞ µn) = lim

n→∞Qµn = lim
n→∞ µn+1 = µ.

Hence, µ is a fixed point. �
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Now, we will show that Theorem 2.1 is still valid for Q not necessarily continuous, assuming the following
hypothesis in U:

If µn is a non-decreasing sequence in U such that µn → µ, then µ = sup{µn}. (2.2)

Theorem 2.2. Let (U,≤) be a partially ordered set and suppose that there exist a metric % on U such that (U, %) is a
complete metric space. Suppose that Q be a self mapping on U. Q is monotone non-decreasing mapping and

%(Qµ,Qν) ≤ β1
%(ν,Qν)[1 + %(µ,Qµ)]

1 + %(µ, ν)
+ β2

%(µ,Qµ).%(ν,Qν)
%(µ, ν)

+ β3[%(µ,Qµ) + %(ν,Qν)] + β4[%(µ,Qν) + %(ν,Qµ)] + β5%(µ, ν) (2.3)

for all µ, ν ∈ U, µ , ν, µ ≥ ν and for some β1, β2, β3, β4, β5 ∈ [0, 1) with 0 ≤ β1 + β2 + 2β3 + 2β4 + β5 < 1. And assume
that {µn} is a non-decreasing sequence in U such that µn → µ, then µ = sup{µn}. If there exist µ0 ∈ U with µ0 ≤ Qµ0.
Then Q has a fixed point.

Proof. Following the proof of the Theorem 2.1, we have {µn} is a cauchy sequence. Since, {µn} is a non-decreasing
sequence in U such that µn → µ, then µ = sup{µn}. Particularly, µn ≤ µ, for all n ∈ N.

Since, Q is a monotone non-decreasing mapping Qµn ≤ Qµ, for all n ∈ N. Moreover, as µn < µn+1 ≤ Qµ and µ =

sup{µn}, we get µ ≤ Qµ.
Construct a sequence {νn} as ν0 = µ, νn+1 = Qνn, for all n ≥ 0. Since, ν0 ≤ Qν0 aruguing as above we obtain that

{νn} is non-decreasing sequence and lim
n→∞ νn = ν for some ν ∈ U. So, we have ν = sup{νn}.

Since µn ≤ µ = ν0 ≤ Qµ = Qν0 ≤ νn ≤ ν for all n. Using (2.3), we have

%(µn+1, νn+1) = %(Qµn,Qνn)

≤ β1%(νn,Qνn)[1 + %(µn,Qµn)]
1 + %(µn, νn)

+
β2%(µn,Qµn).%(νn,Qνn)

%(µn, νn)
+ β3[%(µn,Qµn) + %(νn,Qνn)] + β4[%(µn,Qνn) + %(νn,Qµn)] + β5%(µn, νn)

≤ β1
%(νn, νn+1)[1 + %(µn, µn+1)]

1 + %(µn, νn)
+
β2%(µn, µn+1).%(νn, νn+1)

%(µn, νn)
+ β3[%(µn, µn+1) + %(νn, νn+1)] + β4[%(µn, νn+1) + %(νn, µn+1)] + β5%(µn, νn).

Taking n→ ∞ in the last inequality, we have %(µ, ν) ≤ ( 2β4 + β5)%(µ, ν).
As 2β4 + β5 < 1. We have %(µ, ν) = 0. Particularly µ = ν = sup{νn} and consquently µ ≤ Qµ ≤ µ. Hence, we

conclude that µ is a fixed point of Q. �

Now, we will give an example where it can be proved that assumption in Theorem 2.1 do not guarantee the
uniqueness of the fixed point.

Example 2.1. Let U = {(1, 2), (2, 1)} ⊂ R2 and consider the usual order given by

(µ, ν) ≤ (ω, χ)⇐⇒ µ ≤ ω, ν ≤ χ.
Hence, (U,≤) is a partially ordered set in which distinct non-comparable elements. Besides (U, %2) is a complete

metric space, where %2 is the Euclidean distance. The identity map Q(µ, ν) = (µ, ν) is obviously non-decreasing and
continuous and assumption (2.1) of Theorem 2.1 is satified because elements in U are only comparable to themselves.
Moreover, (1,2) ≤ Q(1, 2) and Q has two fixed point in U.

In what follow, we can give a sufficient condition for the uniqueness of the fixed point in Theorem 2.1 and Theorem
2.2. This condition appear in [15].

For µ, ν ∈ U, their exist a lower bound or an upper bound.
In [11], it is proved that the above condition is equivalent to

For µ, ν ∈ U, their exist ω ∈ U which is comparable to µ and ν. (2.4)

Theorem 2.3. Adding condition (2.4) to the assumption of Theorem 2.1 and Theorem 2.2. We obtain uniqueness of
the fixed point of Q.

Proof. Suppose that their exist µ, ν ∈ U which are two fixed point of Q. Now, we have two different cases.
Case 1. If µ , ν, µ and ν are comparable. Then using (2.1), we have

%(µ, ν) = %(Qµ,Qν)
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≤ β1%(ν,Qν)[1 + %(µ,Qµ)]
1 + %(µ, ν)

+
β2%(µ,Qµ).%(ν,Qν)

%(µ, ν)
+ β3[%(µ,Qµ) + %(ν,Qν)] + β4[%(µ,Qν) + %(ν,Qµ)] + β5%(µ, ν)

≤ β1%(ν, ν)[1 + %(µ, µ)]
1 + %(µ, ν)

+
β2%(µ, µ).%(ν, ν)

%(µ, ν)
+ β3[%(µ, µ) + %(ν, ν)] + β4[%(µ, ν) + %(ν, µ)] + β5%(µ, ν)

%(µ, ν) ≤ (2β4 + β5)%(µ, ν).

As 2β4 + β5 < 1.
Therefore, lim

n→∞ %(µ, ν) = 0. Hence µ = ν.
Case 2. if µ is not comparable to ν, then their exist ω ∈ U which is comparable to µ and ν. Monotonicity implies that
Qnω is comparable to Qnµ = µ and Qnν = ν for n = 0,1,2,3,..... If their exist n0 ≥ 1 such that Qn0ω = µ, then as µ is a
fixed point, the sequence { Qnω : n ≥ n0} is constant and consequently, lim

n→∞ Qnω = µ.
On the other hand, if Qnω , µ, for n ≥ 1, using the contractive condition, we obtain for n ≥ 2

%(Qnω, µ) = %(Qnω,Qnµ)
= %(Q(Qn−1ω),Q(Qn−1µ))

≤ β1%(Qn−1µ,Qnµ)[1 + %(Qn−1ω,Qnω)]
1 + %(Qn−1ω,Qn−1µ)

+
β2%(Qn−1ω,Qnω).%(Qn−1µ,Qnµ)

%(Qn−1ω,Qn−1µ)
+ β3[%(Qn−1ω,Qnω) + %(Qn−1µ,Qnµ)] + β4[%(Qn−1ω,Qnµ) + %(Qn−1µ,Qnω)]
+ β5%(Qn−1ω,Qn−1µ)

≤ β1
%(µ, µ)[1 + %(Qn−1ω,Qnω)]

1 + %(Qn−1ω, µ)
+
β2%(Qn−1ω,Qnω).%(µ, µ)

%(Qn−1ω, µ)
+ β3[%(Qn−1ω,Qnω) + %(µ, µ)] + β4[%(Qn−1ω, µ) + %(µ,Qnω)] + β5%(Qn−1ω, µ).

Finally, we obtain

%(Qnω, µ) ≤
(
β3 + β4 + β5

1 − β3 − β4

)
%(Qn−1ω, µ).

Using mathematicial induction, we have

%(Qnω, µ) ≤
(
β3 + β4 + β5

1 − β3 − β4

)n

%(ω, µ)

and as
β3 + β4 + β5

1 − β3 − β4
< 1. Therefore, We have lim

n→∞ Qnω = µ. Using a similar argument, we can show that lim
n→∞ Qnω =

ν. Now, the uniqueness of the limit implies µ = ν . Hence, Q has a unique fixed point. �

Remark 2.1. If β1 = β3 = β4 = 0 in Theorems 2.1, 2.2 and 2.3 then we have Theorems 2.2, 2.3 and 2.4 of Harjani et
al. [8].

Remark 2.2. If β2 = β3 = β4 = 0 in Theorems 2.1, 2.2 and 2.3 then we have Theorems 2, 3 and 4 of Cabrera et al. [4].

Remark 2.3. If β1 = β2 = β3 = β4 = 0 in Theorems 2.1, 2.2 and 2.3 then we have Theorems 2.1, 2.2 and 2.3 of Nieto
et al. [11].

Finally, we will give an example where Theorem 2.1 can be applied.

Example 2.2. Let U = {(1, 2), (2, 1), (2, 2)} and consider in U the partial order given by R = {(µ, µ) : µ ∈ U}. Notice
that elements in U are only comparable to themselves. Besides, (U,%2) is a complete metric space considering %2, is
the Euclidean distance.

Let Q : U −→ U be defined by
Q(1,2) = (2,1) , Q(2,1) = (1,2) , Q(2,2) = (2,2)
Q is obiviously non-decreasing and continuous and assumption (2.1) of Theorem 2.1 is satisfied. Because, elements

in U are only comparable to themselves. Moreover, (2,2) ≤ Q(2,2) = (2,2) and by Theorem 2.1 Q has a fixed point (
Obiviously this fixed point is (2,2)).

If we take µ = (1,2) and ν = (2,1) ∈ U, then
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%(Qµ,Qν) =
√

2, %(µ,Qµ) =
√

2, %(ν,Qν) =
√

2, %(µ, ν) =
√

2
and the contractive condition appearing in Theorem 1.1 is not satisfied, beacause

%(Qµ,Qν) =
√

2 ≤ β1 %(ν,Qν).[1 + %(µ,Qµ)]
1 + %(µ, ν)

+ β2%(µ, ν).

√
2 ≤ β1

√
2 (1 +

√
2)

(1 +
√

2)
+ β2

√
2.

√
2 ≤ β1

√
2 + β2

√
2.

and thus β1 + β2 ≥ 1.

3. Conclusion
In this article, we extend and generalized a contraction condition of Dass and Gupta [6] and proved some fixed point
Theorems for new generalized contraction mapping in partially ordered metric space. Also, we establish a result for
existence and uniqueness of fixed point for such class of mappings. We also give an example in support of our results.
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Abstract

In this paper we consider iteration of three entire functions and study comparative growth of the maximum term
of generalist iterated entire functions with that of the maximum term of the related functions.
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1. Introduction
Let f (z) =

∑∞
n=0anzn be an entire function. Then M(r, f ) = max|z|=r | f (z)| and µ(r, f ) = maxn |an|rn are respectively

called the maximum modulus and maximum term of f (z) on |z| = r.

Definition 1.1. The order ρ f and lower order λ f of an entire function f (z) is defined as

ρ f = lim sup
r→∞

log log M(r, f )
log r

and
λ f = lim inf

r→∞
log log M(r, f )

log r
.

A simple but useful relation between M(r, f ) and µ(r, f ) is given in the following theorem.

Theorem 1.1 ([10]). For 0 ≤ r < R,

µ(r, f ) ≤ M(r, f ) ≤ R
R − r

µ(R, f ).

Taking R = 2r, for all sufficiently large values of r, we have

µ(r, f ) ≤ M(r, f ) ≤ 2µ(2r, f ). (1.1)

Taking two times logarithms in (1.1), we can easily verify that

ρ f = lim sup
r→∞

log logµ(r, f )
log r

and
λ f = lim inf

r→∞
log logµ(r, f )

log r
.

Definition 1.2 ([2]). Let f(z), g(z) and h(z) be three entire functions defined in the open complex plane. Then the
generalized iterations of f with respect to g and h are defined as follows:

f1 (z) = f (z)

f2 (z) = f (g (z)) = f (g1 (z))

f3 (z) = f (g (h (z))) = f (g (h1 (z))) = f (g2 (z))

f4 (z) = f (g (h ( f (z)))) = f (g (h2 (z))) = f (g3 (z))
...

fn (z) = f (g(h( f ..( f (z) or g (z) or h (z) according as n = 3m − 2 or 3m − 1
or 3m)...)))

= f (gn−1 (z)) = f (g (hn−2 (z))) .

Similarly,
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g1 (z) = g (z)

g2 (z) = g (h (z)) = g (h1 (z))

g3 (z) = g (h ( f (z))) = g (h ( f1 (z))) = g (h2 (z))

g4 (z) = g (h ( f (g (z)))) = g (h ( f2 (z))) = g (h3 (z))
...

gn (z) = g(h( f (g...(g (z) or h (z) or f (z) according as n = 3m − 2 or 3m − 1
or 3m)...)))

= g (hn−1 (z)) = g (h ( fn−2 (z)))

and

h1 (z) = h (z)

h2 (z) = h ( f (z)) = h ( f1 (z))

h3 (z) = h ( f (g (z))) = h ( f (g1 (z))) = h ( f2 (z))

h4 (z) = h ( f (g (h (z)))) = h ( f (g2 (z))) = h ( f3 (z))
...

hn (z) = h( f (g(h...(h (z) or f (z) or g (z) according as n = 3m − 2 or 3m − 1
or 3m)...)))

= h ( fn−1 (z)) = h ( f (gn−2 (z))) .

Clearly all fn(z), gn(z) and hn(z) are entire functions.
Notations 1.1 ([9]). Let log[0]x = x, exp[0]x = x and for positive integer m, log[m]x = log(log[m−1]x), exp[m]x =

exp(exp[m−1]x).
In 1989, A. P. Singh [10] studied the growth of composite entire function in terms of maximum term. Later on

Lahiri and Sarma [8] studied growth property of composite entire function in terms of maximum terms. Recently
Banerjee and Dutta [1], Dutta [4], [5], Dutta and Mandal [6] investigated growth of iterated entire function in terms of
maximum terms and improve some earlier results.

In this paper, we study growth properties of the maximum term of generalist iterated entire functions as compared
to the growth of the maximum term of the related function to generalist some earlier results. Throughout the papers
we denote by f (z), g(z), h(z) etc. non-constant entire functions of order (lower order) ρ f (λ f ), ρg(λg), ρh(λh) etc. We
do not explain the standard notations and definitions of the theory of entire functions as those are available in [7], [11],
[12].

2. Main results
The following lemmas will be needed in the sequel.

Lemma 2.1 ([3]). If f and g are any two entire functions, for all sufficiently large values of r,

M
(

1
8

M
( r
2
, g

)
− |g(0)|, f

)
≤ M(r, f ◦ g) ≤ M(M(r, g), f ).

Lemma 2.2 ([5]). If λg is finite, then

lim inf
r→∞

log M(r, g)
log µ(r, g)

≤ 2λg .

Lemma 2.3. If ρ f , ρg and ρh are finite, then for any ε > 0,

log[n] µ(r, fn) ≤


(ρg + ε) log M(r, h) + O(1) when n = 3k,
(ρh + ε) log M(r, f ) + O(1) when n = 3k + 1,
(ρ f + ε) log M(r, g) + O(1) when n = 3k + 2

for all sufficiently large values of r and a positive integer k.
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Proof. First suppose that n = 3k then in view of (1.1) and by Lemma 2.1 it follows that for all sufficiently large values
of r,

µ(r, fn) ≤ M(r, fn)
≤ M(M(r, gn−1), f )

i.e., log µ(r, fn) ≤ log M(M(r, gn−1), f )
≤ [M(r, gn−1)]ρ f +ε.

So, log[2] µ(r, fn) ≤ (ρ f + ε) log M(r, g(hn−2))
≤ (ρ f + ε)[M(r, hn−2)]ρg+ε.

i.e., log[3] µ(r, fn) ≤ (ρg + ε) log M(r, hn−2) + O(1).
.... .... .... ....

.... .... .... ....

Therefore log[n] µ(r, fn) ≤ (ρg + ε) log M(r, h) + O(1).
Similarly for all sufficiently large values of r,

log[n] µ(r, fn) ≤ (ρh + ε) log M(r, f ) + O(1) for n = 3k + 1,
and

log[n] µ(r, fn) ≤ (ρ f + ε) log M(r, g) + O(1) for n = 3k + 2.

This proves the lemma 2.3. �

Lemma 2.4. If λ f , λg and λh are non-zero finite, then

log[n] µ(r, fn) ≥


(λg − ε) log M(r, h) + O(1) when n = 3k,
(λh − ε) log M(r, f ) + O(1) when n = 3k + 1,
(λ f − ε) log M(r, g) + O(1) when n = 3k + 2

for all sufficiently large values of r and k is natural number.

Proof. First suppose that n = 3k. Let ε(> 0) be such that ε < min{λ f , λg, λh}. Now we have from [10] for all
sufficiently large values of r,

µ(r, f ◦ g) > e[M(r,g)]λ f −ε
.

So,
log µ(r, f ◦ g) > [M(r, g)]λ f−ε. (2.1)

Now
log µ(r, fn) = log µ(r, f (gn−1))

> [M(r, gn−1)]λ f−ε (using (2.1))
≥ [µ(r, gn−1)]λ f−ε (from (1.1)).

Therefore,
log[2] µ(r, fn) > (λ f − ε) log µ(r, g(hn−2))

> (λ f − ε)[M(r, hn−2)]λg−ε (using (2.1)).
Hence

log[3] µ(r, fn) > (λg − ε) log[µ(r, hn−2)] + O(1)
> (λg − ε)[M(r, fn−3)]λh−ε + O(1).

Taking repeated logarithms, we have
log[n−1]µ(r, fn) ≥ (λ f − ε)[M(r, h)]λg−ε + O(1).

Therefore
log[n] µ(r, fn) ≥ (λg − ε) log M(r, h) + O(1).

Similarly,
log[n] µ(r, fn) ≥ (λh − ε) log M(r, f ) + O(1) when n = 3k + 1,

and
log[n] µ(r, fn) ≥ (λ f − ε) log M(r, g) + O(1) when n = 3k + 2.

This proves the lemma. �
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Theorem 2.1. If ρ f , ρg and ρh are finite, then

(i) lim inf
r→∞

log[n] µ(r, fn)
log µ(r, h)

≤ ρg2λh when n = 3k,

(ii) lim inf
r→∞

log[n] µ(r, fn)
log µ(r, f )

≤ ρh2λ f when n = 3k + 1

and

(iii) lim inf
r→∞

log[n] µ(r, fn)
log µ(r, g)

≤ ρ f 2λg when n = 3k + 2.

Proof. When n = 3k, we have from Lemma 2.3 for all sufficiently large values of r,

log[n] µ(r, fn) ≤ (ρg + ε) log M(r, h) + O(1).

∴ lim inf
r→∞

log[n] µ(r, fn)
log µ(r, h)

≤ (ρg + ε) lim inf
r→∞

log M(r, h)
log µ(r, h)

.

Since ε > 0 is arbitrary, we get from Lemma 2.2,

lim inf
r→∞

log[n] µ(r, fn)
log µ(r, h)

≤ ρg2λh .

Similarly we get the other two results.
This proves the theorem. �

Theorem 2.2. Let f (z), g(z) and h(z) be entire functions of finite order and n=3k then

(i) lim sup
r→∞

log[n] µ(r, fn)
log µ(r, f )

= 0 for ρh < λ f

and

(ii) lim sup
r→∞

log[n] µ(r, fn)
log µ(r, g)

= 0 for ρh < λg.

Proof. When n = 3k, we have from Lemma 2.3 for all sufficiently large values of r,

log[n] µ(r, fn) ≤ (ρg + ε) log M(r, h) + O(1)
≤ (ρg + ε)rρh+ε+O(1). (2.2)

Also from definition of lower order we have for r ≥ r0,

log µ(r, f ) ≥ rλ f−ε. (2.3)

So from (2.2) and (2.3) we get for r ≥ r0,

log[n] µ(r, fn)
log µ(r, f )

≤ (ρ f + ε)rρh+ε+O(1)
rλ f−ε .

Since λ f > ρh, we can choose ε > 0 such that if λ f − ε > ρh + ε then

lim sup
r→∞

log[n] µ(r, fn)
log µ(r, f )

= 0,

which is result (i).
Similarly when ρh < λg, we get the result (ii).
This proves the theorem. �

Note 2.1. If we take n = 3k + 1 and n = 3k + 2 we get similar results.

Theorem 2.3. Let f (z), g(z) and h(z) be entire functions of finite order and n = 3k then

(i) lim sup
r→∞

log[n] µ(r, fn)
log µ(r, f )

= ∞ for λh > ρ f

and

(ii) lim sup
r→∞

log[n] µ(r, fn)
log µ(r, g)

= ∞ for λh > ρg.
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Proof. When n = 3k, we have from Lemma 2.4 for all sufficiently large values of r,

log[n] µ(r, fn) ≥ (λg − ε) log M(r, h) + O(1)
≥ (λg − ε)rλh−ε+O(1). (2.4)

Also from definition of lower order we have for r ≥ r0,

log µ(r, f ) ≤ rρ f +ε. (2.5)

So from (2.4) and (2.5) we get for r ≥ r0,

log[n] µ(r, fn)
log µ(r, f )

≥ (λg − ε)rλh−ε+O(1)
rρ f +ε

.

Since λh > ρ f , we can choose ε > 0 such that if λh − ε > ρ f + ε then

lim sup
r→∞

log[n] µ(r, fn)
log µ(r, f )

= ∞,
which is result (i).

Similarly when λh > ρg we get result (ii).
This proves the theorem. �

Note 2.2. If we take n = 3k + 1 and n = 3k + 2 we get similar results.

Theorem 2.4. Let f (z), g(z) and h(z) be transcendental entire functions of non-zero finite order then

lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, f )

= lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, g)

= lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, h)

= ∞.

Proof. First we consider n = 3k then from (2.4) we have for sufficiently large values of r,

log[n] µ(r, fn) ≥ (λg−ε)rλh−ε + O(1) (2.6)

where 0 < ε < min{λ f , λg, λh} and from (2.5)

log[2] µ(r, f ) ≤ (ρ f + ε) log r. (2.7)

So from (2.6) and (2.7) we get,
log[n] µ(r, fn)
log[2]µ(r, f )

≥ (λg−ε)rλh−ε + O(1)
(ρ f + ε) log r

.

Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, f )

= ∞.

Also when n = 3k + 1, from Lemma 2.4 we have for sufficiently large values of r and 0 < ε < min{λ f , λg, λh}
log[n] µ(r, fn) ≥ (λh−ε) log M(r, f ) + O(1)

≥ (λh−ε)rλ f−ε + O(1). (2.8)

So from (2.7) and (2.8) we get,
log[n] µ(r, fn)
log[2]µ(r, f )

≥ (λh−ε)rλ f−ε + O(1)
(ρ f + ε) log r

.

Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, f )

= ∞.

Again for n = 3k + 2, from Lemma 2.4 we have for sufficiently large values of r and 0 < ε < min{λ f , λg, λh}
log[n] µ(r, fn) ≥ (λ f−ε) log M(r, g) + O(1)

≥ (λ f−ε)rλg−ε + O(1). (2.9)

So from (2.7) and (2.9) we get,
log[n] µ(r, fn)
log[2]µ(r, f )

≥ (λ f−ε)rλg−ε + O(1)
(ρ f + ε) log r

.
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Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, f )

= ∞.

Similarly we have

lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, g)

= ∞,

and

lim sup
r→∞

log[n] µ(r, fn)
log[2]µ(r, h)

= ∞.

This proves the theorem. �

Note 2.3. If we take one more logarithm of the numerator then the expression in Theorem 2.4 is finite. Thus we shall
prove the following theorem.

Theorem 2.5. Let f (z), g(z) and h(z) be three transcendental entire functions of finite order and nonzero lower order
then for n = 3k,

(i) lim sup
r→∞

log[n+1] µ(r, fn)
log[2]µ(r, f )

≤ ρh

λ f
,

(ii) lim sup
r→∞

log[n+1] µ(r, fn)
log[2]µ(r, g)

≤ ρh

λg
,

for n = 3k + 1

(iii) lim sup
r→∞

log[n+1] µ(r, fn)
log[2]µ(r, g)

≤ ρ f

λg
,

(iv) lim sup
r→∞

log[n+1] µ(r, fn)
log[2]µ(r, h)

≤ ρ f

λh
,

for n = 3k + 2

(v) lim sup
r→∞

log[n+1] µ(r, fn)
log[2]µ(r, f )

≤ ρg

λ f
,

(vi) lim sup
r→∞

log[n+1] µ(r, fn)
log[2]µ(r, h)

≤ ρg

λh
.

Proof. First we consider n = 3k then from Lemma 2.3 we have for sufficiently large values of r,
log[n+1] µ(r, fn) ≤ log[2] M(r, h) + O(1)

≤ (ρh + ε) log r + O(1). (2.10)
Also we have for r ≥ r0 and 0 < ε < λ f ,

log[2] µ(r, f ) ≥ (λ f − ε) log r. (2.11)
Therefore from (2.10) and (2.11) we get for r ≥ r0 and 0 < ε < λ f ,

log[n] µ(r, fn)
log µ(r, f )

≤ (ρh + ε) log r+O(1)
(λ f − ε) log r

.

Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)
log µ(r, f )

≤ ρh

λ f
,

which is result (i).
Similarly we get other parts of the theorem.
This proves the theorem. �

3. Conclusion
Our main goal through this paper is to generalized and extend some previous results on growth properties of the
maximum term on iteration of three entire functions of non zero finite order, which have not studied previously. But
still there remains some problems to be investigated for future researchers in this field.
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Jñānābha, Vol. 52(1) (2022), 174-181

NEIGHBORHOOD TOPOLOGICAL INDICES OF METAL-ORGANIC NETWORKS
By

M. C. Shanmukha1, K. N. Anil Kumar2, N. S. Basavarajappa3 and A. Usha4

Department of Mathematics
1Jain Institute of Technology, Davanagere-577003, Karnataka, India

2,3Bapuji Institute of Engineering and Technology, Davanagere-577004, Karnataka, India
4Alliance School of Applied Mathematics, Alliance University, Bangalore-562106, Karnataka, India
Email:mcshanmukha@gmail.com, kn.anil5340@gmail.com, dr.nsbasavaraj@gmail.com,

usha.arcot@alliance.edu.in
(Received : October 13, 2021; Revised : January 19,2022; Accepted : May 09 , 2022)

Abstract

A group of chemical compounds containing organic ligands and metal ions(clusters) called as Metal organic
networks (MONs). These are found as one, two and three dimensional structures of porous and subordinate class of
coordination polymers. The characteristics of MONs are high surface area, large pore volume, different morphology
and very good chemical stability. The applications of MONs includes gas storage, heterogeneous catalysis and
sensing of various gases. The stability and characteristics of these networks have become important because of the
above said characteristics. The numerical invariants used to predict the physicochemical characteristics and bio-
activities of chemical compounds known as topological indices. In our proposed work, we compute neighborhood
redefined first Zagreb index, neighborhood redefined second Zagreb index and Generalized Reciprocal Sanskruti
index for two different MONs.
2020 Mathematical Sciences Classification: 05C07, 05C09, 05C92.
Keywords and Phrases: Topological indices; Metal-organic networks.

1. Introduction and Terminologies
All planets are the decomposition of various types of elements and each element has significant role in the formation
of the earth. Oxygen, hydrogen and nitrogen are the important constituents in the formation of the earth. The echo
friendly source of energy is the hydrogen [10, 13]. Hydrogen in the form of a gas, is used in fuel cells and power
engines. Out of various categories of available gases, it is difficult for the human beings to recognise the leak of gas
because hydrogen has less smell.

A very fast hydrogen detecting device having organic ligands and metal identified as metal-organic network
was introduced by Won-Tea et al. [19]. Along with detecting and sensing characteristics, the MONs have other
physicochemical characteristics viz., grafting active groups, exchanging of ions, preparation of composites for useful
substances. MONs used devices for separation, purification and storage of gases.

Graph theory offers a useful tool in the discipline of chemistry to predict the various properties of chemical
compounds(molecules) called topological index(TI) [3, 6, 14, 17]. TI is the important tool which helps to describe
physicochemical and biological characteristics of the chemical compounds.

In the year 2019, Wasson described the concept of linker competition with a MON for topological perception. TIs
plays an important role in the QSAR/QSPR [8, 12] to link the various chemical compound structures with a biological
activity and chemical characteristics.

Recently Hafiz Muhammad Awasis et al. [1] and Gang Hong et al. [5] derived the various expressions of
topological indices and computed for MONs. In this proposed work, neighborhood redefined first Zagreb index,
neighborhood redefined second Zagreb index and Generalized Reciprocal Sanskruti index are computed for both
MON1 and MON2 networks.

Chemical graph theory is a discipline of mathematical chemistry helps to solve molecular problems. Graph theory
is used for mathematical modelling of chemical compounds to know the insights of chemical compounds. In a graph
G, the vertices and the edges are represented by atoms and links of a chemical compound. In this paper, G represent
simple graph with edges E and vertices V . The vertex degree dt of t be the total adjoining vertices. For the notations
used see [18].

Definition 1.1. Shanmukha et al., [16] introduced neighborhood version of the redefined first and second Zagreb
indices and are defined as

NReZ1(G) =
∑

st∈E(G)
[S G(s) + S G(t)]
[S G(s) × S G(t)]

,
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NReZ2(G) =
∑

st∈E(G)
[S G(s) × S G(t)]
[S G(s) + S G(t)]

.

Definition 1.2. Shanmukha et al. [15] introduced neighborhood version of the Generalized Reciprocal Sanskruti index
and is defined as

RS (G) =
∑

st∈E(G)

(
S G(s) + S G(t) − 2

S G(s) × S G(t)

)3

.

2. Metal-organic Network(MON)

Figure 2.1: Basic Metal organic network.

The formation of MON constitutes metal and organic ligands illustrated in Figure 2.1. The metal and the Zeolite
imidazole is represented by the blue vertex and the organic ligand by orange vertex in the figure. The first MON1(n)
which is the first metal organic network is obtained by joining the nodes of the metals of lower layer of the second
primary MON. The MON2 which is the second metal organic network obtained by joining the nodes between the
organic ligands of the two primary MONs. It is observed that the two organic ligands in the upper layer of MON are
joined with lower layer organic ligands.

For dimension n = 2, the MON1(n) and (MON2(n)) are represented in Figure 3.1 and Figure 3.2 respectively. The
two MONs have |V(MON1(n))| = |V(MON2(n))| = 48n and |E(MON1(n))| = |E(MON2(n))| = 72n − 12, where n ≥ 2.

3. Main Results
It has two Subsections. Here we compute different topological indices of MON1(n) and MON2(n) in Subsections 3.1
and 3.2 respectively.
3.1. Metal-organic Network MON1(n)

Figure 3.1: MON1(n) for n=2.
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It is noticed from the Figure 3.1, that the Partition of the edges MON1(n) with respect to neighbour degree sum of end
vertices of each edge has eight partitions as below,

E6,6 = {e = st ∈ E(MON1(n))|ds = 6, dt = 6} ,
E6,9 = {e = st ∈ E(MON1(n))|ds = 6, dt = 9} ,
E8,8 = {e = st ∈ E(MON1(n))|ds = 8, dt = 8} ,

E8,12 = {e = st ∈ E(MON1(n))|ds = 8, dt = 12} ,
E9,16 = {e = st ∈ E(MON1(n))|ds = 9, dt = 16} ,

E10,12 = {e = st ∈ E(MON1(n))|ds = 10, dt = 12} ,
E10,16 = {e = st ∈ E(MON1(n))|ds = 10, dt = 16} ,
E12,16 = {e = st ∈ E(MON1(n))|ds = 12, dt = 16} .

such that

|E6,6| = 24,
|E6,9| = 12,
|E8,8| = 24,
|E8,12| = 12(2n − 1),
|E9,16| = 12,
|E10,12| = 12(n − 2),
|E10,16| = 12(n − 2),
|E12,16| = 24(n − 1).

Theorem 3.1. The neighborhood version of the redefined first Zagreb index of MON1(n) with n ≥ 2 is given by

NReZ1[MON1(n)](G) =
1265
100

n +
6395
1250

.

Proof. The neighborhood version of the redefined first Zagreb index

NReZ1(G) =
∑

st∈E(G)
[S G(s) + S G(t)]
[S G(s) × S G(t)]

= E6,6

(
6 + 6
6 × 6

)
+ E6,9

(
6 + 9
6 × 9

)
+ E8,8

(
8 + 8
8 × 8

)
+ E8,12

(
8 + 12
8 × 12

)
+ E9,16

(
9 + 16
9 × 16

)

+ E10,12

(
10 + 12
10 × 12

)
+ E10,16

(
10 + 16
10 × 16

)
+ E12,16

(
12 + 16
12 × 16

)

= 24
(

12
36

)
+ 12

(
15
54

)
+ 24

(
16
64

)
+ (24n − 12)

(
20
96

)
+ 12

(
25
144

)
+ (12n − 24)

(
22

120

)

+ (12n − 24)
(

26
160

)
+ (24n − 24)

(
28
192

)

NReZ1[MON1(n)](G) =
1265
100

n +
6395
1250

.

�

Theorem 3.2. The neighborhood version of the redefined second Zagreb index of MON1(n) with n ≥ 2 is given by

NReZ2[MON1(n)](G) =
52384

125
n − 275566

1250
.

Proof. The neighborhood version of the redefined second Zagreb index

NReZ2(G) =
∑

st∈E(G)
[S G(s) × S G(t)]
[S G(s) + S G(t)]

NReZ2[MON1(n)](G) = E6,6

(
6 × 6
6 + 6

)
+ E6,9

(
6 × 9
6 + 9

)
+ E8,8

(
8 × 8
8 + 8

)
+ E8,12

(
8 × 12
8 + 12

)
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+ E9,16

(
9 × 16
9 + 16

)
+ E10,12

(
10 × 12
10 + 12

)
+ E10,16

(
10 × 16
10 + 16

)
+ E12,16

(
12 × 16
12 + 16

)

= 24
(

36
12

)
+ 12

(
54
15

)
+ 24

(
64
16

)
+ (24n − 12)

(
96
20

)
+ 12

(
144
25

)
+ (12n − 24)

(
120
22

)

+ (12n − 24)
(

160
26

)
+ (24n − 24)

(
192
28

)

NReZ2[MON1(n)](G) =
52384

125
n − 275566

1250
.

�

Theorem 3.3. The Reciprocal Sanskruti index of MON1(n) with n ≥ 2 is given by

RS [MON1(n)](G) =
1569
5000

n +
6511
10000

.

Proof. The Reciprocal Sanskruti index

RS (G) =
∑

st∈E(G)

(
S G(s) + S G(t) − 2

S G(s) × S G(t)

)3

RS [MON1(n)](G) = E6,6

(
6 + 6 − 2

6 × 6

)3

+ E6,9

(
6 + 9 − 2

6 × 9

)3

+ E8,8

(
8 + 8 − 2

8 × 8

)3

+ E8,12

(
8 + 12 − 2

8 × 12

)3

+ E9,16

(
9 + 16 − 2

9 × 16

)3

+ E10,12

(
10 + 12 − 2

10 × 12

)3

+ E10,16

(
10 + 16 − 2

10 × 16

)3

+ E12,16

(
12 + 16 − 2

12 × 16

)3

= 24
(

10
36

)3

+ 12
(

13
54

)3

+ 24
(

14
64

)3

+ (24n − 12)
(

18
96

)3

+ 12
(

23
144

)3

+ (12n − 24)
(

20
120

)3

+ (12n − 24)
(

24
160

)3

+ (24n − 24)
(

26
192

)3

RS [MON1(n)](G) =
1569
5000

n +
6511

10000
.

�

3.2. Metal-organic Network MON2(n)

Figure 3.2: MON2(n) for n=2.

It is noticed from the Figure 3.2, that the Partition of the edges MON2(n) w.r.t neighbour degree sum of end vertices
of each edge has eight partitions as below,

E6,6 = {e = st ∈ E(MON1(n))|ds = 6, dt = 6} ,
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E6,7 = {e = st ∈ E(MON1(n))|ds = 6, dt = 7} ,
E7,8 = {e = st ∈ E(MON1(n))|ds = 7, dt = 8} ,

E7,12 = {e = st ∈ E(MON1(n))|ds = 7, dt = 12} ,
E8,8 = {e = st ∈ E(MON1(n))|ds = 8, dt = 8} ,

E8,10 = {e = st ∈ E(MON1(n))|ds = 8, dt = 10} ,
E10,14 = {e = st ∈ E(MON1(n))|ds = 10, dt = 14} ,
E12,14 = {e = st ∈ E(MON1(n))|ds = 12, dt = 14} .

such that

|E6,6| = 24,
|E6,7| = 12,
|E7,8| = 12n,

|E7,12| = 12(n − 1),
|E8,8| = 12,
|E8,10| = 24(n − 1),
|E10,14| = 12(n − 1),
|E12,14| = 12(n − 1)

Theorem 3.4. The neighborhood version of the redefined first Zagreb index of MON2(n) with n ≥ 2 is given by

NReZ1[MON2(n)](G) =
15243
1000

n +
1343
500

.

Proof. The neighborhood version of the redefined second Zagreb index

NReZ1(G) =
∑

st∈E(G)
[S G(s) + S G(t)]
[S G(s) × S G(t)]

NReZ1[MON2(n)](G) = E6,6

(
6 + 6
6 × 6

)
+ E6,7

(
6 + 7
6 × 7

)
+ E7,8

(
7 + 8
7 × 8

)
+ E7,12

(
7 + 12
7 × 12

)

+ E8,8

(
8 + 8
8 × 8

)
+ E8,10

(
8 + 10
8 × 10

)
+ E10,14

(
10 + 14
10 × 14

)
+ E12,14

(
12 + 14
12 × 14

)

= 24
(

12
36

)
+ 12

(
13
42

)
+ 12n

(
15
56

)
+ (12n − 12)

(
19
84

)
+ 12

(
16
64

)
+ (24n − 24)

(
18
80

)

+ (12n − 12)
(

24
140

)
+ (12n − 12)

(
26

168

)

NReZ1[MON2(n)](G) =
15243
1000

n +
1343
500

.

�

Theorem 3.5. The neighborhood version of the redefined second Zagreb index of MON2(n) with n ≥ 2 is given by

NReZ2[MON2(n)](G) =
176029

500
n − 14849

100
.

Proof. The neighborhood version of the redefined second Zagreb index

NReZ2(G) =
∑

st∈E(G)
[S G(s) × S G(t)]
[S G(s) + S G(t)]

NReZ2[MON2(n)](G) = E6,6

(
6 × 6
6 + 6

)
+ E6,7

(
6 × 7
6 + 7

)
+ E7,8

(
7 × 8
7 + 8

)
+ E7,12

(
7 × 12
7 + 12

)

+ E8,8

(
8 × 8
8 + 8

)
+ E8,10

(
8 × 10
8 + 10

)
+ E10,14

(
10 × 14
10 + 14

)
+ E12,14

(
12 × 14
12 + 14

)

= 24
(

36
12

)
+ 12

(
42
13

)
+ 12n

(
56
15

)
+ (12n − 12)

(
84
19

)
+ 12

(
64
16

)
+ (24n − 24)

(
80
18

)
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+ (12n − 12)
(

140
24

)
+ (12n − 12)

(
168
26

)

NReZ2[MON2(n)](G) =
176029

500
n − 14849

100
.

�

Theorem 3.6. The Reciprocal Sanskruti index of MON2(n) with n ≥ 2 is given by

RS [MON2(n)](G) =
5231

10000
n +

2413
5000

.

Proof. The Reciprocal Sanskruti index

RS (G) =
∑

st∈E(G)

(
S G(s) + S G(t) − 2

S G(s) × S G(t)

)3

RS [MON2(n)](G) = E6,6

(
6 + 6 − 2

6 × 6

)3

+ E6,7

(
6 + 7 − 2

6 × 7

)3

+ E7,8

(
7 + 8 − 2

7 × 8

)3

+ E7,12

(
7 + 12 − 2

7 × 12

)3

+ E8,8

(
8 + 8 − 2

8 × 8

)3

+ E8,10

(
8 + 10 − 2

8 × 10

)3

+ E10,14

(
10 + 14 − 2

10 × 14

)3

+ E12,14

(
12 + 14 − 2

12 × 14

)3

RS [MON2(n)](G) =
5231

10000
n +

2413
5000

.

�

4. Numerical and graphical Comparison of indices
Here we calculate several indices for different values of n. It is noticed from Table 4.1 and Table 4.2, that values of
topological indices increases with increase in the n value. The obtained topological indices are represented graphically
for some values of n as shown in Figure 4.1.

Table 4.1: Numerical comparison of different indices of MON1(n) for n=2 to 10.

n 2 3 4 5 6 7 8 9 10
NReZ1(G) 30.4160 43.066 55.716 68.366 81.016 93.666 106.316 118.966 131.616
NReZ2(G) 617.6912 1036.8 1455.8 1874.9 2294 2713.1 3132.1 3551.2 3970.3

RS (G) 22344 41797 61250 80704 100160 119610 139060 158520 177970

Table 4.2: Numerical comparison of different indices of MON2(n) for n=2 to 10.

n 2 3 4 5 6 7 8 9 10
NReZ1(G) 33.1720 48.4150 63.6580 78.901 94.144 109.387 124.63 139.873 155.116
NReZ2(G) 555.626 907.684 1259.7 1611.8 1963.9 2315.9 2668 3020 3372.1

RS (G) 16509 29124 41739 54355 66970 79585 92200 104820 117430
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(a) (b)

(c)

Figure 4.1: Graphical comparison of MON1(n) and MON2(n)

5. Conclusion
Topological indices are the numerical descriptors which plot molecular structure to a real number. TIs play an
important role in chemistry to predict physical and chemical characteristics and bio-activities of chemical compounds.
In this paper, various topological indices are computed viz., neighborhood redefined first Zagreb index, neighborhood
redefined second Zagreb index and Reciprocal Sanskruti index for metal organic networks and graphical representation
of both types of metal organic networks is depicted.

Acknowledgement. The Authors would like thank the Editor and Referee for their careful reading and valuable
suggestions to improve the manuscript.
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Abstract

In this paper we study mixed generalized quasi-Einstein manifold satisfying some curvature conditions like
K.Ric = 0, C.Ric = 0, N.Ric = 0, where K, Ric, C and N denote the Reimannian curvature tensor, Ricci tensor,
conformal curvature tensor and concircular curvature tensor and obtain some interesting and fruitful results on it.
2020 Mathematical Sciences Classification: 53C25, 53C35.
Keywords and Phrases: Quasi-Einstein Manifolds, generalized quasi-Einstein manifolds, mixed generalized quasi-
Einstein manifolds, Riemannian curvature tensor, conformal curvature tensor, concircular curvature tensor.

1. Introduction
Let χ(M) be the set of all differentiable vector fields on the manifold M. A Riemannian manifold (Mn, g) (n ≥ 2) is
said to be an Einstein manifold (see [9], p.148) if

Ric(X,Y) =
r
n

g(X,Y), (1.1)

where Ric and r denote the Ricci tensor and scalar curvature respectively. The notion of quasi-Einstein manifolds
arose during the study of exact solutions of Einstein field equations as well as during considerations of quasi umbilical
hypersurfaces. A non flat Riemannian manifold (Mn, g) (n ≥ 2) is said to be a quasi-Einstein manifold [3] if its Ricci
tensor of type (0,2) is non-zero and satisfies the following condition:

Ric(X,Y) = ag(X,Y) + bA(X)A(Y), (1.2)

∀ X,Y ∈ χ(M) and a, b are scalars and A is a non-zero 1-form such that

g(X, ρ) = A(X), (1.3)

for all vector field X. ρ being a unit vector field, called the generator of the manifold. Also the 1- form A is called the
associated 1- form. From the above definition it follows that every Einstein manifold is a subclass of a quasi-Einstein
manifold.

The study of quasi-Einstein manifold was continued by U. C. De, Gopal Chandra Ghosh [5] and many others.
Several authors have generalized the notion of quasi-Einstein manifold such as generalized quasi-Einstein manifolds
([4],[6]), mixed generalized quasi-Einstein manifolds [2] and many others.

A non flat Riemannian manifold (Mn, g) (n ≥ 2) is said to be a generalized quasi-Einstein manifold [4] and denoted
by G(QE)n, if its Ricci tensor of type (0, 2) is satisfies the following condition:

Ric(X,Y) = ag(X,Y) + bA(X)A(Y) + cB(X)B(Y), (1.4)

where a, b, c are scalars and A, B are two non-zero 1-forms. The unit vector fields ρ and σ corresponding to the 1-forms
A and B respectively defined by

g(X, ρ) = A(X), g(X, σ) = B(X). (1.5)

Also,
g(ρ, ρ) = 1, g(σ,σ) = 1, g(ρ, σ) = 0. (1.6)

Putting X = Y = ei in (1.4), where {ei} is an orthonormal basis of the tangent space at each point on the manifold and
taking summation over i, 1 ≤ i ≤ n, we get

r = na + b + c.

From (1.4), (1.5) and (1.6), we have

Ric(X, ρ) = (a + b)A(X), Ric(X, σ) = (a + c)B(X),
Ric(ρ, ρ) = a + b, Ric(σ,σ) = a + c.

(1.7)
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In 2007, A. Bhattacharya and T. De [1] introduced the notion of mixed generalized quasi-Einstein manifold. A
non-flat Riemannian manifold is said to be a mixed generalized quasi-Einstein manifold and denoted by MG(QE)n, if
its Ricci tensor is non-zero and satisfies the following condition:

Ric(X,Y) = ag(X,Y) + bA(X)A(Y) + cB(X)B(Y)
+ d[A(X)B(Y) + A(Y)B(X)],

(1.8)

where a, b, c, d are scalars and A, B are two non-zero 1-forms which are defined earlier.
From (1.5), (1.6) and (1.8), we have

Ric(Y, ρ) = (a + b)A(Y) + dB(Y), Ric(Y, σ) = (a + c)B(Y) + dA(Y),
Ric(ρ, σ) = d.

(1.9)

A Riemannian manifold is said to be a manifold of mixed generalized quasi constant curvature [2] denoted by
MG(QC)n, if the curvature tensor K of type (0, 4) satisfies the condition

K(X,Y,Z,W) = a[g(Y,Z)g(X,W) − g(X,Z)g(Y,W)]
+ b[g(X,W)A(Y)A(Z) − g(Y,W)A(X)A(Z)
+ g(Y,Z)A(X)A(W) − g(X,Z)A(Y)A(W)]
+ c[g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)
+ g(Y,Z)B(X)B(W) − g(X,Z)B(Y)B(W)]
+ d[g(X,W){A(Y)B(Z) + B(Y)A(Z)}
− g(Y,W){A(X)B(Z) + (BX)A(Z)}
+ g(Y,Z){A(X)B(W) + B(X)A(W)}
− g(X,Z){A(Y)B(W) + B(Y)A(W)}],

(1.10)

where a, b, c, d are scalars and A, B are non-zero 1-forms.
The Weyl conformal curvature tensor ([7], [9]) C of type (1, 3) of an n-dimensional Riemannian manifold (Mn, g)

(n > 3) is defined by

C(X,Y,Z) = K(X,Y,Z) − 1
n − 2

[Ric(Y,Z)X − Ric(X,Z)Y

+ g(Y,Z)R(X) − g(X,Z)R(Y)]

+
r

(n − 1)(n − 2)
[g(Y,Z)X − g(X,Z)Y]

(1.11)

and satisfynig the following properties:
C(X,Y,Z,W) = −C(Y, X,Z,W) and C(X,Y,Z,W) = −C(X,Y,W,Z)
∀ X,Y,Z,W ∈ χ(M), where C(X,Y,Z,W) = g(C(X,Y)Z,W) is conformal curvature tensor of type (0, 4) and R is the
Ricci tensor of type (1,1).

The Concircular curvature tensor ([7], [9]) N of type (1,3 ) of an n-dimensional Riemannian manifold (Mn, g)
(n ≥ 3) is defined by

N(X,Y,Z) = K(X,Y,Z) − r
n(n − 1)

[g(Y,Z)X − g(X,Z)Y] (1.12)

and satisfynig the following properties:
N(X,Y,Z,W) = −N(Y, X,Z,W) and N(X,Y,Z,W) = −N(X,Y,W,Z)
∀ X,Y,Z,W ∈ χ(M), where N(X,Y,Z,W) = g(N(X,Y)Z,W) is concircular curvature tensor of type (0,4).
From (1.12), we have ∑n

i=1N(ei,Y, ei, ρ) = −Ric(Y, ρ) +
r
n

g(Y, ρ). (1.13)

In 1972, Pokhariyal [10] introduced the notion of W4 curvature tensor of type (0,4) defined by

W4(X,Y,Z,W) = K(X,Y,Z,W) +
1

n − 1
[g(X,Z)Ric(Y,W) − g(X,Y)Ric(Z,W)]. (1.14)

The above relations will be used in the next sections.
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2. Relation between MG(QE)n and MG(QC)n
Let the manifold be conformally flat, then from (1.11), we have

K(X,Y,Z,W) =
1

n − 2
[Ric(Y,Z)g(X,W) − Ric(X,Z)g(Y,W)

+ g(Y,Z)Ric(X,W) − g(X,Z)Ric(Y,W)]

+
r

(n − 1)(n − 2)
[g(Y,Z)g(X,W) − g(X,Z)g(Y,W)].

(2.1)

Using (1.8) in (2.1), we get
K(X,Y,Z,W) = α[g(Y,Z)g(X,W) − g(X,Z)g(Y,W)]

+ β[g(X,W)A(Y)A(Z) − g(Y,W)A(X)A(Z)
+ g(Y,Z)A(X)A(W) − g(X,Z)A(Y)A(W)]
+ γ[g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)
+ g(Y,Z)B(X)B(W) − g(X,Z)B(Y)B(W)]
+ δ[g(X,W){A(Y)B(Z) + B(Y)A(Z)}
− g(Y,W){A(X)B(Z) + (BX)A(Z)}
+ g(Y,Z){A(X)B(W) + B(X)A(W)}
− g(X,Z){A(Y)B(W) + B(Y)A(W)}],

(2.2)

where α =
2a(n−1)−r
(n−1)(n−2) , β = b

n−2 , γ = c
n−1 , δ = d

n−2 .
This leads us to the following theorem:

Theorem 2.1. Every conformally flat mixed generalized quasi-Einstein manifold is a MG(QC)n.

Now, putting Y = Z = ei in (1.10), where {e1} is an orthonormal basis of the tangent space at each point on the
manifold and taking summation over i, 1 ≤ i ≤ n, we get

Ric(X,W) = a(n − 2)g(X,W) + b(n − 2)A(X)A(W)
+ c(n − 2)B(X)B(W)
+ d(n − 2)[A(X)B(W) + A(W)B(X)],

(2.3)

which gives
Ric(X,Y) = αg(X,Y) + βA(X)A(Y) + γB(X)B(Y)

+ δ[A(X)B(Y) + A(Y)B(X)]
(2.4)

where α = a(n − 2), β = b(n − 2), γ = c(n − 2), δ = d(n − 2).
This leads us to the following theorem:

Theorem 2.2. If a Riemannian manifold is a conformally flat MG(QE)n, then it is a MG(QC)n.

3. Relation between MG(QE)n and W4-curvature tensor
Let W4-curvature tensor be flat, then from (1.14), we have

K(X,Y,Z,W) =
1

n − 1
[g(X,Y)Ric(Z,W) − g(X,Z)Ric(Y,W)]. (3.1)

Putting Z = ρ and W = σ in (3.1) and using (1.9), we get

K(X,Y, ρ, σ) =
1

n − 1
[dg(X,Y) − A(X){(a + c)B(Y) + dA(Y)}]. (3.2)

Again, putting X = ρ, Y = σ, Z = X and W = Y in (3.1) and using (1.9), we have

K(ρ, σ, X,Y) =
1

n − 1
[−A(X){(a + c)B(Y) + dA(Y)}]. (3.3)

From (3.2) and (3.3), we get,
dg(X,Y) = 0.

But g(X,Y) , 0. Therefore,
d = 0. (3.4)

Using (3.4) in (1.8), we have
Ric(X,Y) = ag(X,Y) + bA(X)A(Y) + cB(X)B(Y), (3.5)

which is a G(QE)n. This leads us to the following theorem:

Theorem 3.1. A W4-flat mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold.
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4. MG(QE)n with the condition C.Ric = 0
Let us consider a MG(QE)n (n > 3) satisfying the condition C.Ric = 0. Then we have

Ric(C(X,Y)Z,W) + Ric(Z,C(X,Y)W) = 0. (4.1)

Using (1.8) in (4.1), we get

b[g(C(X,Y)Z,W) + g(Z,C(X,Y)W)]
+ c[A(C(X,Y)Z)A(W) + A(Z)A(C(X,Y)W)]
+ d[A(C(X,Y)Z)B(W) + A(W)B(C(X,Y)Z)
+ A(Z)B(C(X,Y)W) + B(Z)A(C(X,Y)W)] = 0.

(4.2)

Putting Z = W = ρ in (4.2) and using symmetric property of metric tensor,
g(C(X,Y)Z,W) = C(X,Y,Z,W) and skew symmetric property of C(X,Y,Z,W)
in last two slots gives

d[B(C(X,Y)ρ) + B(C(X,Y)ρ)] = 0, (4.3)

which in view of (1.5) gives

dC(X,Y, ρ, σ) = 0,

which shows that either d = 0 or C(X,Y, ρ, σ) = 0. If d = 0, then MG(QE)n reduces to generalized quasi-Einstein
manifold.
This leads us to the following theorem.

Theorem 4.1. Every mixed generalized quasi-Einstein manifold satisfying the condition C.Ric = 0 is a generalized
quasi-Einstein manifold provided C(X,Y, ρ, σ) is non-zero at each point of the manifold.

5. MG(QE)n with the condition K.Ric = 0
Let the manifold be conformally flat manifold. Then from (1.11)

K(X,Y,Z) =
1

n − 2
[Ric(Y,Z)X − Ric(X,Z)Y

+ g(Y,Z)R(X) − g(X,Z)R(Y)]

+
r

(n − 1)(n − 2)
[g(X,Z)Y − g(Y,Z)X].

(5.1)

Let the mixed generalized quasi-Einstein manifold MG(QE)n satisfies the condition K.Ric = 0 is either a generalized
quasi-Einstein manifold or the vector fields ρ and σ are co-directional provided µ is not eigenvalue of the Ricci tensor.
Then

Ric(K(X,Y)Z,W) + Ric(Z,K(X,Y)W) = 0. (5.2)

By virtue of (5.1) in (5.2), we get

g(Y,Z)Ric(R(X),W) − g(X,Z)Ric(R(Y),W)
+ g(Y,W)Ric(R(X),Z) − g(X,W)Ric(R(Y),Z)

− r
n − 1

[g(Y,Z)Ric(X,W) − g(X,Z)Ric(Y,W)

+ g(Y,W)Ric(X,Z) − g(X,W)Ric(Y,Z))] = 0.

(5.3)

Let µ be the eigenvalue of R corresponding to the eigenvector X. Then
R(X) = µX, that is, Ric(X,Y) = µg(X,Y).
Therefore,

Ric(R(X),Y) = µRic(X,Y). (5.4)

Using (5.4) in (5.3), we get

[g(Y,Z)Ric(X,W) − g(X,Z)Ric(Y,W) + g(Y,W)Ric(X,Z)

− g(X,W)Ric(Y,Z)]{µ − r
n − 1

} = 0.
(5.5)

Since, µ − r
n−1 , 0, hence, we obtain

g(Y,Z)Ric(X,W) − g(X,Z)Ric(Y,W) + g(Y,W)Ric(X,Z) − g(X,W)Ric(Y,Z) = 0. (5.6)
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Now, using (1.8) in (5.6), we obtain
g(Y,Z)[ag(X,W) + bA(X)A(W) + cB(X)B(W) + d{A(X)B(W) + B(X)A(W)}]
− g(X,Z)[ag(Y,W) + bA(Y)A(W) + cB(Y)B(W) + d{A(Y)B(W) + B(Y)A(W)}]
+ g(Y,W)[ag(X,Z) + bA(X)A(Z) + cB(X)B(Z) + d{A(X)B(Z) + B(X)A(Z)}]
− g(X,W)[ag(Y,Z) + bA(Y)A(Z) + cB(Y)B(Z) + d{A(Y)B(Z) + B(Y)A(Z)}]
= 0.

(5.7)

Putting Z = W = ρ and using (1.8) in (5.7), we get
d[A(Y)B(X) − A(X)B(Y)] = 0 (5.8)

which shows that either d = 0 or A(Y)B(X) − A(X)B(Y) = 0. If d = 0, then MG(QE)n reduces to G(QE)n and if
A(Y)B(X) − A(X)B(Y) = 0, then the vector field X and Y are co-directional.
This leads us to the following theorem.

Theorem 5.1. In a conformally flat with the condition K.Ric = 0 mixed generalized quasi-Einstein manifold is either
a generalized quasi-Einstein manifold or the vector fields ρ and σ are co-directional provided µ is not eigenvalue of
the Ricci tensor R.

6. Example of MG(QE)n
We define a Riemannian metric g in 4-dimensional space R4 by the relation [8]

ds2 = gi jdxidx j = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (6.1)
where x1, x2, x3, x4 are non-zero finite and p = ex1

k−2. Then the covariant and contravariant components of the metric
tensor are

g11 = g22 = g33 = g44 = (1 + 2p), gi j = 0 ∀ i , j (6.2)

and
g11 = g22 = g33 = g44 =

1
1 + 2p

, gi j = 0 ∀ i , j. (6.3)

The only non-vanishing components of the Christoffel symbols are

{
1
11

}
=

{
2

12

}
=

{
3

13

}
=

{
4

14

}
=

p
1 + 2p

,

{
1
22

}
=

{
1

33

}
=

{
1
44

}
=
−p

1 + 2p
.

(6.4)

The non-zero derivatives of (6.4), we have

∂

∂x1

{
1
11

}
=

∂

∂x1

{
2

12

}
=

∂

∂x1

{
3

13

}
=

∂

∂x1

{
4
14

}
=

p
(1 + 2p)2 ,

∂

∂x1

{
1
22

}
=

∂

∂x1

{
1

33

}
=

∂

∂x1

{
1

44

}
=

−p
(1 + 2p)2 .

(6.5)

For the Riemannian curvature tensor,

Kl
i jk =

∣∣∣∣∣∣∣∣

∂
∂x j

∂
∂xk{

l
i j

} {
l
ik

}
∣∣∣∣∣∣∣∣

︸          ︷︷          ︸
=I

+

∣∣∣∣∣∣∣∣∣∣∣

{
m
ik

} {
m
i j

}

{
l

mk

} {
l

m j

}

∣∣∣∣∣∣∣∣∣∣∣
︸             ︷︷             ︸

=II

.

The non-zero components of (I) are:

K1
212 =

∂

∂x1

{
1

22

}
=

−p
(1 + 2p)2 ,

K1
313 =

∂

∂x1

{
1

33

}
=

−p
(1 + 2p)2 ,

K1
414 =

∂

∂x1

{
1

44

}
=

−p
(1 + 2p)2
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and the non-zero components of (II) are:

K1
313 =

{
m
33

}{
1

m1

}
−

{
m
31

}{
1

m3

}
=

{
1

33

}{
1

11

}
−

{
1

31

}{
1

13

}
=

−p2

(1 + 2p)2 ,

K1
414 =

{
m
44

}{
1

m1

}
−

{
m
31

}{
1

m3

}
=

{
1

44

}{
1

11

}
−

{
1

31

}{
1

13

}
=

−p2

(1 + 2p)2 ,

K3
232 =

{
m
22

}{
3

m3

}
−

{
m
23

}{
3

m2

}
=

{
1

22

}{
3

13

}
−

{
1

23

}{
3

12

}
=

−p2

(1 + 2p)2 ,

K4
242 =

{
m
22

}{
4

m4

}
−

{
m
42

}{
4

m2

}
=

{
1

22

}{
4

14

}
−

{
1

42

}{
4

12

}
=

−p2

(1 + 2p)2 ,

K4
343 =

{
m
33

}{
4

m4

}
−

{
m
43

}{
4

m3

}
=

{
1

33

}{
4

14

}
−

{
1

43

}{
4

13

}
=

−p2

(1 + 2p)2 .

Adding components corresponding (I) and (II), we have

K1
212 =

−p
(1 + 2p)2 , K1

313 =
−p − p2

(1 + 2p)2 = K1
414,

K3
232 = K4

242 = K4
343 =

−p2

(1 + 2p)2 .

Thus, the non-zero components of curvature tensor, up to symmetry are,

R1212 = R1313 = R1414 =
−p

1 + 2p
,

R3232 = R4242 = R4343 =
−p2

1 + 2p

and the Ricci tensor
R11 = g jhR1 j1h = g22R1212 + g33R1313 + g44R1414 =

−3p
(1 + 2p)2 ,

R22 = g jhR2 j2h = g11R2121 + g33R2323 + g44R2424 =
−p

(1 + 2p)
,

R33 = g jhR3 j3h = g11R3131 + g22R3232 + g44R3434 =
−p

(1 + 2p)
,

R44 = g jhR4 j4h = g11R4141 + g22R4242 + g33R4343 =
−p

(1 + 2p)
.

The scalar curvature r is
r = g11R11 + g22R22 + g33R33 + g44R44 =

−6p(1 + p)
(1 + 2p)3 .

Let us consider the associated scalars a, b, c, d are defined by

a =
p

(1 + 2p)2 , b =
−2p

(1 + 2p)3 , c =
−p

(1 + 2p)3 , d =
−p

(1 + 2p)2

and the 1-forms
A1 = B1 =

√
1 + 2p, Ai = Bi = 0 ∀ i = 2, 3, 4

where generators are unit vector fields, then from (1.8), we have

R11 = ag11 + bA1A1 + cB1B1 + d(A1B1 + A1B1), (6.6)

R22 = ag22 + bA2A2 + cB2B2 + d(A2B2 + A2B2), (6.7)

R33 = ag33 + bA3A3 + cB3B3 + d(A3B3 + A3B3), (6.8)

R44 = ag44 + bA4A4 + cB4B4 + d(A4B4 + A4B4). (6.9)

Now,

R.H.S . o f (6.6) = ag11 + bA1A1 + cB1B1 + d(A1B1 + A1B1)
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=
p(1 + 2p)

1 + 2p
− 2p(1 + 2p)

(1 + 2p)3 −
p(1 + 2p)
(1 + 2p)3 −

2p(1 + 2p)
2(1 + 2p)2

=
p

1 + 2p
− 2p

(1 + 2p)2 −
p

(1 + 2p)2 −
p

1 + 2p

= − 3p
(1 + 2p)2

= R11

= L.H.S . o f (6.6).

By similar argument it can be shown that (6.7), (6.8) and (6.9) are also true.
Hence (IR4,g) is a MG(QE)n.

Acknowledgement. We are very much thankful to the Editor and Referee for the recommendations to improve our
manuscript.
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Abstract

The object of this paper is to develop the generalized fractional calculus formulas for the product of generalized
M-series and I-function of two variables which is based on generalized fractional integration and differentiation
operators of arbitrary complex order involving Appell hypergeometric function F3 as a kernel due to Saigo and
Maeda. On account of general nature of the Saigo-Maeda operators, a large number of results involving Saigo and
Riemann-Liouville operetors are found as corollaries. Again due to general nature of I-function of two variables and
M-series, some special cases also have been considered.
2020 Mathematical Sciences Classification: 26A33, 33C60, 33C70.
Keywords and Phrases: Generalized fractional calculus operators, Generalized M-series, Appell function,
Fractional calculus, I-function of two variables, Mellin-Barnes type integrals.

1. Introduction
No doubt, the fractional calculus has become an important mathematical equipment to solve diverse problems of
mathematics, science and engineering. In last some decades,huge amount of research work in fractional calculus and
related areas is published due to its applicability in the various fields of science and engineering such as dynamical
system in control theory,astrophysics, electrical circuits,mathematical biology, fluid mechanics, image processing and
quantum mechanics. The fractional calculus operators with the involvement of various special functions have been
successfully applied to construct relevant system in various fields of science and engineering. see [2, 3, 17, 18].
Therefore so many authors have investigated different unifications and extentions of various types of fractional calculus
operators. For more detail about fractional calculus operators, we refer to the research monograph by Miller and Ross
[15], Samko et al.[21], and Kiryakova [14].

The images for special functions of one and more variables under various type of fractional calculus operators have
been obtained by so many authors such as Agarwal [1] studied and developed the generalized fractional integration
of the product of H-function and a general class of polynomials in Saigo operators, Kumar [9] established some new
unified integral and differential formulas associated with H-function applying Saigo and Maeda operator and Gupta
et al.[6] obtained the image formulas of the product of two H functions using Saigo operators. Motivated by these
results, we have established some fractional calculus formulas concerning to the product of M-series and I-function
of two variables.

Goyal and Agrawal [7] introduced I-function of two variables in 1995, by means of Mellin-Barnes type integrals
as

Im1,n1:m2,n2;m3,n3

p,q:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :r


z1 [(ep : Ep, E

′
p)] : [(a j, α j)1,n2 ], [(a ji, α ji)n2+1,p

(1)
i

]; [(c j, γ j)1,n3 ], [(c ji, γ ji)n3+1,p
(2)
i

]
z2 [( fq : Fq, F

′
q)] : [(b j, β j)1,m2 ], [(b ji, β ji)m2+1,q

(1)
i

]; [(d j, δ j)1,m3 ], [(d ji, δ ji)m3+1,q
(2)
i

]



=
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2 dξ dη, (1.1)

where ω =
√−1 and φ1(ξ), φ2(η), ψ(ξ, η) are given by

φ1(ξ) =

∏m2
j=1Γ(b j − β jξ)

∏n2
j=1Γ(1 − a j + α jξ)

∑r
i=1

[∏q(1)
i

j=m2+1Γ(1 − b ji + β jiξ)
∏p(1)

i
j=n2+1Γ(a ji − α jiξ)

] , (1.2)

φ2(η) =

∏m3
j=1Γ(d j − δ jη)

∏n3
j=1Γ(1 − c j + γ jη)

∑r
i=1

[∏q(2)
i

j=m3+1Γ(1 − d ji + δ jiη)
∏p(2)

i
j=n3+1Γ(c ji − γ jiη)

] , (1.3)
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ψ(ξ, η) =

∏m1
j=1Γ( f j − F jξ − F

′
jη)

∏n1
j=1Γ(1 − e j + E jξ + E

′
jη)

∏q
j=m1+1Γ(1 − f j + F jξ + F ′

jη)
∏p

j=n1+1Γ(e j − E jξ − E′jη)
, (1.4)

where an empty product is interpreted as unity. z1, z2 are two non zero complex variables, L1, L2 are two Mellin-Barnes
type contour integrals and m1, n1; m2, n2; m3, n3, p, q; p(1)

i , q(1)
i ;

, p(2)
i , q(2)

i are non-negative integers satisfying the conditions 0 ≤ n1 ≤ p, 0 ≤ n2 ≤ p(1)
i , 0 ≤ n3 ≤ p(2)

i , 0 ≤ m1 ≤
q, 0 ≤ m2 ≤ q(1)

i , 0 ≤ m3 ≤ q(2)
i for all i = 1, 2, 3 · · · , r where r is also a positive integer. α j( j = 1, · · · , n2), β j( j =

1, · · · ,m2), γ j( j = 1, · · · , n3), δ j( j = 1, · · · ,m3), α ji( j = n2 + 1, · · · , p(1)
i ), β ji( j = m2 + 1, · · · , q(1)

i ), γ ji( j =

n3 + 1, · · · , p(2)
i ), δ ji( j = m3 + 1, · · · , q(2)

i ) are assumed to be positive quantities for standardization purposes.
E j, E

′
j, F j, F

′
j are also positive. a j( j = 1, · · · , n2), b j( j = 1, · · · ,m2), c j( j = 1, · · · , n3), d j( j = 1, · · · ,m3), a ji( j =

n2 + 1, · · · , p(1)
i ), b ji( j = m2 + 1, · · · , q(1)

i ), c ji( j = n3 + 1, · · · , p(2)
i ), d ji( j = m3 + 1, · · · , q(2)

i ) are complex for all
i = 1, 2, 3 · · · , r.

The contour L1 lies in the complex ξ-plane and runs from −ω∞ to +ω∞ with loops, if necessary, to ensure that the
poles of Γ(b j−β jξ)( j = 1, · · · ,m2),Γ( f j−F jξ−F

′
jη)( j = 1, · · · ,m1) lies to the right and the poles of Γ(1−a j +α jξ)( j =

1, · · · , n2),Γ(1− e j + E jξ + E
′
jη)( j = 1, · · · , n1) to the left of the contour L1.The contour L2 lies in the complex η plane

and runs from −ω∞ to +ω∞with loops, if necessary, to ensure that the poles of Γ(d j−δ jη)( j = 1, · · · ,m3),Γ( f j−F jξ−
F
′
jη)( j = 1, · · · ,m1) lies to the right and the poles of Γ(1−c j +γ jξ)( j = 1, · · · , n3),Γ(1−e j + E jξ+ E

′
jη)( j = 1, · · · , n1)

to the left of the contour L2. All the poles are simple poles.
Convergence conditions are as follows:

| arg z1| < Aiπ

2
, | arg z2| < Biπ

2
, (1.5)

where

Ai =
∑n1

j=1E j −∑p
j=n1+1E j +

∑m1
j=1F j −∑q

j=m1+1F j +
∑m2

j=1β j −∑q(1)
i

j=m2+1β ji +
∑n2

j=1α j −∑p(1)
i

j=n2+1α ji > 0, (1.6)

and

Bi =
∑n1

j=1E
′
j −

∑p
j=n1+1E

′
j +

∑m1
j=1F

′
j −

∑q
j=m1+1F

′
j +

∑m3
j=1δ j −∑q(2)

i
j=m3+1δ ji +

∑n3
j=1γ j −∑p(2)

i
j=n3+1γ ji > 0, (1.7)

for i = 1, ..., r.
For the sake of brevity throughout the paper we shall use following notations:

P = m2, n2; m3, n3 ,
Q = p(1)

i , q(1)
i ; p(2)

i , q(2)
i : r ,

U = [(a j, α j)1,n2 ], [(a ji, α ji)n2+1,p
(1)
i

]; [(c j, γ j)1,n3 ], [(c ji, γ ji)n3+1,p
(2)
i

],
V = [(b j, β j)1,m2 ], [(b ji, β ji)m2+1,q

(1)
i

]; [(d j, δ j)1,m3 ], [(d ji, δ ji)m3+1,q
(2)
i

].
The generalized M-series [22] is defined as

pMα,β
q (z) = pMα,β

q

(
a1, · · · , ap; b1, · · · , bq; z

)
=

∑∞
k=0

(a1)k · · ·
(
ap

)
k

(b1)k · · ·
(
bq

)
k

zk

Γ (αk + β)
, (1.8)

where α, β ∈ C, z ∈ C, < (α) > 0, (ai)k

(
i = 1, p

)
and

(
b j

)
k

(
j = 1, q

)
are Pochhammer symbols. The series (1.8) is

defined when none of the parameters
(
b j

)
k

(
j = 1, q

)
is a negative integer or zero; if any numerator parameter ai is a

negative integer or zero, then series terminates to a polynomial in z. The series (1.8) is convergent for all z if p ≤ q;
it is convergent for |z| < δ = αα if p = q + 1 and divergent if p > q + 1. When p = q + 1 and |z| = δ, the series is
convergent on conditions depending on the parameters. The detailed account of the M-series can be found in the paper
written by Sharma and Jain[22], see also, [5, 8, 11, 10, 20].

If α, α′, β, β′, γ ∈ C and x > 0, then the generalized fractional calculus operators containing Appell hypergeometric
function F3 given by Saigo and Maeda [23], studied for generalized special functions of several variables by Chandel
and Gupta [4], are defined in the following manner:

(
Iα,α

′,β,β′,γ
0+

f
)

(x) =
x−α

Γ(γ)

∫ x
0t−α

′
(x − t)γ−1F3

(
α, α′, β, β′; γ; 1 − t

x
, 1 − x

t

)
f (t) dt, <(γ) > 0, (1.9)
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=

(
d
dx

)k (
Iα,α

′,β+k,β′,γ+k
0+

f
)

(x), <(γ) ≤ 0; k = [−<(γ) + 1]. (1.10)

(
Iα,α

′,β,β′,γ
− f

)
(x) =

x−α
′

Γ(γ)

∫ ∞
x t−α(t − x)γ−1F3

(
α, α′, β, β′; γ; 1 − x

t
, 1 − t

x

)
f (t) dt, <(γ) > 0, (1.11)

= (−1)k
(

d
dx

)k (
Iα,α

′,β,β′+k,γ+k
− f

)
(x), <(γ) ≤ 0; k = [−<(γ) + 1], (1.12)

(
Dα,α′,β,β′,γ

0+
f
)

(x) =
(
I−α

′,−α,−β′,−β,−γ
0+

f
)

(x), <(γ) > 0, (1.13)

=

(
d
dx

)k (
I−α

′,−α,−β′+k,−β,−γ+k
0+

f
)

(x), <(γ) > 0; k = [<(γ) + 1]. (1.14)
(
Dα,α′,β,β′,γ
− f

)
(x) =

(
I−α

′,−α,−β′,−β,−γ
− f

)
(x), <(γ) > 0, (1.15)

= (−1)k
(

d
dx

)k (
I−α

′,−α,−β′,−β+k,−γ+k
− f

)
(x), <(γ) > 0; k = [<(γ) + 1]. (1.16)

These generalized fractional calculus operators reduce to Saigo’s [24] fractional calculus operators by means of
the following relationship: (

Iα,0,β,β
′,γ

0+
f
)

(x) =
(
Iγ,α−γ,−β0+

f
)

(x), (γ ∈ C), (1.17)
(
Iα,0,β,β

′,γ
− f

)
(x) =

(
Iγ,α−γ,−β− f

)
(x), (γ ∈ C), (1.18)

(
D0,α′,β,β′,γ

0+
f
)

(x) =
(
Dγ,α′−γ,β′−γ

0+
f
)

(x), <(γ) > 0, (1.19)
(
D0,α′,β,β′,γ
− f

)
(x) =

(
Dγ,α′−γ,β′−γ
− f

)
(x), <(γ) > 0. (1.20)

Our main findings in the next section are based on the following composition formula due to Saigo-Maeda [23].

Lemma 1.1. If α, α′, β, β′, γ ∈ C,<(γ) > 0 and <(ρ) > max[0,<(α + α′ + β − γ),<(α′ − β′)] then there hold the
formula (

Iα,α
′,β,β′,γ

0+
tρ−1

)
(x) = xρ−α−α

′+γ−1 Γ(ρ)Γ(ρ + γ − α − α′ − β)Γ(ρ + β′ − α′)
Γ(ρ + γ − α − α′)Γ(ρ + γ − α′ − β)Γ(ρ + β′)

. (1.21)

Lemma 1.2. If α, α′, β, β′, γ ∈ C,<(γ) > 0 and<(ρ) < 1 + min[<(−β),<(α+α′ − γ),<(α+ β′ − γ)] then there hold
the formula

(
Iα,α

′,β,β′,γ
− tρ−1

)
(x) = xρ−α−α

′+γ−1 Γ(1 + α + α′ − γ − ρ)Γ(1 + α + β′ − γ − ρ)Γ(1 − β − ρ)
Γ(1 − ρ)Γ(1 + α + α′ + β′ − γ − ρ)Γ(1 + α − β − ρ)

.

2. Main Results
In this section we have obtained some generalized fractional calculus formulas associated to the product of M-series
and I-function of two variables with the help of Saigo-Maeda generalized fractional calculus operators. Further by
specializing the parameters involved in the Saigo-Maeda fractional calculus operators, we have found some corollaries
concerning to Saigo fractional calculus operators and Riemann-Liouville fractional calculus operators.The results are
presented in the form of theorems stated below.

Theorem 2.1. Let α, α′, β, β′, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(γ) > 0, <(δ) > 0, <(λ) > 0, µ, ν ∈ R+. Further let
the constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µmin1≤ j≤m2<
(

b j

β j

)
+ νmin1≤ j≤m3<

(
d j

δ j

)
> max

[
0,<(α + α′ + β − γ),<(α′ − β′)] .

Then the fractional integration Iα,α
′,β,β′,γ

0+
of the product of M-series and I-function of two variables exists and the

following relation holds
{

Iα,α
′,β,β′,γ

0+
tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

191



= xρ+γ−α−α′−1∑∞
s=0 f (T )xsIm1,n1+3:P

p+3,q+3:Q

[
z1xµ X

′
1, [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], X

′
2 : V

]
, (2.1)

where

X
′
1 = [(1 − ρ − s : µ, ν)], [(1 − ρ − s + α + α

′
+ β − γ : µ, ν)], [(1 − ρ − s + α

′ − β′ : µ, ν)],

X
′
2 = [(1 − ρ − s + α + α

′ − γ : µ, ν)], [(1 − ρ − s + α
′
+ β − γ : µ, ν)], [(1 − ρ − s − β′ : µ, ν)].

Proof. To prove (2.1), we first express M-series in summation form and I-function of two variables in terms of Mellin-
Barnes contour integral with the help of equation (1.1) and interchanging the order of integration and summation,
which is valid under the conditions stated with the Theorem 2.1, we obtain (say I1)

I1 =
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2(Iα,α

′,β,β′,γ
0+

tρ+s+µξ+νη−1)(x) dξ dη. (2.2)

Now by applying Lemma 1.1, we arrive at

I1 = xρ+γ−α−α′−1∑∞
s=0 f (T )xs 1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) (z1xµ)ξ (z2xν)η

× Γ(ρ + s + µξ + νη)Γ(ρ + s + µξ + νη + γ − α − α′ − β)Γ(ρ + s + µξ + νη + β′ − α′)
Γ(ρ + s + µξ + νη + γ − α − α′)Γ(ρ + s + µξ + νη + γ − α′ − β)Γ(ρ + s + µξ + νη + β′)

dξ dη,

where
f (T ) =

(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
. (2.3)

By re-arranging the Mellin-Barnes contour integral in terms of I-function of two variables defined by (1.1) ,after
little simplifications, we obtain the right hand side of (2.1). This completes proof of Theorem 2.1.
In view of the relation (1.17), we get the following corollary concerning left-sided Saigo fractional integral operator
[24].

Corollary 2.1. Let α, β, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ min
1≤ j≤m2

<
(

b j

β j

)
+ ν min

1≤ j≤m3
<

(
d j

δ j

)
> max

[
0,<(β − γ)

]
.

Then the fractional integration Iα,β,γ0+
of the product of M-series and I-function of two variables exists and the

following relation holds
{

Iα,β,γ0+
tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x) = xρ−β−1∑∞

s=0 f (T )xs

×Im1,n1+2:P
p+2,q+2:Q

[
z1xµ [(1 − ρ − s : µ, ν)], [(1 − ρ − s − γ + β : µ, ν)], [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], [(1 − ρ − s + β : µ, ν)], [(1 − ρ − s − α − γ : µ, ν)] : V

]
, (2.4)

where f (T ) is represented by (2.3).

Now if we set β = −α in (2.4), we obtain the following result concerning left-sided Riemann-Liouville fractional
integral operator [24].

Corollary 2.2. Let α, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0 µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ min
1≤ j≤m2

<
(

b j

β j

)
+ ν min

1≤ j≤m3
<

(
d j

δ j

)
> 0.
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Then the fractional integration Iα0+
of the product of M-series and I-function of two variables exists and the

following relation holds {
Iα0+tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ−α−1∑∞
s=0 f (T )xsIm1,n1+1:P

p+1,q+1:Q

[
z1xµ [(1 − ρ − s : µ, ν)], [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], [(1 − ρ − s − α : µ, ν)] : V

]
, (2.5)

where f (T ) is represented by (2.3).

Theorem 2.2. Let α, α′, β, β′, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(γ) > 0,<(δ) > 0,<(λ) > 0 µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ max
1≤ j≤n2

[<(a j) − 1
α j

]
+ ν max

1≤ j≤n3

[<(c j) − 1
γ j

]
< 1 + min

[<(−β),<(α + α′ − γ),<(α + β′ − γ)
]
.

Then the fractional integration Iα,α
′,β,β′,γ

− of the product of M-series and I-function of two variables exists and the
following relation holds

{
Iα,α

′,β,β′,γ
− tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ−α−α
′
+γ−1∑∞

s=0 f (T )xsIm1+3,n1:P
p+3,q+3:Q

[
z1xµ [(ep : Ep, E

′
p)], X

′
3 : U

z2xν X
′
4, [( fq : Fq, F

′
q)] : V

]
, (2.6)

where

X
′
3 = [(1 − ρ − s : µ, ν)], [(1 − ρ − s + α + α

′
+ β′ − γ : µ, ν)], [(1 − ρ − s + α − β : µ, ν)],

X
′
4 = [(1 − ρ − s + α + α

′ − γ : µ, ν)], [(1 − ρ − s + α + β′ − γ : µ, ν)], [(1 − ρ − s − β : µ, ν)].

Proof. To prove (2.6), we first express M-series in summation form and I-function of two variables in terms of Mellin-
Barnes contour integral with the help of equation (1.1) and interchanging the order of integration and summation,
which is valid under the conditions stated with the Theorem 2.2, we obtain (say I2)

I2 =
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2(Iα,α

′,β,β′,γ
− tρ+s+µξ+νη−1)(x) dξ dη. (2.7)

Now by applying Lemma 1.2, we arrive at

I2 = xρ−α−α
′+γ−1∑∞

s=0 f (T )xs 1
(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) (z1xµ)ξ (z2xν)η

× Γ(1 − ρ − s + α + α′ − γ − µξ − νη)
Γ(1 − ρ − s − µξ − νη)

× Γ(1 − ρ − s + α + β′ − γ − µξ − νη)Γ(1 − ρ − s − β − µξ − νη)
Γ(1 − ρ − s + α + α′ + β′ − γ − µξ − νη)Γ(1 − ρ − s + α − β − µξ − νη)

dξ dη

where f (T ) is represented by (2.3).
By re-arranging the Mellin-Barnes contour integral in terms of I-function of two variables defined by (1.1), after

little simplifications, we obtain the right hand side of (2.6). This completes proof of Theorem 2.2.
In view of the relation (1.18), we get following corollary concerning right-sided Saigo fractional integral operator

[24].

Corollary 2.3. Let α, β, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0 µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈
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C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ max
1≤ j≤n2

[<(a j) − 1
α j

]
+ ν max

1≤ j≤n3

[<(c j) − 1
γ j

]
< 1 + min

[<(β),<(γ)
]
.

Then the fractional integration Iα,β,γ− of the product of M-sereis and I-function of two variables exists and the
following relation holds

{
Iα,β,γ− tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ−β−1∑∞
s=0 f (T )xsIm1+2,n1:P

p+2,q+2:Q

[
z1xµ [(ep : Ep, E

′
p)], [(1 − ρ − s : µ, ν)], [(1 − ρ − s + γ : µ, ν)], : U

z2xν [(1 − ρ − s + β : µ, ν)], [(1 − ρ − s + γ : µ, ν)][( fq : Fq, F
′
q)] : V

]
, (2.8)

where f (T ) is represented by (2.3).

Further, if we set β = −α in (2.8), we get following corollary concerning right-sided Riemann Liouville fractional
integral operator [24].

Corollary 2.4. Let α, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0, <(δ) > 0, <(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(α) +<(ρ) + µ max
1≤ j≤n2

[<(a j) − 1
α j

]
+ ν max

1≤ j≤n3

[<(c j) − 1
γ j

]
< 1.

Then the fractional integration Iα− of the product of M- series and I-function of two variables exists and the
following relation holds {

Iα−tρ−1
uMδ,λ

v (zt)Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ−α−1∑∞
s=0 f (T )xsIm1+1,n1:P

p+1,q+1:Q

[
z1xµ [(ep : Ep, E

′
p)], [(1 − ρ − s : µ, ν)] : U

z2xν [(1 − ρ − s − α : µ, ν)], [( fq : Fq, F
′
q)] : V

]
, (2.9)

where f (T ) is represented by (2.3).

Theorem 2.3. Let α, α′, β, β′, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(γ) > 0, <(δ) > 0<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ min
1≤ j≤m2

<
(

b j

β j

)
+ ν min

1≤ j≤m3
<

(
d j

δ j

)
> max

[
0,<(−α − α′ − β′ + γ),<(β − α)

]
.

Then the fractional derivative Dα,α′,β,β′,γ
0+

of the product of M-series and I-function of two variables exists and the
following relation holds

{
Dα,α′,β,β′,γ

0+
tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+α+α
′−γ−1∑∞

s=0 f (T )xsIm1,n1+3:P
p+3,q+3:Q

[
z1xµ X

′
5, [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], X

′
6 : V

]
, (2.10)

where

X
′
5 = [(1 − ρ − s : µ, ν)], [(1 − ρ − s − α − α′ − β′ + γ : µ, ν)], [(1 − ρ − s − α + β : µ, ν)],

X
′
6 = [(1 − ρ − s − α − β′ + γ : µ, ν)], [(1 − ρ − s + β : µ, ν)], [(1 − ρ − s − α − α′ + γ : µ, ν)].
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Proof. To prove the fractional differential formula (2.10) we express M-series in summation form and I-function of
two variables in terms of double Mellin-Barnes contour integral with the help of equations (1.1) and interchanging the
order of integration and summation, we obtain the following form after little simplification:

{
Dα,α′,β,β′,γ

0+
tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

=
dk

dxk

{
I−α

′,−α,−β′+k,−β,−γ+k
0+

tρ−1
uMδ,λ

v (zt)Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

=
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

dk

dxk (I−α
′,−α,−β′+k,−β,−γ+k

0+
tρ+s+µξ+νη−1)(x) dξ dη. (2.11)

where k = [Re(γ) + 1].
Applying Lemma 1.1 to (2.11),we obtain

L.H.S. of (2.11)

=
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

Γ(ρ + s + µξ + νη)Γ(ρ + s + µξ + νη − γ + α′ + α + β′)Γ(ρ + s + µξ + νη − β + α)
Γ(ρ + s + µξ + νη + α′ + α − γ + k)Γ(ρ + s + µξ + νη − γ + α + β′)Γ(ρ + s + µξ + νη − β)

dk

dxk xρ+s+µξ+νη+α′+α−γ+k−1 dξ dη.

Using dn

dxn xm =
Γ(m+1)

Γ(m−n+1) xm−n where m ≥ n in the above expression, we obtain
L.H.S. of (2.11)

= xρ+α+α′−γ−1∑∞
s=0 f (T )xs 1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) (z1x)ξ (z2x)η

Γ(ρ + s + µξ + νη)Γ(ρ + s + µξ + νη − γ + α′ + α + β′)Γ(ρ + s + µξ + νη − β + α)
Γ(ρ + s + µξ + νη − γ + α + β′)Γ(ρ + s + µξ + νη − β)Γ(ρ + s + µξ + νη + α′ + α − γ)

dξ dη,

where f (T ) is represented by (2.3).
Now re-arranging the Mellin-Barnes contour integral in terms of I-function of two variables defined by (1.1), after

little simplifications, we obtain the right hand side of (2.10). This completes proof of Theorem 2.3.
In view of the relation(1.19), we get following corollary concerning left-sided Saigo fractional derivative operator
[24].

Corollary 2.5. Let α, β, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ min
1≤ j≤m2

<
(

b j

β j

)
+ ν min

1≤ j≤m3
<

(
d j

δ j

)
> max

[
0,<(−α − β − γ)

]
.

Then the fractional derivative Dα,β,γ
0+

of the product of M-series and I-function of two variables exists and the
following relation holds

{
Dα,β,γ

0+
tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+β−1∑∞
s=0 f (T )xsIm1,n1+2:P

p+2,q+2:Q

[
z1xµ [(1 − ρ − s : µ, ν)], [(1 − ρ − s − α − β − γ : µ, ν)], [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], [(1 − ρ − s − γ : µ, ν)], [(1 − ρ − s − β : µ, ν)] : V

]
,

(2.12)
where f (T ) is represented by (2.3).
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Next, if we set β = −α in the above result, we obtain following result concerning left-sided Riemann-Liouville
fractional derivative operator[24].

Corollary 2.6. Let α, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ min
1≤ j≤m2

<
(

b j

β j

)
+ ν min

1≤ j≤m3
<

(
d j

δ j

)
> 0.

Then the fractional derivative Dα
0+

of the product of M-series and I-function of two variables exists and the
following relation holds:

{
Dα

0+tρ−1
uMδ,λ

v (zt)Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+α−1∑∞
s=0 f (T )xsIm1,n1+1:P

p+1,q+1:Q

[
z1xµ [(1 − ρ − s : µ, ν)], [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], [(1 − ρ − s − α : µ, ν)] : V

]
, (2.13)

where f (T ) is represented by (2.3).

Theorem 2.4. Let α, α′, β, β′, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(γ) > 0,<(δ) > 0,<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µ max
1≤ j≤n2

[<(a j) − 1
α j

]
+ ν max

1≤ j≤n3

[<(c j) − 1
γ j

]
< 1 + min

[<(β′),<(−α − α′ + γ),<(−α′ − β + γ)
]
.

Then the fractional derivative Dα,α′,β,β′,γ
− of the product of M-series and I-function of two variables exists and the

following relation holds
{

Dα,α′,β,β′,γ
− tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+α+α
′−γ−1∑∞

s=0 f (T )xsIm1+3,n1:P
p+3,q+3:Q

[
z1xµ [(ep : Ep, E

′
p)], X

′
7 : U

z2xν X
′
8, [( fq : Fq, F

′
q)] : V

]
, (2.14)

where

X
′
7 = [(1 − ρ − s : µ, ν)], [(1 − ρ − s − α − α′ − β + γ : µ, ν)], [(1 − ρ − s − α′ + β′ : µ, ν)],

X
′
8 = [(1 − ρ − s − α′ − β + γ : µ, ν)], [(1 − ρ − s + β′ : µ, ν)], [(1 − ρ − s − α − α′ + γ : µ, ν)].

Proof. To prove the fractional differential formula (2.14) we express M-series in summation form and I-function of
two variables in terms of double Mellin-Barnes contour integral with the help of equations (1.1) and interchanging the
order of integration and summation, we obtain the following form after little simplification:

{
Dα,α′,β,β′,γ
− tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= (−1)k dk

dxk

{
I−α

′,−α,−β′,−β+k,−γ+k
− tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

=
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
(−1)k 1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

× dk

dxk (I−α
′,−α,−β′,−β+k,−γ+k

− tρ+s+µξ+νη−1)(x) dξ dη, (2.15)
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where k = [Re(γ) + 1].
Applying Lemma 1.2 to (2.15),we obtain

=
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

× Γ(1 − ρ − s − α − α′ + γ − k − µξ − νη)
Γ(1 − ρ − s − µξ − νη)

× Γ(1 − ρ − s − α′ − β + γ − µξ − νη)Γ(1 − ρ − s − β′ − µξ − νη)
Γ(1 − ρ − s − α − α′ − β + γ − µξ − νη)Γ(1 − ρ − s − α′ + β′ − µξ − νη)

×(−1)k dk

dxk xρ+s+µξ+νη+α′+α−γ+k−1 dξ dη

=
∑∞

s=0
(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

Γ(δs + λ)
1

(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

× Γ(1 − ρ − s − α − α′ + γ − k − µξ − νη)
Γ(1 − ρ − s − µξ − νη)

× Γ(1 − ρ − s − α′ − β + γ − µξ − νη)Γ(1 − ρ − s + β′ − µξ − νη)
Γ(1 − ρ − s − α − α′ − β + γ − µξ − νη)Γ(1 − ρ − s − α′ + β′ − µξ − νη)

×(1 − ρ − s − α − α′ + γ − k − µξ − νη)k xρ+s+µξ+νη+α′+α−γ−1 dξ dη

=
∑∞

s=0 f (T )xs 1
(2πω)2

∫
L1

∫
L2
φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

× Γ(1 − ρ − s − α′ − β + γ − µξ − νη)
Γ(1 − ρ − s − µξ − νη)

× Γ(1 − ρ − s + β′ − µξ − νη)Γ(1 − ρ − s − α − α′ + γ − µξ − νη)
Γ(1 − ρ − s − α − α′ − β + γ − µξ − νη)Γ(1 − ρ − s − α′ + β′ − µξ − νη)

×xρ+µξ+νη+α′+α−γ−1 dξ dη,

where f (T ) is represented by (2.3).
Now re-arranging the Mellin-Barnes contour integral in terms of I-function of two variables defined by (1.1), after

little simplifications, we obtain the right hand side of (2.14). This completes proof of Theorem 2.4.
In view of the relation (1.20), we get following corollary concerning right-sided Saigo fractional derivative operator
[24].

Corollary 2.7. Let α, β, γ, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) + µmax1≤ j≤n2

[
<(a j)−1

α j

]
+ νmax1≤ j≤n3

[
<(c j)−1

γ j

]
< 1 + min

[<(−β),<(α + γ)
]
.

Then the fractional derivative Dα,β,γ
− of the product of M-series and I-function of two variables exists and the

following relation holds
{

Dα,β,γ
− tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

=xρ+β−1∑∞
s=0 f (T )xs

× Im1+2,n1:P
p+2,q+2:Q

[
z1xµ [(ep : Ep, E

′
p)], [(1 − ρ − s : µ, ν)], [(1 − ρ − s − β + γ : µ, ν)] : U

z2xν [(1 − ρ − s + α + γ : µ, ν)], [(1 − ρ − s − β′ : µ, ν)], [( fq : Fq, F
′
q)] : V

]
,

(2.16)

where f (T ) is represented by (2.3).

Further, if we set β = −α in (2.16), we obtain following corollary concerning right-sided Riemann-Liouville
derivative operator [24].
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Corollary 2.8. Let α, ρ, δ, λ ∈ C, z, z1, z2 ∈ C, <(α) > 0,<(δ) > 0,<(λ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ), c j, d j, c ji, d ji ∈

C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), | arg z1| < Aiπ
2 , | arg z2| < Biπ

2 , Ai > 0, Bi > 0 and satisfy the
condition

<(ρ) +<(α) + µmax1≤ j≤n2

[
<(a j)−1

α j

]
+ νmax1≤ j≤n3

[
<(c j)−1

γ j

]
< 0.

Then the fractional derivative Dα
− of the product of M-series and I-function of two variables exists and the following

relation holds {
Dα
−tρ−1

uMδ,λ
v (zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+α−1∑∞
s=0 f (T )xsIm1+1,n1:P

p+1,q+1:Q

[
z1xµ [(ep : Ep, E

′
p)], [(1 − ρ − s : µ, ν)] : U

z2xν [(1 − ρ − s − α : µ, ν)], [( fq : Fq, F
′
q)] : V

]
, (2.17)

where f (T ) is represented by (2.3).

3. Special Cases
The I-function of two variables is a most generalized form of special functions, consequently it can be reduced in a
large number of special functions (or product of such functions) by suitably specializing the parameters involved in
the function. M-series also reduces to generalized hypergeometric function and generalized Mittag-Leffler function
by suitably specializing the parameters.Here we provide a few special cases of our main results.
(i) If we set δ = 1 and λ = 1 in Theorem 2.1, we get generalized fractional integration of the product of I-function of
two variables and hypergeometric function

{
Iα,α

′,β,β′,γ
0+

tρ−1
uFv(zt)Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T ′)xsIm1,n1+3:P

p+3,q+3:Q

[
z1xµ X

′
1, [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], X

′
2 : V

]
, (3.1)

where
f (T ′) =

(a1)s · · · (au)s

(b1)s · · · (bv)s

zs

s!
(3.2)

and X
′
1 and X

′
2 are same as given in Theorem 2.1. The conditions of validity of the above result easily follow from

Theorem 2.1.
(ii) If we set u = 0 and v = 0 in Theorem 2.1, we get generalized fractional integration of the product of I-function of
two variables and Mittag-leffler function

{
Iα,α

′,β,β′,γ
0+

tρ−1Eδ,λ(zt)Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′
p)] : U

z2tν [( fq : Fq, F
′
q)] : V

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0

xs

Γ(δs + λ)
Im1,n1+3:P

p+3,q+3:Q

[
z1xµ X

′
1, [(ep : Ep, E

′
p)] : U

z2xν [( fq : Fq, F
′
q)], X

′
2 : V

]
, (3.3)

where X
′
1 and X

′
2 are same as given in Theorem 2.1. The conditions of validity of the above result easily follow from

Theorem 2.1.
(iii) If we set m1 = n1 = p = q = 0 in Theorem 2.1 then we have following result in terms of product of I-function of
one variable introduced by Saxena [26]

{
Iα,α

′,β,β′,γ
0+

tρ−1
uMδ,λ

v (zt)Im2,n2

p(1)
i ,q(1)

i :r

[
z1tµ

∣∣∣∣∣
(a j, α j)1,n2 , (a ji, α ji)n2+1,p(1)

i

(b j, β j)1,m2 , (b ji, β ji)m2+1,q(1)
i

]

Im3,n3

p(2)
i ,q(2)

i :r

[
z2tν

∣∣∣∣∣
(c j, γ j)1,n3 , (c ji, γ ji)n3+1,p(2)

i

(d j, δ j)1,m3 , (d ji, δ ji)m3+1,q(2)
i

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T )xsI0,3:m2,n2;m3,n3

3,3:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :r

[
z1xµ X

′
1, ... : U

z2xν X
′
2, ... : V

]
, (3.4)
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where f (T ) is represented by (2.3), X
′
1 and X

′
2 are same as given in Theorem 2.1. The conditions of validity of the

above result easily follow from Theorem 2.1.
(iv) If we set m1 = 0 and r = 1 in Theorem 2.1, the I-function of two variables occurring in L.H.S. reduces into
H-function of two variables [25] then we have following result

{
Iα,α

′,β,β′,γ
0+

tρ−1
uMδ,λ

v (zt)H0,n1:m2,n2;m3,n3

p,q:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1tµ [(ep : Ep, E

′
p)] : T1

z2tν [( fq : Fq, F
′
q)] : T2

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T )xsH0,n1+3:m2,n2;m3,n3

p+3,q+3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X

′
1, [(ep : Ep, E

′
p)] : T1

z2xν [( fq : Fq, F
′
q)], X

′
2 : T2

]
, (3.5)

where f (T ) is represented by (2.3) and

T1 = [(a j, α j)1,p(1)
1

]; [(c j, γ j)1,p(2)
1

], T2 = [(b j, β j)1,q(1)
1

]; [(d j, δ j)1,q(2)
1

],

also X
′
1 and X

′
2 are same as given in Theorem 2.1.The conditions of validity of the above result easily follow from

Theorem 2.1.
(v) If we set m1 = n1 = p = q = 0 and r = 1 in Theorem 2.1, then we have following result in terms of product of
H-functions

{
Iα,α

′,β,β′,γ
0+

tρ−1
uMδ,λ

v (zt)Hm2,n2

p(1)
1 ,q(1)

1

[
z1tµ

∣∣∣∣∣
(a j, α j)1,p(1)

1

(b j, β j)1,q(1)
1

]
× Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣
(c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T )xsH0,3:m2,n2;m3,n3

3,3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X

′
1, ... : T1

z2xν X
′
2, ... : T2

]
, (3.6)

where f (T ) is represented by (2.3). X
′
1 and X

′
2 are same as given in Theorem 2.1, T1 and T2 are also same as given in

(3.5). The conditions of validity of the above result easily follow from Theorem 2.1.
(vi) On putting m1 = n1 = p = q = 0, r = 1, µ = 1, p(1)

1 = 0,m2 = q(1)
1 = 1, b1 = 0 and β1 = 1 in Theorem 2.1 then by

virtue of the relation H1,0
0,1

[
z1t

∣∣∣∣∣ (0, 1)

]
= e−z1t we have following result

{
Iα,α

′,β,β′,γ
0+

tρ−1e−z1t
uMδ,λ

v (zt)Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣
(c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T )xsH0,3:1,0;m3,n3

3,3:0,1;p(2)
1 ,q(2)

1


z1x X

′
9, ... : −; (c j, γ j)1,p(2)

1

z2xν X
′
10, ... : (0, 1); (d j, δ j)1,q(2)

1

 , (3.7)

where f (T ) is represented by (2.3) and

X
′
9 = [(1 − ρ − s : 1, ν)], [(1 − ρ − s + α + α

′
+ β − γ : 1, ν)], [(1 − ρ − s + α

′ − β′ : 1, ν)],

X
′
10 = [(1 − ρ − s + α + α

′ − γ : 1, ν)], [(1 − ρ − s + α
′
+ β − γ : 1, ν)], [(1 − ρ − s − β′ : 1, ν)].

The conditions of validity of the above result easily follow from Theorem 2.1.
(vii) If we set m1 = n1 = p = q = 0, δ = 1 and λ = 1 in Theorem 2.1 then we have following result in terms of product
of I-function of one variable introduced by Saxena [26]

{
Iα,α

′,β,β′,γ
0+

tρ−1
uFv(zt)Im2,n2

p(1)
i ,q(1)

i :r

[
z1tµ

∣∣∣∣∣
(a j, α j)1,n2 , (a ji, α ji)n2+1,p(1)

i

(b j, β j)1,m2 , (b ji, β ji)m2+1,q(1)
i

]

Im3,n3

p(2)
i ,q(2)

i :r

[
z2tν

∣∣∣∣∣
(c j, γ j)1,n3 , (c ji, γ ji)n3+1,p(2)

i

(d j, δ j)1,m3 , (d ji, δ ji)m3+1,q(2)
i

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T ′)xsI0,3:m2,n2;m3,n3

3,3:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :r

[
z1xµ X

′
1, ... : U

z2xν X
′
2, ... : V

]
. (3.8)
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where f (T ′) is represented by (3.2) and X
′
1 and X

′
2 are same as given in Theorem 2.1. The conditions of validity of the

above result easily follow from Theorem 2.1.
(viii) If we set m1 = 0, r = 1, δ = 1, and λ = 1 in Theorem 2.1, the I-function of two variables occurring in L.H.S.
reduces into H-function of two variables [25] then we have following result

{
Iα,α

′,β,β′,γ
0+

tρ−1
uFv(zt)H0,n1:m2,n2;m3,n3

p,q:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1tµ [(ep : Ep, E

′
p)] : T1

z2tν [( fq : Fq, F
′
q)] : T2

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T ′)xsH0,n1+3:m2,n2;m3,n3

p+3,q+3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X

′
1, [(ep : Ep, E

′
p)] : T1

z2xν [( fq : Fq, F
′
q)], X

′
2 : T2

]
, (3.9)

where f (T ′) is represented by (3.2), X
′
1 and X

′
2 are same as given in Theorem 2.1, T1 and T2 are also same as given in

(3.5). The conditions of validity of the above result easily follow from Theorem 2.1.
(ix) If we set m1 = n1 = p = q = 0, r = 1, δ = 1 and λ = 1 in Theorem 2.1, then we have following result in terms of
product of H-functions

{
Iα,α

′,β,β′,γ
0+

tρ−1
uFv(zt)Hm2,n2

p(1)
1 ,q(1)

1

[
z1tµ

∣∣∣∣∣
(a j, α j)1,p(1)

1

(b j, β j)1,q(1)
1

]
× Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣
(c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T ′)xsH0,3:m2,n2;m3,n3

3,3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X

′
1, ... : T1

z2xν X
′
2, ... : T2

]
, (3.10)

where f (T ′) is represented by (3.2), X
′
1 and X

′
2 are same as given in Theorem 2.1,T1 and T2 are also same as given in

(3.5). The conditions of validity of the above result easily follow from Theorem 2.1.
(x) On putting m1 = n1 = p = q = 0, r = 1, µ = 1, p(1)

1 = 0,m2 = q(1)
1 = 1, b1 = 0, β1 = 1, δ = 1 and λ = 1 in Theorem

2.1 then by virtue of the relation H1,0
0,1

[
z1t

∣∣∣∣∣ (0, 1)

]
= e−z1t we have following result

{
Iα,α

′,β,β′,γ
0+

tρ−1e−z1t
uFv(zt)Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣
(c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0 f (T ′)xsH0,3:1,0;m3,n3

3,3:0,1;p(2)
1 ,q(2)

1


z1x X

′
9... : −; (c j, γ j)1,p(2)

1

z2xν X
′
10... : (0, 1); (d j, δ j)1,q(2)

1

 , (3.11)

where f (T ′) is represented by (3.2), X
′
9 and X

′
10 are same as given in (3.7). The conditions of validity of the above

result easily follow from Theorem 2.1.
(xi) If we set m1 = n1 = p = q = 0, u = 0 and v = 0 in Theorem 2.1 then we have following result in terms of product
of I-function of one variable introduced by Saxena [26]

{
Iα,α

′,β,β′,γ
0+

tρ−1Eδ,λ(zt)Im2,n2

p(1)
i ,q(1)

i :r

[
z1tµ

∣∣∣∣∣
(a j, α j)1,n2 , (a ji, α ji)n2+1,p(1)

i

(b j, β j)1,m2 , (b ji, β ji)m2+1,q(1)
i

]

×Im3,n3

p(2)
i ,q(2)

i :r

[
z2tν

∣∣∣∣∣
(c j, γ j)1,n3 , (c ji, γ ji)n3+1,p(2)

i

(d j, δ j)1,m3 , (d ji, δ ji)m3+1,q(2)
i

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0

xs

Γ(δs + λ)
I0,3:m2,n2;m3,n3

3,3:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :r

[
z1xµ X

′
1, ... : U

z2xν X
′
2, ... : V

]
, (3.12)

where X
′
1 and X

′
2 are same as given in Theorem 2.1. The conditions of validity of the above result easily follow from

Theorem 2.1.
(xii) If we set m1 = 0, r = 1, u = 0, and v = 0 in Theorem 2.1, the I-function of two variables occurring in L.H.S.
reduces into H-function of two variables [25] then we have following result

{
Iα,α

′,β,β′,γ
0+

tρ−1Eδ,λ(zt)H0,n1:m2,n2;m3,n3

p,q:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1tµ [(ep : Ep, E

′
p)] : T1

z2tν [( fq : Fq, F
′
q)] : T2

]}
(x)
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= xρ+γ−α−α′−1∑∞
s=0

xs

Γ(δs + λ)
H0,n1+3:m2,n2;m3,n3

p+3,q+3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X

′
1, [(ep : Ep, E

′
p)] : T1

z2xν [( fq : Fq, F
′
q)], X

′
2 : T2

]
, (3.13)

where X
′
1 and X

′
2 are same as given in Theorem 2.1, T1 and T2 are also same as given in (3.5). The conditions of

validity of the above result easily follow from Theorem 2.1.
(xiii) If we set m1 = n1 = p = q = 0, r = 1, u = 0 and v = 0 in Theorem 2.1, then we have following result in terms of
product of H-functions

{
Iα,α

′,β,β′,γ
0+

tρ−1Eδ,λ(zt)Hm2,n2

p(1)
1 ,q(1)

1

[
z1tµ

∣∣∣∣∣
(a j, α j)1,p(1)

1

(b j, β j)1,q(1)
1

]
× Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣
(c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0

xs

Γ(δs + λ)
H0,3:m2,n2;m3,n3

3,3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X

′
1, ... : T1

z2xν X
′
2, ... : T2

]
, (3.14)

where X
′
1 and X

′
2 are same as given in Theorem 2.1,T1 and T2 are also same as given in (3.5). The conditions of validity

of the above result easily follow from Theorem 2.1.
(xiv) On putting m1 = n1 = p = q = 0, r = 1, µ = 1, p(1)

1 = 0,m2 = q(1)
1 = 1, b1 = 0, β1 = 1, u = 0 and v = 0 in

Theorem 2.1 then by virtue of the relationH1,0
0,1

[
z1t

∣∣∣∣∣ (0, 1)

]
= e−z1t we have following result

{
Iα,α

′,β,β′,γ
0+

tρ−1e−z1tEδ,λ(zt)Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣
(c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α′−1∑∞
s=0

xs

Γ(δs + λ)
H0,3:1,0;m3,n3

3,3:0,1;p(2)
1 ,q(2)

1


z1x X

′
9... : −; (c j, γ j)1,p(2)

1

z2xν X
′
10, ... : (0, 1); (d j, δ j)1,q(2)

1

 , (3.15)

where X
′
9 and X

′
10 are same as given in (3.7). The conditions of validity of the above result easily follow from Theorem

2.1.
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Abstract

In this article, an encryption scheme based on conference matrix has been developed. An easier algorithm of
formation of encryption/decryption keys have been discussed. The decryption key comprising of fixed number of
positive integers with prime power yields a high level security of message. Some popular attacks have been discussed
in the context of cryptoanalysis and observed that it is robust against the popular cipher attack and the security of the
information does not compromise.
2020 Mathematical Sciences Classification: 26B25; 49N15.
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1. Introduction
Cryptography is the study of techniques of secured communications i.e. a study of techniques which ensure that
communicated information cannot be understood by anyone except the intended receiver.

In 1929 Lester [10] introduced the Hill cipher in which an invertible matrix is used as a private key and inverse of
that matrix is used to decrypt the message.

Koukouvinos and Simos [8] also developed an encryption scheme using circulant Hadamard core in which the first
row of the Hadamard core required to be transmitted as a private key to the intended receiver.

There are several methods of constructions of Hadamard matrices have been developed [2, 4, 12, 14]. In this
article we propose a private symmetric key encryption scheme based on conference matrices of order n such that
n = pr(p + 2)r′ : where r = 1, r′ = 1 or r ≥ 1, r′ = 0, and both p, p + 2 are odd primes with modular base q, a positive
integer. In this encryption scheme message has been encrypted by a conference matrix of order n and decrypted by
its transpose with the identity matrix In and Jn (a square matrix of order n with all entries 1). The involvement of
the transpose of conference matrix and two standard matrices make easy to construct the decryption key for intended
receiver. This scheme requires transmission of numbers (p, r, r′, d, q) as a private key. In addition to these numbers
the primitive polynomial P(pr) of GF(pr) which has been used to construct the conference matrix of order n is required
to be transmitted in case of n = pr, r > 1 [5, 7, 9, 13].

It is not easy to find the conference matrix of order n unless such n and P(pr) (either case) are given. Subsequently
it may raise the difficulties for the intruder by involvement of a positive integer modular base and order of conference
matrix n formed by a large prime.

The main goal of the proposed technique includes the following:
1. Require the private key which is shared by the sender and receiver only once.
2. Easy transmission of private key
3. Computation of encryption and decryption are fast.
4. Difficult to guess the key for intruder.
5. Robust to cryptographic attack.
The structure of this paper is as follows. In Section 2, the required definitions and information as well as

algorithm of formation of the key matrix have been discussed as preliminaries. In Section 3 we have discussed the
encryption/decryption algorithms and its mechanism which ensure that the encrypted message is determined uniquely.
Furthermore in Section 4 we have done security analysis of the scheme with different cryptographic attack. In Section
5 we have given an example and finally in Section 6 we have concluded the results explaining its limitations and
benefits.

2. Preliminaries
In this section some basic terminologies are defined which have been used to design the cryptographic algorithm.

Definition 2.1 ([5, 11]). Quadratic Residue
An element α of GF(n) is said to be quadratic residue if it is a perfect square in GF(n) otherwise α is a quadratic

non-residue
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Definition 2.2 ([11]). Extended Quadratic character
Let n = pr, where p is an odd prime, r is any positive integer and GF(n) = {0 = α0, α1, α2, ..., αn−1}. Then the

Extended quadratic character is a map χ defined on GF(n) as

χ(αi) =



1; if αi is quadratic residue in GF(n)
0; if αi = 0
−1; if αi is quadratic nonresidue in GF(n).

Definition 2.3. Legendre Symbol
Consider an odd prime p and suppose a ∈ GF(p). The Legendre symbol of a modulo p is defined as

(
a
p

)
=



1; if a is a quadratic residue mod p
0; if a = 0
−1; otherwise.

Definition 2.4 ([8]). Encryption scheme
An Encryption is the process in which we encode a message or information in such a manner so that only intended

person can access it. There are three sets in the encryption scheme: a message set or plaintext M, a ciphertext
(encrypted message) C, and a key set K together with the following three algorithms.

1. A key set K which generates the valid encryption key k ∈ K and a valid key k−1 ∈ K to decrypt the message.
2. An encryption algorithm in which message m ∈ M and key k ∈ K together produce an element c ∈ C which is

defined as c = Ek(m).
3. A decryption algorithm in which an element c ∈ C with decryption key k−1 ∈ K return back an element of

message m ∈ M with m = Dk−1 (c).

Note that Dk−1 (Ek(m)) = m.

Definition 2.5 ([8]). O-notation
This notation is used to describe the complexity or performance of an algorithm. Basically ”big O” defines an

upper bound of an algorithm. Formally, If f (n) and g(n) are two functions, we denote O(g(n)) the set of functions and
defined as O(g(n)) = { f (n) : there exist positive constant c and n0 such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}
Definition 2.6 ([11]). Conference matrix
A square matrix Q of order n whose off diagonal entries are from {−1, 1} and diagonal entries are 0 is known as
conference matrix if

QT Q = QQT = nIn − Jn.

Definition 2.7 ([6]). Primitive Polynomial
An irreducible polynomial f (x) is said to be primitive polynomial if the root of f (x) = 0 in GF(pr) is the generator

of the cyclic group of non-zero field elements of the finite field GF(pr).
Generally primitive polynomial of the field GF(pr) is denoted as P(pr).

Definition 2.8. Circulant Matrix
Let C = [ci j] be a square matrix of order n with first row c0, c1, · · · , cn−1. Then matrix C is called Circulant matrix if

ci j = c( j−i) mod n, for 1 ≤ i, j ≤ n.

2.1. Formation of key matrix
There are some methods which ensure the existence of conference matrices of order n which are used to construct the
key matrices. Difference sets are also used to construct key matrices in some cases.
Method I. Let F be a field of order n = pr, where p is an odd prime and r is positive integer. Suppose
0 = α0, α1, · · · , αn−1 are the elements of field F. Then the square matrix Q = [qi j] is defined as

qi j =


χ{(α j − αi)(mod p)} if r = 1,
χ{(α j − αi)(mod P(pr))} if r > 1,

(2.1)

where P(pr) is the primitive polynomial of F.
It can be observe that the matrix Q based on finite field using quadratic residue and non-residue is a circulant matrix.
Case I. For pr ≡ 3(mod 4), the square matrix A of order n = pr is defined as

A = Q + I, (2.2)
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considered as a key matrix.
Case II. For pr ≡ 1(mod 4), the square matrix A of order n = 2pr is defined as

A =

[
Q + I −Q + I
−Q + I −Q − I

]

n×n
, (2.3)

considered as a key matrix [9].

Remark 2.1. However for r = 1 the leading elements of the matrix A of order n are 0, 1, 2, · · · , n − 1 and A is
circulant. For r > 1 the leading elements of A are 0, λ1, λ2, · · · , λn−1 where λ is a root of primitive polynomial P(pr)
of GF(pr).

Lemma 2.1 ([11]). Let F be a field then
∑

bχ(b)χ(b + c) = −1 if c , 0, and b, c ∈ F.
Lemma 2.2 ([11]). The matrix Q = [qi j] = χ(α j−αi) of order n×n, where αi, α j ∈ GF(n), has the following properties
(a) Q is symmetric if n ≡ 1 (mod 4) and skew symmetric if n ≡ 3 (mod 4).
(b) QQT = nIn − Jn i.e. Q is a conference matrix.

Method II. When n is a product of twin primes i.e. n = p(p + 2), where both p and p + 2 are primes, the key matrix
A of order n is formed using difference sets [7, 11].

Let a1, a2, · · · , am are those m =
(p−1)(p+1)

2 elements of Zn for which ( ai
p ) = ( ai

p+2 ) and am+1, am+2, · · · , am+p are
integers 0, (p + 2), 2(p + 2), · · · , (p − 1)(p + 2) respectively (here ( ai

p ) denotes the Legendre symbol of ai modulo

p). Then D = {a1, a2, · · · , ak} forms a difference set where k = m + p =
p(p+2)−1

2 . The key matrix A of order n is
a circulant matrix with leading elements 0, 1, 2, · · · , (p(p + 2) − 1) whose first row is formed by assigning 1 to the
elements of difference set D and −1 to rest of the elements.
2.2. Examples
2.2.1. Construction of key matrix A using method I
Suppose n = 7, then F = {0, 1, 2, 3, 4, 5, 6}
In this field F, there are three quadratic residues 1, 2 and 4.
So,

χ(αi) =



1; if αi ∈ {1, 2, 4}
0; if αi = 0
−1; if αi ∈ {3, 5, 6}.

Using the leading element 0, 1, 2, · · · , 6 first row is formed by assigning 1 to {1, 2, 4} and −1 to rest of the element.
Then matrix Q can be obtained by circulating the first row

[
0 1 1 −1 1 −1 −1

]
.

? For pr ≡ 1(mod 4), similar method can be used to construct the square matrix Q.
Key matrix A can be obtained by using equation (2.2) or (2.3) on the basis of types of pr.
2.2.2. Construction of square matrix Q by using method II
Let n = 15 = 3 × 5 i.e. product of twin primes.
So, Z15 = {0, 1, 2, 3, 4, , · · · , 14}.
To form the difference set, we need to calculate (αi

p ) = (αi
q ) for αi ∈ Z15.

In this case the set D = {1, 2, 4, 8} provides equal Legendre symbol. The set D together with { 0, 5, 10} form a
difference set, at which we assign +1 and −1 to rest of the elements. Here we can see the first row of the matrix
[A]15×15 [

1 1 1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1
]
.

2.2.3. Algorithm to construct the key matrix
The algorithm to construct the key matrix A is as follows:-
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Algorithm 2.1 Formation of key matrix A

Require: p, r, r′. where p is an odd prime
Ensure: r ≥ 1, r′ ∈ {0, 1}

1: if r′ = 1, r = 1 then
2: if both p, p + 2 are odd primes then
3: use method-II to construct the key matrix A.
4: n← p(p + 2)
5: else
6: no need to choose this method
7: end if
8: else {r′ = 0, r ≥ 1}
9: construct Q of order pr using case-I and case-II of method-I

10: if pr ≡ 3(mod 4) then
11: A← Q + I,
12: n← pr

13: else {pr ≡ 1(mod 4)}
14: A←

[
Q + I −Q + I
−Q + I −Q − I

]

15: n← 2pr

16: end if
17: end if

3. Results
3.1. Design of Cryptographic Algorithm
Let there are q distinct characters in the language in which the message or information is written. We convert the
message to be transmitted into its corresponding numeric plain text (ASCII code) in modulo q. In order to block
cipher we divide the plain text into blocks of each size n and each block represented as a column vector. We add
“space” in the last block to make it of size n if needed.

The encrypted message to be transmitted over a communication channel of a column vector M is

C ≡ (AM + den)(mod q), (3.1)

where d is any constant, en = (1, 1, · · · , 1)T , A is a key matrix of order n and q is a positive integer modular
base with gcd(n + 1, q) = 1, in case of n = pr ≡ 3(mod 4) or n = p(p + 2) and that of gcd(n + 2, q) = 1 where
n = 2pr, pr ≡ 1(mod 4).

According to Hill cipher it requires A−1 to decrypt the message. However in this scheme C − den is pre-multiplied
by AT by the intended receiver to disposed off the calculation of A−1. Now to get the original message receiver has to
decrypt the message using the transformation

M ≡ (AT A)−1AT (C − den)(mod q). (3.2)

In general it is quite difficult to obtain (AT A)−1 for large value of n. But, since matrix A is formed by using
conference matrix Q of order n and difference set of Zn so (AT A)−1 may be obtained using I and J with simple
calculations.

For r′ = 1, r = 1 consider n = p(p + 2) and for r′ = 0, r ≥ 1 with pr ≡ 3(mod 4) consider n = pr. In both the
cases we have A = Q + I.

⇒ AAT = [Q + I][Q + I]T

= [Q + I][QT + I]

= [QQT + Q + QT + I]

Since pr ≡ 3(mod 4), so Q is a skew symmetric matrix of order pr. i.e. QT = −Q, So,

AAT = QQT + I = nIn − Jn + In,

AT A = (n + 1)In − Jn. (3.3)

and
(AT A)−1 =

1
n + 1

(In + Jn). (3.4)
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We can see that

(AT A)(AT A)−1 = {(n + 1)In − Jn}{ 1
n + 1

(In + Jn)}

= (n + 1)In
1

n + 1
In + (n + 1)In

1
n + 1

Jn − Jn
1

n + 1
In − Jn

1
n + 1

Jn

= In + (n + 1)Jn
1

n + 1
− Jn

n + 1
− nJn

n + 1
= In,

so equation (3.2) reduced to

M ≡ 1
n + 1

(In + Jn)AT (C − den)(mod q), (3.5)

which is quite easy to form the decryption key for intended receiver as n is known.
For r′ = 0, r ≥ 1 with pr ≡ 1(mod 4) consider n = 2pr and we have

A =

[
Q + I −Q + I
−Q + I −Q − I

]
.

So,

AT A =

[
Q + I −Q + I
−Q + I −Q − I

] [
Q + I −Q + I
−Q + I −Q − I

]T

=

[
Q + I −Q + I
−Q + I −Q − I

] [
QT + I −QT + I
−QT + I −QT − I

]

=

[
QQT + Q + QT + I + QQT − Q − QT + I −QQT + Q − QT + I + QQT + Q − QT − I
−QQT − Q + QT + I + QQT − Q + QT − I QQT − Q − QT + I + QQT + Q + QT + I

]

since order of Q is pr ≡ 1(mod 4), so QT = Q. Hence

AT A =

[
2(QQT + I) 0

0 2(QQT + I)

]

=

[
2(prIpr − Jpr + Ipr ) 0

0 2(prIpr − Jpr + Ipr )

]

=

[
(2pr + 2)Ipr − 2Jpr 0

0 (2pr + 2)Ipr − 2Jpr

]

=

[
(n + 2)I n

2
− 2J n

2
0

0 (n + 2)I n
2
− 2J n

2

]

= {(n + 2)I n
2
− 2J n

2
} ⊗ I2, (3.6)

and,

(AT A)−1 =
1

(n + 2)
{(I n

2
+ J n

2
) ⊗ I2}. (3.7)

We can see that

(AT A)(AT A)−1 = {{(n + 2)I n
2
− 2J n

2
} ⊗ I2} 1

(n + 2)
{(I n

2
+ J n

2
) ⊗ I2}

= {(n + 2)I n
2
⊗ I2 − 2J n

2
⊗ I2}{ 1

n + 2
I n

2
⊗ I2 +

1
n + 2

J n
2
⊗ I2}

= {(n + 2)In − 2J n
2
⊗ I2}{ 1

n + 2
In +

1
n + 2

J n
2
⊗ I2}

=
n + 2
n + 2

In +
n + 2
n + 2

In(J n
2
⊗ I2) − 2

n + 2
(J n

2
⊗ I2)In − 2

n + 2
(J n

2
⊗ I2)(J n

2
⊗ I2)

= In +
n + 2
n + 2

(J n
2
⊗ I2) − 2

n + 2
(J n

2
⊗ I2) − 2

n + 2
(J n

2
J n

2
⊗ I2I2)

= In +
n + 2
n + 2

(J n
2
⊗ I2) − 2

n + 2
(J n

2
⊗ I2) − 2

n + 2
(
n
2

J n
2
⊗ I2)
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= In +
1

n + 2
(n + 2 − 2 − n)(J n

2
⊗ I2)

= In,

and equation (3.2) reduces to

M ≡ 1
n + 2

{(I n
2

+ J n
2
) ⊗ I2}AT (C − den)(mod q). (3.8)

The cryptographic algorithm for encryption is given by

Algorithm 3.1 Encryption Algorithm

Require: Require msg to encrypt
1: select p, r, r′, d, q, P(pr)
2: if r = 1, r′ ∈ {0, 1} then
3: T ← (p, r, r′, d, q)
4: else {r > 1, r′ = 0}
5: T ← (p, r, d, q, P(pr))
6: end if
7: M ← convert(msg) //* convert message into its corresponding numeric value.
8: construct the key matrix A //* construct matrix A using Algorithm 2.1.
9: C ← (AM + den)(mod q) //* Encrypted message is C.

10: Transmit(C,T )

In order to fulfill the objectives of the cryptography the encrypted message C has to be decrypted uniquely.

Theorem 3.1. If C is the encrypted message which is transmitted with the encryption algorithm then

1. For r′ = 1, r = 1 consider n = p(p + 2) and for r′ = 0, r ≥ 1 with pr ≡ 3( mod 4) consider n = pr the decrypted
message

D ≡ (In + Jn)AT (C − den)t(mod q)

is uniquely determined and is equal to M, where t is solution of (n + 1)x ≡ 1(mod q).
2. For r′ = 0, r ≥ 1 with pr ≡ 1(mod 4), consider n = 2pr, the decrypted message

D ≡ {(I n
2

+ J n
2
) ⊗ I2}AT (C − den)t(mod q)

is uniquely determined and is equal to M, where t is a solution of (n + 2)x ≡ 1(mod q).

Proof. 1. Since gcd(n + 1, q) = 1 so (n + 1)x ≡ 1(mod q) has unique solution t. As C is an encrypted message
with respect to the encryption algorithm (3.1). So

C ≡ (AM + den)(mod q)
⇒ C − den ≡ AM(mod q).

Since,

D ≡ (In + Jn)AT (C − den)t(mod q)

≡ (In + Jn)AT AMt(mod q) (as C − den = AM(mod q))
≡ (In + Jn)((n + 1)In − Jn)Mt(mod q) [ by (3.3)]
≡ {(n + 1)In − Jn + (n + 1)Jn − nJn}Mt(mod q)
≡ (n + 1)InMt(mod q)
≡ M(n + 1)t(mod q) as t is a solution o f (n + 1)x ≡ 1(mod q)
≡ M(mod q).

2. Let gcd(n + 2, q) = 1 so (n + 2)x ≡ 1(mod q) has unique solution t. Since

D ≡ {(I n
2

+ J n
2
) ⊗ I2}AT (C − den)t(mod q)

≡ {(I n
2

+ J n
2
) ⊗ I2}AT AMt(mod q)

≡ {(I n
2

+ J n
2
) ⊗ I2}{((n + 2)I n

2
− 2J n

2
) ⊗ I2}Mt(mod q) by (3.6)
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≡ {(n + 2)I n
2
− 2J n

2
+ (n + 2)J n

2
− 2n

2
J n

2
} ⊗ I2Mt(mod q)

≡ (n + 2)I n
2
⊗ I2Mt(mod q)

≡ (n + 2)InMt(mod q)

≡ (n + 2)tM(mod q) as t is a solution o f (n + 2)x ≡ 1(mod q)

≡ M(mod q).

So, D = M i.e. message is uniquely decrypted.
�

The decryption algorithm to obtain the plain text is given by

Algorithm 3.2 Decryption Algorithm

Require: Require received cipher text C and T
1: T = p, r, r′, d, q, P(pr)
2: construct AT *// using Algorithm 2.1
3: if r = 1, r′ = 1 then
4: n← p(p + 2)
5: find t (t is a solution of (n + 1)x ≡ 1(mod q))
6: else {r ≥ 1, r′ = 0}
7: if pr ≡ 3(mod 4) then
8: n← pr

9: find t (t is a solution of (n + 1)x ≡ 1(mod q)
10: k ← (In + Jn)AT t *//set private key
11: else {pr ≡ 1(mod 4)}
12: n← 2pr

13: find t (t is a solution of (n + 2)x ≡ 1(mod q))
14: k ← {(I n

2
+ J n

2
) ⊗ I2}AT t

15: end if
16: end if
17: M ← (k(C − den))(mod q)
18: msg← convert(M) //* assign corresponding character to the numeric value

3.2. Analysis of time complexity of algorithm
In the above mentioned encryption scheme sender transmits numbers (p, r, r′, d, q) and P(pr) (in either case) as a
private key. To get the original message intended receiver has to use the transformation

M ≡

{(I n

2
+ J n

2
) ⊗ I2}AT (C − den)t(mod q) if pr ≡ 1(mod 4)

(In + Jn)AT (C − den)t(mod q) otherwise

It means intended receiver has to find out AT and t only. The matrix AT and integer t may be obtained by using
Algorithm 2.1 and Euclidean algorithm respectively. The time complexity to find AT and integer t is O(n) and O(log n)
respectively. We see that the time complexity of the decryption algorithm depends on matrix multiplications of the
matrices (In + Jn), AT and the column vector C − den which is O(n3).

4. Security analysis of the method
In cryptography, the main aim is to protect the information about the key, plain text and cypher text from the intruder.
But intruder always tries to attack a cipher or cryptographic system so that they can get a lead to break it fully or only
partially [3, 15].
The types of main attacks are follows:
• Brute force attack
• Known Plain text attack
• Ciphertext-only attack
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4.1. Cryptanalysis of Brute force attack
In Brute force attack, the intruder tries all possible character combination to find the keys and checks which one of
them returns the plain-text.

In order to break above discussed encryption scheme using brute force attack, intruder has to find the key matrix
A and t. It is difficult to find A and t unless n, q and P(pr) in either case are known. Since the set of numbers
(p, r, r′, d, q) and P(pr) is a private key comprising a large prime p and primality testing is NP. However there is an
algorithm of primality testing for a given integer is in P [1]. In either case to obtain the suitable primitive polynomial
of GF(pr) increases the difficulty level.

It is difficult to guess the size of A exactly. For known order of the key matrix A consisting of entries (−1, 1) only
the size of the key space, K(A), is |K(A)| = 2n2

. Thus the computational complexity to find A is O(2n2
).

Its complexity increases exponentially. Thus it seems that the above discussed encryption scheme is robust against
the Brute force attack.
4.2. Cryptanalysis of known Plaintext attack
The known plaintext attack is the one where intruder has an access to the quantity of plaintext as well as its
corresponding cipher text. In this type of attack the main goal is to guess the private key or to develop an algorithm so
that they can decrypt any further message. In the above discussed encryption scheme, we have

C ≡ (AM + den)(mod q).

So, basically to find the encryption scheme they have to solve the large n-dimensional non-homogeneous system of
linear equation which is very difficult.

Proposition 4.1 ([8]). All encryption scheme using Hadamard matrices (conference matrix) with circulant cores are
secure against known-plain text attacks under the assumption that the adversary has knowledge of less than n messages
of length n of the plain text and the corresponding cipher text.

4.3. Cryptanalysis of ciphertext-only attacks
The ciphertext-only attack is the one where intruder has access to the number of encrypted message. They have no
idea about exact plain text and private key. In this type of attack the main goal is to deduce the private key or plain
text. Mainly they focus on finding the private key so that they can use that to decrypt the further encrypted message.

So, to design the encryption algorithm it is particularly important to protect them against the cipher text only attack.
As we can say this attack is the starting point of cryptanalyst.

When we use conference matrix in encryption scheme two same letters of the plain text M corresponds to different
values of the encrypted text C. So, an attacker cannot observe the plain text or any information regarding the private
key after seeing the encrypted message.

Proposition 4.2 ([8]). All encryption scheme using Hadamard matrices are secure against ciphertext-only attack.

5. Example
Consider a message HELLO which has to be transmit using the encryption scheme discussed above.
Message in ASCII code is

M =
[

72 69 76 76 79
]T
.

Suppose p = 19 ≡ 3(mod 4), r = 1, r′ = 0 so size of the conference matrix is n = 19.
Since M contains 5 letters and n = 19 so to make it equal ”space” is added 14 times in M. The ASCII code of ”space”
is 32. Thus

M =
[

72 69 76 76 79 32 32 32 32 32 32 32 32 32 32 32 32 32 32
]T
.

So for modular base we can take q = 81 as gcd(20, 81) = 1 So, n = 19, and suppose d = 2. Thus encrypted message
C = (AM + den)(mod 81).
where the first row of the circulant conference matrix A of order 19 obtained by using construction defined in
subsection (2.1) is given by

A =
[

1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1
]
.

Therefore

C =
[

70 65 78 77 78 79 4 78 64 58 71 65 3 64 77 71 4 11 3
]T
.
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Generally 0 − 31 and 127 are not printable and it is indicated with ”NA”. But here for our convenience we use

0→ 0∗
1→ 1∗
2→ 2∗

and so on. In this case intended receiver has to understand that when n∗ is included in encrypted message its numeric
value will be n, where n is non printable character. After converting the ASCII code of encrypted message into its
corresponding printable character
C= {F A N M N O 4* N @ : G A 3* @ M G 4* 11* 3* }.
Sender need to send the private key (19, 1, 0, 2, 81) along with the encrypted message C. Now intended receiver get
plain text using transformation

M = (In + Jn)AT (C − den)t(mod 81)

Matrices In and Jn are well known. AT is obtained by Algorithm 2.1 and using Euclidean algorithm t may be obtained.
Thus receiver decrypt the message and get the column vector

M =
[

72 69 76 76 79 32 32 32 32 32 32 32 32 32 32 32 32 32 32
]T
.

6. Conclusion
In this article we have developed an encryption scheme using conference matrix. The sender shares only the numbers
(p, r, r′, d, q) and P(pr) (in either case) as a private key to the intended receiver. Private key comprising of limited
numbers makes easy transmission. The theoretical development of decryption key makes easy to decrypt the message
for intended receiver. However for intruder it is very difficult to guess the private key as finding prime p is an NP
problem. Also obtaining the suitable primitive polynomial increases the difficulty level in case of involvement of
prime power. It has been observed that the encryption scheme is robust against the cipher attack.
Acknowledgment. We are very much grateful to the Editor and Reviewers for their valuable suggestions to bring the
paper in its present form.
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Abstract

The main object of this paper is to introduce a new subclass of analytic univalent functions by using q-calculus.
We obtain results regarding coefficient estimates extreme points, distortion bounds, convolution condition and convex
combination for this class. Finally, we discuss a class preserving integral operator for this class. Relevant connections
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1. Introduction
Let A denote the class of functions of the form

f (z) = z +
∑∞

k=2akzk, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. As usual, we denote by S the subclass of A consisting of
functions f (z) of the form (1.1) which are univalent in U.

A function f ∈ S is said to be starlike of order α, 0 ≤ α < 1, if it satisfies the following analytic criteria

<
{

z f ′(z)
f (z)

}
> α.

Similarly, a function f ∈ S is said to be convex of order α, 0 ≤ α < 1, if it satisfies the condition

<
{

1 +
z f ′′(z)
f ′(z)

}
> α, z ∈ U.

The classes of all starlike and convex functions of order α are denoted by S ∗(α) and K(α), respectively, introduced
and studied by Robertson [14]. These classes with negative coefficients extensively studied by Silverman [16].

In 1994, Uralegaddi et al. [17] introduced the analogues classes of starlike and convex functions of order β with
positive coefficients and opened up a new and interesting direction of research in geometric function theory. They
introduced the classes M(β), L(β) and R(β) in the following way.

A function f (z) of the form (1.1) is said to be in the class M(β), if it satisfy the following condition

<
{

z f ′(z)
f (z)

}
< β, z ∈ U,

where 1 < β ≤ 4/3.
A function f (z) of the form (1.1) is said to be in the class L(β), if it satisfy the condition

<
{

1 +
z f ′′(z)
f ′(z)

}
< β, z ∈ U,

where 1 < β ≤ 3/2.
Similarly, a function f (z) of the form (1.1) is said to be in the class R(β) if it satisfy the condition

< {
f ′(z)

}
< β, z ∈ U,

where 1 < β ≤ 2.
Let S j denote the class of functions of the form

f (z) = z +
∑∞

k= j+1akzk, (1.2)

where j ∈ N = {1, 2, 3, ...} and z ∈ U, which are analytic and univalent in the open unit disk U. It is interesting to note
that for j = 1, the class S j reduces to the class S of analytic univalent functions.
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Further, we let V j be the subclass S j consisting of functions f (z) of the form
f (z) = z +

∑∞
k= j+1|ak |zk. (1.3)

Next, we let the operator Dn(n ∈ N0 = NU {0}) be defined for a function f ∈ S k by
D0 f (z) = f (z)

D1 f (z) = z f ′(z)
... ...

Dn f (z) = D(Dn−1 f (z)).
The operator Dn is known as Salagean operator introduced by Salagean [15] in 1983.
Recently, we have come to know that the concept of q-calculus is widely used in geometric function theory. The

concept of q-calculus were initially introduced by Aral et al. [3]. They defined the q-number for k ∈ N in the following
way

[k]q =
1 − qk

1 − q
, 0 ≤ q < 1.

It is worthy to note that [k]q can be represented as a geometric series as follows
[k]q =

∑k−1
i=0 qi. (1.4)

From the definition of [k]q it is obvious that

lim
k→∞

[k]q =
1

1 − q
and lim

q→1
[k]q = k.

The q-derivative for a function f is defined as

Dq( f (z)) =
f (qz) − f (z)

(q − 1)z
, q , 1, z , 0

and Dq( f (0)) = f ′(0).
If we take the function h(z) = zk then the q-derivative of h(z) is defined as

Dq(h(z)) = Dq(zk)

=
(1 − qk)

1 − q
zk−1

= [k]qzk−1.

Then
lim
q→1

Dq(h(z)) = lim
q→1

[k]qzk−1

= kzk−1

= h′(z),
where h′ is the ordinary derivative.

Now, for m ∈ N, n ∈ N0, m > n, 1 < β ≤ 4/3, j ∈ N, 0 ≤ t ≤ 1, 0 ≤ q < 1, we define the subclass S j(m, n, q, t, β)
consisting of functions f (z) of the form (1.2) satisfying the condition

<
{

z(Dq(Dm f (z)))
Dn ft(z)

}
< β, (1.5)

where ft(z) = (1 − t)z + t f (z).
Further, we define

V j(m, n, q, t, β) ≡ S j(m, n, q, t, β) ∩ V j.

By specializing the parameters in subclasses S j(m, n, q, t, β) and V j(m, n, q, t, β) studied earlier by various
researchers.

1. S j(n + 1, n, 0, 1, β) ≡ S j(n, β) and V j(n + 1, n, 0, 1, β) ≡ V j(n, β) studied by Dixit and Chandra [4].
2. S j(n + p, n, 0, 1, β) ≡ S j(n, p, β) and V j(n + 1, n, 0, 1, β) ≡ V j(n, p, β) studied by Dixit et al. [7].
3. S 1(1, 0, 0, 1, β) ≡ M(β) and V j(1, 0, 0, 1, β) ≡ V(β) studied by Uralegaddi et al. [17].
4. V1(2, 1, 0, 1, β) ≡ L(β) and V j(2, 1, 0, 1, β) ≡ U(β) studied by Uralegaddi et al. [17].
5. V1(1, 0, 0, 0, β) ≡ R(β) studied by Uralegaddi et al. [18].
Motivating with the above mentioned work and by work of Atshan and Abid Zaid [1], Dixit and Pathak [5, 6], Dixit

et al. [8], El-Ashwah et al. [9], Kanas and Srivastava [10], Porwal and Dixit [12] and Porwal et al. [13], we obtain
coefficient estimates, distortion bounds, covering results, extreme points, convolution condition, convex combination.
Finally, we discuss an integral operator and q-Jackson type integral operator for this class.

Our results generalized the results of Dixit and Chandra [4], Dixit et al. [7] and Uralegaddi et al. [17].
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2. Main Results
In our first theorem we give a necessary and sufficient condition for the class V j(m, n, q, t, β).

Theorem 2.1. The function f ∈ V j(m, n, q, t, β), if and only if∑∞
k= j+1(km[k]q − βtkn)|ak | ≤ β − 1, (2.1)

where m ∈ N, n ∈ N0, 0 ≤ q < 1, 0 ≤ t ≤ 1, 1 < β ≤ 4/3, j ∈ N.
The result is sharp.

Proof. First we suppose that the inequality (2.1) holds. To prove f ∈ V j(m, n, q, t, β) it suffices to show that∣∣∣∣∣∣∣∣

zDq(Dm f (z))
Dn ft(z) − 1

zDq(Dm f (z))
Dn ft(z) − (2β − 1)

∣∣∣∣∣∣∣∣
< 1, z ∈ U.

Now, we have ∣∣∣∣∣∣∣∣

zDq(Dm f (z))
Dn ft(z) − 1

zDq(Dm f (z))
Dn ft(z) − (2β − 1)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z+
∑∞

k= j+1[k]qkm|ak |zk

z+
∑∞

k= j+1knt|ak |zk − 1

z+
∑∞

k= j+1[k]qkm|ak |zk

z+
∑∞

k= j+1knt|ak |zk − (2β − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∑∞
k= j+1([k]qkm − knt)|ak |zk

∑∞
k= j+1([k]qkm − (2β − 1)knt)|ak |zk − 2(β − 1)z

∣∣∣∣∣∣∣

≤
∑∞

k= j+1([k]qkm − knt)|ak ||z|k
2(β − 1)|z| −∑∞

k= j+1([k]qkm − (2β − 1)knt)|ak | |z|k

<

∑∞
k= j+1([k]qkm − knt)|ak |

2(β − 1) −∑∞
k= j+1([k]qkm − (2β − 1)knt)|ak | .

The last expression is bounded above by 1, if∑∞
k= j+1([k]qkm − knt)|ak | ≤ 2(β − 1) −∑∞

k= j+1([k]qkm − (2β − 1)knt)|ak |,
⇒ ∑∞

k= j+1([k]qkm − βknt)|ak | ≤ β − 1,

which is true by hypothesis.
Thus, we have f ∈ V j(m, n, q, t, β).
To prove the converse part, we assume that f (z) is defined by (1.3) and in the class V j(m, n, q, t, β) so that condition

(1.5) reduces as

<
{

z{Dq(Dm f (z))}
Dn ft(z)

}
< β,

<


z +
∑∞

k= j+1[k]qkm|ak |zk

z +
∑∞

k= j+1knt|ak |zk

 < β.

The above condition must hold for all values of z; |z| = r < 1. Upon choosing the values of z on the positive real
axis where 0 ≤ z = r < 1, we have

r +
∑∞

k= j+1[kq]km|ak |rk

r +
∑∞

k= j+1knt|ak |rk < β

or
(β − 1) −∑∞

k= j+1([k]qkm − βknt)|ak |rk−1

1 +
∑∞

k= j+1knt|ak |rk−1 > 0. (2.2)

If the condition (2.1) does that not hold then the numerator in (2.2) is negative for r sufficiently close to 1. Thus
there exists a z0 = r0 in (0,1) for which the quotient in (2.2) is negative. This contradicts the required condition for
f ∈ V j(m, n, q, t, β) and so the proof is complete. �
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Corollary 2.1. Let the function f (z) defined by (1.3) belong to the class V j(m, n, q, t, β). Then

|ak | ≤ β − 1
[k]qkm − βtkn , (k ≥ j + 1).

The following results are some easy consequences of definition of class V j(m, n, q, t, β) and Theorem 2.1.
Therefore, we only state the results.

Theorem 2.2. Let 1 < β1 ≤ β2 ≤ 4/3. Then V j(m, n, q, t, β1) ⊆ V j(m, n, q, t, β2).

Theorem 2.3. Let m1 ≤ m2. Then V j(m1, n, q, t, β) ⊇ V j(m2, n, q, t, β).

Theorem 2.4. Let j1 ≤ j2. Then V j1 (m, n, q, t, β) ⊆ V j2 (m, n, q, t, β).

Theorem 2.5. Let q1 ≤ q2. Then V j(m, n, q1, t, β) ⊇ V j(m, n, q2, t, β).

Next, we determine the extreme points of closed convex hulls of V j(m, n, q, t, β) denoted by clco V j(m, n, q, t, β).

Theorem 2.6. Let f j(z) = z and fk(z) = z +
β−1

[k]qkm−βtkn zk, (k = j + 1, j + 2, ...). Then f ∈ V j(m, n, q, t, β), if and only
if, it can be expressed in the form

f (z) =
∑∞

k= jλk fk(z), (2.3)

where λk ≥ 0 and
∑∞

k= j+1λk = 1.
In particular the extreme points of V j(m, n, q, t, β) is { fk}.

Proof. Let f (z) =
∑∞

k= jλk fk(z)

f (z) = λ jz +
∑∞

k= j+1λk

(
z +

β − 1
[k]qkm − βtkn zk

)

f (z) = z +
∑∞

k= j+1λk
(β − 1)

[k]qkmβtkn zk.

Now
∑∞

k= j+1

{
[k]qkm − βtkn

} (β − 1)λk

[k]qkm − βtkn

= (β − 1)
∑∞

k= j+1λk

= (β − 1)(1 − λ j)

≤ β − 1.

Therefore, by Theorem 2.1 we conclude that f ∈ V j(m, n, q, t, β).
Conversely, suppose that the function class V j(m, n, q, t, β), then

|ak | ≤ β − 1
[k]qkm − βtkn , (k = j + 1, j + 2, ...).

Setting

λk =
[k]qkm − βtkn

β − 1
|ak |, (k = j + 1, j + 2, ...)

and
λ j = 1 −∑∞

k= j+1λ j.

Thus, the proof of Theorem 2.6 is complete. �

In our next result, we obtain the bounds for f ∈ V j(m, n, q, t, β).

Theorem 2.7. If f ∈ V j(m, n, q, t, β), then

r − (β − 1) r j+1

[ j + 1]q( j + 1)m − βt( j + 1)n ≤ | f (z)| ≤ r +
(β − 1) r j+1

[ j + 1]q( j + 1)m − βt( j + 1)n .

Furthermore

r − (β − 1) r j+1

[ j + 1]q( j + 1)m−n − βt
≤ |Dn f (z)| ≤ r +

(β − 1) r j+1

[ j + 1]q( j + 1)m−n − βt
.
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Proof. Since
f (z) = z +

∑∞
k= j+1|ak |zk

| f (z)| ≤ |z| + ∑∞
k= j+1|ak | |z|k

≤ r + r j+1∑∞
k= j+1|ak |

= r + r j+1∑∞
k= j+1

1
[k]1km − βtkn ([k]qkm − βtkn)|ak |

= r + r j+1 1
[ j + 1]q( j + 1)m − βt( j + 1)n

∑∞
k= j+1([k]qkm − βtkn)|ak |

≤ r +
(β − 1)r j+1

[ j + 1]q( j + 1)m − βt( j + 1)m .

Similarly, we prove that

| f (z)| ≥ r − (β − 1) r j+1

[ j + 1]q( j + 1)m − βt( j + 1)n .

Thus
|Dn f (z)| ≤ r +

∑∞
k= j+1kn|ak |rk

≤ r + r j+1∑∞
k= j+1

1
[k]qkm−n − βt

(
[k]qkm − βtkn

)
|ak |

≤ r + r j+1 1
[ j + 1]q( j + 1)m−n − βt

.

Similarly,

|Dn f (z)| ≥ r − (β − 1)r j+1

[ j + 1]q( j + 1)m−n − βt
.

The following covering result yields from left hand inequality of Theorem 2.7. �

Theorem 2.8. The disk |z| < 1 is mapped onto a domain that contain the disk

|w| < [ j + 1]q( j + 1)m − βt( j + 1)n − (β − 1)
[ j + 1]q( j + 1)m − βt( j + 1)n ,

by any f ∈ V j(m, n, q, t, β). The result is sharp for the extremal function

f (z) = z +
(β − 1)z j+1

[ j + 1]q( j + 1)m − βt( j + 1)n .

Proof. Making r → 1 in left hand inequality of Theorem 2.7, we obtain the required result. �

3. Convolution and Convex Combination
The convolution or (Hadamard product) of two function f (z) be defined by (1.3) and let the function g(z) be defined
by

g(z) = z +
∑∞

k= j+1|bk |zk, (3.1)

is defined as ( f ∗ g)(z) = z +
∑∞

k= j+1|ak | |bk |zk.

Theorem 3.1. Let the function f (z) be defined by (1.3) and g(z) be defined by (3.1) are in the classes V j(m1, n1, q, t, β1)
and V j(m2, n2, q, t, β2) respectively. Then the Hadamard product ( f ∗ g)(z) belongs to the classes V j(m1 + n2, n1 +

n2, q, t, β1), where 1 < β1 ≤ β2 ≤ 4/3.
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Proof. Since f (z) ∈ V j(m1, n1, q, t, β1), then by Theorem 2.1, we have
∑∞

k= j+1
[k]qkm1 − β1tkn1

β1 − 1
|ak | ≤ 1. (3.2)

Let g(z) ∈ V j(m2, n2, q, t, β2), we have
∑∞

k= j+1
[k]qkm2 − β2tkn2

β2 − 1
|bk | ≤ 1.

⇒ ∑∞
k= j+1kn2

[
[k]qkm2−n2 − β2t

β2 − 1

]
|bk | ≤ 1.

⇒ kn2 |bk | ≤ 1 (k = j + 1, j + 2, ...).

To prove ( f ∗ g)(z) ∈ V j(m1 + m2, n1 + n2, q, t, β1) it is sufficient to prove that
∑∞

k= j+1
[k]qkm1+n2 − β1tkn1+n2

β1 − 1
|ak | |bk | ≤ 1.

Now
∑∞

k= j+1
[k]qkm1+n2 − β1tkn1+n2

β1 − 1
|ak | |bk | ≤ ∑∞

k= j+1
[k]qkm1 − β1tkn1

β1 − 1
|ak |

≤ 1, (by (3.2)).
Therefore, ( f ∗ g)(z) ∈ V j(m1 + n2, n1 + n2, q, t, β).
In our next theorem, we show that the class V j(m, n, q, t, β) is closed under convex combination. �

Theorem 3.2. Let the function fi(z) be defined by
fi(z) = z +

∑∞
k= j+1|ak,i|zk, (i = 1, 2, ...)

be in the class V j(m, n, q, t, β). Then the function
∑∞

i=1ti fi(z) is in the class V j(m, n, q, t, β), where
∑∞

i=1ti = 1.

Proof. For i = 1, 2, 3... let fi(z) ∈ V j(m, n, q, t, β), wehre fi(z) is of the form
fi(z) = z +

∑∞
k= j+1|ak,i|zk, (i = 1, 2, ...).

Then from Theorem 2.1, we have ∑∞
k= j+1([k]qkm − βtkn)|ak,i| ≤ β − 1.

For
∑∞

i=1ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as∑∞
i=1ti fi(z) = z +

∑∞
k= j+1

(∑∞
i=1ti|ak,i|) zk.

Then by Theorem 2.1, we have ∑∞
k= j+1

(
[k]qkm − βtkn

) (∑∞
i=1ti|ak,i|)

=
∑∞

i=1ti
{∑∞

k= j+1

{
[k]qkm − βtkn

}}
|ak,i|

≤ ∑∞
i=1ti(β − 1) = β − 1.

Then by Theorem 2.1, we have
∑∞

i=1ti fi(z) ∈ V j(m, n, q, t, β). �

Theorem 3.3. Let the function f1(z), f2(z), ... fm(z) defined by
fi(z) = z +

∑∞
k= j+1|ak,i|zk, (i = 1, 2, ...,m)

be in the class V j(m, n, q, t, β). Then the function h(z) =
1
m

∑m
i=1 fi(z) is also in the class V j(m, n, q, t, β).

Proof. By the definition of h(z), we have

h(z) = z +
∑m

i=1

[
1
m

∑∞
k= j+1|ak,i|

]
zk.

Since fi(z) ∈ V j(m, n, q, t, β), therefore ∑∞
k= j+1[k]qkm − βtkn|ak,i| ≤ β − 1.

Now
∑∞

k= j+1([k]qkm − βtkn)
(∑m

i=1
1
m
|ak,i|

)

=
∑m

i=1
1
m

(∑∞
k= j+1

(
[k]qkm − βtkm

))
|ak,i|

≤ ∑m
i=1

1
m

(β − 1)

= β − 1.

This completes the proof of theorem. �
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4. A Family of Class Preserving Integral Operator
Definition 4.1. Let f (z) be defined by the relation (1.1) then we define the integral operator F(z) defined by the relation

F(z) =
c + 1

zc

∫ z
0tc−1 f (t)dt, (c > −1). (4.1)

Theorem 4.1. Let f (z) be defined by (1.3) and f (z) ∈ V j(m, n, q, t, β). Then F(z) defined by the relation (4.1) is also
in the class V j(m, n, q, t, β).

Proof. From the representation of F(z) given by (1.1), we may express F(z) as follows

F(z) = z +
∑∞

k= j+1
c + 1
c + k

|ak |zk. (4.2)
Since it is given that

f (z) ∈ V j(m, n, q, t, β).

From Theorem 2.1, we have ∑∞
k= j+1([k]qkm − βtkn)|ak | ≤ β − 1. (4.3)

Now
∑∞

k= j+1([k]qkm − βtkn)
c + 1
c + k

|ak |
≤ ∑∞

k= j+1([k]qkm − βtkn)|ak |
≤ β − 1, by(4.3).

Thus
F(z) ∈ V j(m, n, q, t, β).

�

Definition 4.2. Let f = h + g be defined by (1.1). Then the q-Jackson integral operator Fq : A → A is defined by the
relation

Fq(z) =
[c]q

zc+1

∫ z
0tch(t)dqt, (4.4)

where [c]q is the q-number defined by (1.4) and
∫ z

0 f (t)dqt is defined as∫ z
0 f (t)dqt = (1 − q)z

∑∞
i=0 f (zqi)qi, z ∈ C.

For detailed study one may refer to [3].

Theorem 4.2. Let f (z) be defined by (1.3) and f (z) ∈ V j(m, n, q, t, β). Then Fq(z) defined by (4.4) is in the class
V j(m, n, q, t, β).

Proof. From the representation of (4.4), we have

Fq(z) = z +
∑∞

k= j+1
[c]q

[k + c + 1]q
|ak |zk. (4.5)

Since
[k + c + 1]q − [c]q

=
∑k+c

i=0 qi −∑c−1
i=0 qi

=
∑k+c

i=0 qi > 0 [∵ q > 0]

⇒ [k + c + 1]q > [c]q

Now
∑∞

k= j+1([k]qkm − βtkn)
[c]q

[k + c + 1]q
|ak |

≤ ∑∞
k= j+1([k]qkm − βtkn)|ak |

≤ β − 1, (∵ f (z) ∈ V j(m, n, q, t, β)).

Thus, Fq(z) ∈ V j(m, n, q, t, β). �

Remark 4.1.
1. If we put m = n + 1, q = 0, t = 1 then we obtain the corresponding results of Dixit and Chandra [4].
2 If we put m = n + p, q = 0, t = 1 then we obtain the corresponding results of Dixit et al. [7].
3 If we put m = 1, n = 0, q = 0, t = 1, j = 1 then we obtain the corresponding results of Uralegaddi et al. [17].
4 If we put m = 2, n = 1, q = 0, t = 1, j = 1 then we obtain the corresponding results of Uralegaddi et al. [17].
5 If we put m = 1, n = 0, q = 0, t = 0, j = 1 then we obtain the corresponding results of Uralegaddi et al. [18].
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Abstract
The present paper aims to prove some new common fixed point theorems in intutionistic Menger spaces. In this

paper some common fixed point results for two pairs of compatible mappings of type (A-1) satisfying contractive
condition on intuitionistic menger space are also established. The concept of compatible mappings of type (A-1) was
given by Khan et al. [6]. Our results substantially generalize and improve a multitude of relevant common fixed point
theorems of the existing literature in metric as well as intutionistic menger spaces.
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1. Introduction
In 1922, Banach proved the mile stone in the fixed point theory and its applications. Several authors addressed a
new class of fixed point problems in metric spaces. They proved fixed point theorem for mappings satisfying certain
inequalities involving the altering distances function. There have been a number of generalizations of metric spaces.
One such generalization is Menger space introduced in 1942 by Menger [7] who used distribution functions instead
of nonnegative real numbers as values of the metric. This space was expanded rapidly with the pioneering works of
Schweizer and Sklar [13,14]. Modifying the idea of Kramosil and Michalek [4], George and Veeramani [1] introduced
fuzzy metric spaces which are very similar to that of Menger space. Park [10] defined the notion of intuitionistic fuzzy
metric space with the help of continuous t-norms and continuous t-conorms.

Kutukcu et al. [5] introduced the notion of intuitionistic Menger Spaces with the help of t-norms and t-conorms
as a generalization of Menger space due to Menger [7]. Further they introduced the notion of Cauchy sequences and
found a necessary and sufficient condition for an intuitionistic Menger Space to be complete. Sessa [15] initiated the
tradition of improving commutativity in fixed point theorems by introducing the notion of weakly commuting maps
in metric spaces. Jungck [3] soon enlarged this concept to compatible maps. The notion of compatible mapping in a
Menger space has been introduced by Mishra [8].

The concept of type A-compatible and S-compatible was given by Pathak and Khan [9]. Khan et al. [6]
renamed A-compatible and A-compatible as compatible mappings of type (A-1) and compatible mappings of type
(A-2) respectively.

Singh et al. [16,17] proved fixed point theorems in fuzzy metric space and menger space using the concept of
semicompatibility, weak compatibility and compatibility of type (β) respectively.

Gupta et al. [2] obtained some coupled fixed point results on modified intuitionistic fuzzy metric spaces and
application to integral type contractions. Also Pant et al. [11] established new fixed point theorems in partial metric
spaces with applications. Recently Shukla et al. [12] derived fixed point results for non linear contractions with
application to integral equations. Very recently Wasfi et al. [18] established new results on modified intuitionistic
generalized fuzzy metric spaces by employing E. A. property and common E. A. property for coupled maps.

These observations motivated us to prove a common fixed point theorem in intuitionistic Menger spaces. In this
paper, we prove some new common fixed point theorems in intuitionistic Menger spaces. While proving our results, we
utilize the idea of compatibility of type (A-1). Consequently, our results improve and develop many known common
fixed point theorems available in the existing literature of intutionistic menger fixed point theory.

2. Preliminaries
Definition 2.1 ([13]). A binary operation ∗ : [0, 1] × [0, 1]→ [0, 1] is a t-norm if ∗ satisfies the following conditions:
1. ∗ is commutative and associative,
2. ∗ is continuous,
3. a ∗ 1 = a, for all a ∈ [0, 1],
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].
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Definition 2.2 ([14]). A binary operation ♦ : [0, 1]×[0, 1]→ [0, 1] is a t-conorm if ♦ satisfies the following conditions:
1. ♦ is commutative and associative,
2. ♦ is continuous,
3. a♦0 = a, for all a ∈ [0, 1],
4. a♦b ≤ c♦d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Remark 2.1. The concept of triangular norms (t-norms) and triangular conforms (t-conorms) are known as the
axiomatic skeletons that we use for characterizing fuzzy intersection and union respectively. These concepts were
originally introduced by Menger [7] in his study of statistical metric spaces.

Definition 2.3 ([5]). A distance distribution function is a function F : R→ R+ which is non-decreasing, left continuous
on R and inf{F(t) : t ∈ R} = 0 and sup{F(t) : t ∈ R} = 1. We will denote by D the family of all distance distribution
functions while H will always denote the specific distribution function defined by

H(x) =

{
0, x ≤ 0
1, x > 0.

If X is a non-empty set, F : X × X → D is called a probabilistic distance on X and F(x, y) is usually denoted by the
Fx,y.

Definition 2.4 ([5]). A non-distance distribution function is a function L : R → R+ which is non-increasing, right
continuous on R and inf{L(t) : t ∈ R} = 1 and sup{L(t) : t ∈ R} = 0. We will denote by E the family of all non-distance
distribution functions while G will always denote the specific distribution function defined by

G(t) =

{
1, t ≤ 0
0, t > 0.

If X is a non-empty set, L : X × X → E is called a probabilistic non-distance on X and L(x, y) is usually denoted by
the Lx,y.

Definition 2.5 ([5]). A 5-tuple (X, F, L, ∗, ♦) is said to be an intuitionistic Menger space if X is an arbitrary set, ∗ is a
continuous t-norm, ♦ is continuous t-conorm, F is a probabilistic distance and L is a probabilistic non-distance on X
satisfying the following conditions: for all x, y, z ∈ X and t, s ≥ 0
1 Fx,y(t) + Lx,y(t) ≤ 1,
2 Fx,y(0) = 0,
3 Fx,y(t) = H(t) if and only if x = y,
4 Fx,y(t) = Fy,x(t)
5 if Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,z(t + s) = 1,
6 Fx,z(t + s) ≥ Fx,y(t) ∗ Fy,z(s),
7 Lx,y(0) = 1,
8 Lx,y(t) = G(t) if and only if x = y,
9 Lx,y(t) = Ly,x(t),
10 if Lx,y(t) = 0 and Ly,z(s) = 0, then Lx,z(t + s) = 0,
11 Lx,z(t + s) ≤ Lx,y(t)♦Ly,z(s).
The function Fx,y(t) and Lx,y(t) denote the degree of nearness and degree of non-nearness between x and y with respect
to t, respectively.

Remark 2.2. Every Menger space (X, F, ∗) is intuitionistic Menger space of the form (X, F, 1−F, ∗, ♦) such that t-norm
∗ and t-conorm ♦ are associated, that is x♦y = 1 − (1 − x) ∗ (1 − y) for any x, y ∈ X.

Example 2.1. Let (X, d) be a metric space. Then the metric d induces a distance distribution function F defined by
Fx,y(t) = H(t − d(x, y)) and a non-distance function L defined by Lx,y(t) = G

(
td(x, y)

)
for all x, y ∈ X and t ≥ 0. Then

(X, F, L) is an intuitionistic probabilistic metric space. We call this intuitionistic probabilistic metric space induced
by a metric d the induced intuitionistic probabilistic metric space. If t-norm ∗ is a ∗ b = min{a, b} and t-conorm ♦ is
a♦b = min{1, a + b} for all a, b ∈ [0, 1] then (X, F, L, ∗, ♦) is an intuitionistic Menger space.

Remark 2.3. Note that the above example holds even with the t-norm a ∗ b = min{a, b} and t-conorm a♦b = max{a, b}
and hence (X, F, L, ∗, ♦) is an intuitionistic Menger space with respect to any t-norm and t-conorm. Also note t-norm
∗ and t-conorm ♦ are not associated.
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Definition 2.6 ([5]). Let (X, F, L, ∗, ♦) be an intuitionistic Menger space with t ∗ t ≥ t and (1t)♦(1 − t) ≤ (1t). Then:
1. A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ ∈ (0, 1), there exists positive
integer N such that Fxn,x(ε) > 1 − λ and Lxn,x(ε) < λ whenever n ≥ N.
2. A sequence {xn} in X is called Cauchy sequence if, for every ε > 0 and λ ∈ (0, 1), there exists positive interger N
such that Fxn,xm (ε) > 1 − λ and Lxn,xm (ε) < λ whenever n,m ≥ N.
3. An intuitionistic Menger space (X, F, L, ∗, ♦) is said to be complete if and only if every Cauchy sequence in X is
convergent to a point in X.

The proof of the following Lemmas is on the lines of Mishra [8].

Lemma 2.1. Let (X, F, L, ∗, ♦) be an intuitionistic Menger space with t ∗ t ≥ t and (1 − t)♦(1 − t) ≤ (1 − t) and {yn} be
a sequence in X. If there exists a number k ∈ (0, 1) such that:
1 Fyn+2,yn+1(kt) ≥ Fyn+1,yn(t),
2 Lyn+2,yn+1(kt) ≤ Lyn+1,yn(t) for all t > 0 and n = 1, 2, 3, 4, ... Then {yn} is a Cauchy sequence in X.

Proof. By simple induction with the condition (1), we have for all t > 0 and n = 1, 2, 3, ..., Fyn+1,yn+2(t) ≥ Fy1,y2(t/kn),
Lyn+1,yn+2(t) ≤ Ly1,y2(t/kn). Thus by Definition 2.5 (6) and (11), for any positive integer m ≥ n and number t > 0, we
have

Fyn,ym(t) ≥ Fyn,yn+1

( t
m − n

)
∗ Fyn+1,yn+2

( t
m − n

)
∗ · · · ∗ Fym−1,ym

( t
m − n

)

≥
︷                                  ︸︸                                  ︷
(1 − λ) ∗ (1 − λ) ∗ · · · ∗ (1 − λ) > (1 − λ),

and

Lyn,ym(t) ≤ Lyn,yn+1

( t
m − n

)
♦Lyn+1,yn+2

( t
m − n

)
♦ · · · ♦Lym−1,ym

( t
m − n

)

≤
︷        ︸︸        ︷
λ♦λ♦ · · · ♦λ < λ,

which implies that {yn} is a Cauchy sequence in X. This completes the proof. �

Lemma 2.2. Let (X, F, L, ∗, ♦) be an intuitionistic Menger space with t ∗ t ≥ t and (1 − t) ♦(1 − t) ≤ (1 − t) and for all
x, y ∈ X, t > 0 and if for a number k ∈ (0, 1)

Fx,y(kt) ≥ Fx,y(t) and Lx,y(kt) ≤ Lx,y(t), (2.1)

then x = y.

Proof. Since t > 0 and k ∈ (0, 1) we get t > kt. In intuitionistic Menger space (X, F, L, ∗, ♦), Fx,y is non decreasing and
Lx,y is non-increasing for all x, y ∈ X, then we have

Fx,y(t) ≥ Fx,y(kt) and Lx,y(t) ≥ Lx,y(kt).

Using (2.1) and the definition of intuitionistic Menger space, we have x = y. �

Definition 2.7 ([9]). The self-maps A and B of an intuitionistic Menger space (X, F, L, ∗, ♦) are said to be compatible
if for all t > 0,

lim
n→∞ FABxn,BAxn (t) = 1 and LABxn,BAxn (t) = 0,

whenever {xn} is a sequence in X such that limn→∞ Axn = limn→∞ Bxn = z for some z ∈ X.

Definition 2.8 ([9]). The self-maps A and B of an intuitionistic Menger space (X, F, L, ∗, ♦) are said to be compatible
of type (A) if for all t > 0,

lim
n→∞ FABxn,BBxn (t) = lim

n→∞ FBAxn,AAxn (t) = 1 and lim
n→∞ LABxn,BBxn (t) = lim

n→∞ LBAxn,AAxn (t) = 0,

whenever {xn} is a sequence in X such that limn→∞ Axn = limn→∞ Bxn = z for some z ∈ X.

Definition 2.9 ([6]). The self-maps A and B of an intuitionistic Menger space (X, F, L, ∗, ♦) are said to be compatible
of type (A-1) if for all t > 0,

lim
n→∞ FBAxn,AAxn (t) = 1 and lim

n→∞ LBAxn,AAxn (t) = 0,

whenever {xn} is a sequence in X such that limn→∞ Axn = limn→∞ Bxn = z for some z ∈ X.
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Proposition 2.1 ([6]). Let S and T be self maps of an intuitionistic Menger space (X, F, L, ∗, ♦). If the pair (S ,T ) are
compatible of type (A-1) and S z = Tz for some z in X then S Tz = TTz.

Proposition 2.2 ([6]). Let S and T be self maps of an intuitionistic Menger space (X, F, L, ∗, ♦) with t ∗ t > t and
(1 − t)♦(1 − t) ≤ (1 − t) for all t in [0, 1]. If the pair (S ,T ) are compatible of type (A-1) and S xn,T xn → z for some z
in X and a sequence {xn} in X then TT xn → S z if S is continuous at z.

Proposition 2.3 ([6]). Let S and T be self maps of an intuitionistic Menger space (X, F, L, ∗, ♦). If the pair (S ,T ) are
compatible of type (A-1) and S z = Tz for some z in X then TS z = S S z.

3. Common Fixed Point Theorems
In this section, we establish common fixed point theorems for compatible mappings of type (A-1).

Theorem 3.1. Let (X, F, L, ∗, ♦) be a complete intuitionistic Menger space with t ∗ t ≥ t and (1 − t)♦(1 − t) ≤ (1 − t).
Let A, B, S and T be selfmappings of X such that the following conditions are satisfied :
(i) A(X) ⊆ T (X), B(X) ⊆ S (X),
(ii) S and T are continuous,
(iii) There exists k ∈ (0, 1) such that for every x, y ∈ X and t > 0,

FAx,By(kt) ≥
{
FS x,Ty(t) ∗ FAx,S x(t) ∗ FBy,Ty(t) ∗ FAx,Ty(t)

}
. (3.1)

and LAx,By(kt) ≤
{
LS x,Ty(t)♦LAx,S x(t)♦LBy,Ty(t)♦LAx,Ty(t)

}
. (3.2)

If the pair (A, S ) and (B,T ) are compatible mappings of type (A-1), then A, B, S and T have a unique common fixed
point in X.

Proof. Let x0 be an arbitrary point in X. Since A(X) ⊂ T (X) and B(X) ⊂ S (X), there exist x1, x2 ∈ X such that
Ax0 = T x1 and Bx1 = S x2. Inductively, we construct the sequences {yn} and {xn} in X such that

y2n+1 = Ax2n = T x2n+1, y2n+2 = Bx2n+1 = S x2n+2

for n = 0, 1, 2, ....
Now putting in (3.1) and (3.2) x = x2n, y = x2n+1, we obtain

FAx2n,Bx2n+1 (kt) ≥
{
FS x2n,T x2n+1 (t) ∗ FAx2n,S x2n (t) ∗ FBx2n+1,T x2n+1 (t) ∗ FAx2n,T x2n+1 (t)

}

that is

Fy2n+1,y2n+2 (kt) ≥
{
Fy2n,y2n+1 (t) ∗ Fy2n+1,y2n (t) ∗ Fy2n+2,y2n+1 (t) ∗ Fy2n+1,y2n+1 (t)

}

≥
{
Fy2n,y2n+1 (t) ∗ Fy2n+1,y2n+2 (t)

}

≥ Fy2n,y2n+1 (t).

Also

LAx2n,Bx2n+1 (kt) ≤
{
LS x2n,T x2n+1 (t)♦LAx2n,S x2n (t)♦LBx2n+1,T x2n+1 (t)♦LAx2n,T x2n+1 (t)

}

that is

Ly2n+1,y2n+2 (kt) ≤
{
Ly2n,y2n+1 (t)♦Ly2n+1,y2n (t)♦Ly2n+2,y2n+1 (t)♦Ly2n+1,y2n+1 (t)

}

≤
{
Ly2n,y2n+1 (t)♦Ly2n+1,y2n+2 (t)

}

≤ Ly2n,y2n+1 (t).

Similarly,

Fy2n+2,y2n+3 (kt) ≥ Fy2n+1,y2n+2 (t) and Ly2n+2,y2n+2 (kt) ≤ Ly2n+1,y2n+2 (t).

Thus, we have

Fyn+1,yn+2 (kt) ≥ Fyn,yn+1 (t) and Lyn+1,yn+2 (kt) ≤ Lyn,yn+1 (t) for n = 1, 2, 3, ....

Therefore, we have

Fyn,yn+1 (t) ≥ Fyn,yn+1

( t
q

)
≥ Fyn−1,yn

( t
q2

)
≥ · · · ≥ Fy1,y2

( t
qn

)
→ 1

and Lyn,yn+1 (t) ≤ Lyn,yn+1

( t
q

)
≤ Lyn−1,yn

( t
q2

)
≤ · · · ≤ Ly1,y2

( t
qn

)
→ 0 when n→ ∞.
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For each ε > 0 and t > 0, we can choose n0 ∈ N such that Fyn,yn+1 (t) > 1ε and Lyn,yn+1 (t) < ε for each n ≥ n0.
For m, n ∈ N, we suppose m ≥ n. Then, we have

Fyn,ym (t) ≥ Fyn,yn+1

( t
m − n

)
∗ Fyn+1,yn+2

( t
m − n

)
∗ · · · ∗ Fym−1,ym

( t
m − n

)

>
(
(1ε) ∗ (1ε) ∗ ...(mn) times ... ∗ (1ε)

)

≥ (1ε),
and

Lyn,ym (t) ≤ Lyn,yn+1

( t
m − n

)
♦Lyn+1,yn+2

( t
m − n

)
♦ · · · ♦Lym−1,ym

( t
m − n

)

<
(
(ε)♦(ε)♦ · · · (mn) times · · · ♦(ε)

)

≤ (ε).
Fyn,ym (t) > (1ε), Lyn,ym (t) < ε.

Hence {yn} is a Cauchy sequence in X. As X is complete, {yn} converges to some point z ∈ X. Also, its subsequences
converges to this point z ∈ X, i.e. {Bx2n+1} → z, {S x2n} → z, {Ax2n} → z, {T x2n+1} → z.

Since the pair (A, S ) and (B,T ) are compatible mappings of type (A-1), then from Proposition 2.2, we have
AAx2n → S z and BBx2n+1 → Tz.

By (3.1) for x = Ax2n and y = Bx2n+1, we have

FAAx2n,BBx2n+1 (kt) ≥
{
FS Ax2n,T Bx2n+1 (t) ∗ FAAx2n,S Ax2n (t) ∗ FBBx2n+1,T Bx2n+1 (t) ∗ FAAx2n,T Bx2n+1 (t)

}
.

Taking limn→∞, using (3.3) and Proposition 2.1, we get

FS z,Tz(kt) ≥
{
FS z,Tz(t) ∗ FS z,S z(t) ∗ FTz,Tz(t) ∗ FS z,Tz(t)

}

FS z,Tz(kt) ≥ FS z,Tz(t).
By (3.2) for x = Ax2n and y = Bx2n+1, we have

LAAx2n,BBx2n+1 (kt) ≤
{
LS Ax2n,T Bx2n+1 (t)♦LAAx2n,S Ax2n (t)♦LBBx2n+1,T Bx2n+1 (t)♦LAAx2n,T Bx2n+1 (t)

}
.

Taking limn→∞, using (3.3) and Proposition 2.1, we get

LS z,Tz(kt) ≤
{
LS z,Tz(t)♦LS z,S z(t)♦LTz,Tz(t)♦LS z,Tz(t)

}
LS z,Tz(kt) ≤ LS z,Tz(t).

By Lemma 2.2,
S z = Tz. (3.4)

Again by inequality (3.1), for x = z and y = Bx2n+1, we have

FAz,BBx2n+1 (kt) ≥
{
FS z,T Bx2n+1 (t) ∗ FAz,S z(t) ∗ FBBx2n+1,T Bx2n+1 (t) ∗ FAz,T Bx2n+1 (t)

}
.

Taking limn→∞ and using (3.3), (3.4), we get

FAz,Tz(kt) ≥
{
FS z,Tz(t) ∗ FAz,S z(t) ∗ FTz,Tz(t) ∗ FAz,Tz(t)

}

≥
{
FS z,S z(t) ∗ FAz,S z(t) ∗ FTz,Tz(t) ∗ FAz,S z(t)

}

≥ FAz,S z(t).
Again by inequality (3.2), for x = z and y = Bx2n+1, we have

LAz,BBx2n+1 (kt) ≤
{
LS z,T Bx2n+1 (t)♦LAz,S z(t)♦LBBx2n+1,T Bx2n+1 (t)♦LAz,T Bx2n+1 (t)

}
.

Taking limn→∞ and using (3.3), (3.4) we get

LAz,Tz(kt) ≤
{
LS z,Tz(t)♦LAz,S z(t)♦LTz,Tz(t)♦LAz,Tz(t)

}

≤
{
LS z,S z(t)♦LAz,S z(t)♦LTz,Tz(t)♦LAz,S z(t)

}

≤ LAz,S z(t).
By Lemma 2.2,

Az = S z. (3.5)

Again by inequality (3.1), for x = z and y = z, we have

FAz,Bz(kt) ≥
{
FS z,Tz(t) ∗ FAz,S z(t) ∗ FBz,Tz(t) ∗ FAz,Tz(t)

}
.
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Using (3.4) and (3.5)

FAz,Bz(kt) ≥
{
FS z,S z(t) ∗ FS z,S z(t) ∗ FBz,Az(t) ∗ FTz,Tz(t)

}

≥ FBz,Az(t).

Again by inequality (3.2), for x = z and y = z, we have

LAz,Bz(kt) ≤
{
LS z,Tz(t)♦LAz,S z(t)♦LBz,Tz(t)♦LAz,Tz(t)

}
.

Using (3.4) and (3.5)

LAz,Bz(kt) ≤
{
LS z,S z(t)♦LS z,S z(t)♦LBz,Az(t)♦LTz,Tz(t)

}
,

LAz,Bz(kt) ≤ LBz,Az(t).

By Lemma 2.2,
Az = Bz. (3.6)

Thus from (3.4), (3.5) and (3.6), we get
Az = Bz = S z = Tz. (3.7)

Now we shall prove that Az = z.
By inequality (3.1), putting x = z and y = x2n+1,

FAz,Bx2n+1 (kt) ≥
{
FS z,T x2n+1 (t) ∗ FAz,S z(t) ∗ FBx2n+1,T x2n+1 (t) ∗ FAz,T x2n+1 (t)

}
.

Taking limn→∞ and using (3.7), we get

FAz,z(kt) ≥
{
FS z,z(t) ∗ FAz,S z(t) ∗ Fz,z(t) ∗ FAz,z(t)

}

≥ FAz,z(t).

By inequality (3.2), putting x = z and y = x2n+1,

LAz,Bx2n+1 (kt) ≥
{
LS z,T x2n+1 (t) ∗ LAz,S z(t) ∗ LBx2n+1,T x2n+1 (t) ∗ LAz,T x2n+1 (t)

}
.

Taking limn→∞ and using (3.7), we get

LAz,z(kt) ≤
{
LS z,z(t)♦LAz,S z(t)♦Lz,z(t)♦LAz,z(t)

}

≤ LAz,z(t).

By Lemma 2.2,
Az = z.

Combining all results, we get z = Az = Bz = S z = Tz.
From this we conclude that z is a common fixed point of A, B, S and T . �

Uniqueness. Let z1 be another common fixed point of A, B, S and T . Then

z1 = Az1 = Bz1 = S z1 = Tz1

and z = Az = Bz = S z = Tz.

Using inequality (3.1), putting x = z and y = z1, we get

FAz,Bz1 (kt) ≥
{
FS z,Tz1 (t) ∗ FAz,S z(t) ∗ FBz1,Tz1 (t) ∗ FAz,Tz1 (t)

}

≥
{
Fz,z1 (t) ∗ Fz,z(t) ∗ Fz1,z1 (t) ∗ Fz,z1 (t)

}

≥ Fz,z1 (t).

Using inequality (3.2), putting x = z and y = z1, we get

LAz,Bz1 (kt) ≤
{
LS z,Tz1 (t)♦LAz,S z(t)♦LBz1,Tz1 (t)♦LAz,Tz1 (t)

}

≤
{
Lz,z1 (t)♦Lz,z(t)♦Lz1,z1 (t)♦Lz,z1 (t)

}

≤ Lz,z1 (t).

(By Lemma 2.2, z = z1).
Thus z is the unique common fixed point of A, B, S and T .
If we increase the number of self maps from four to six, then we have the following.
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Theorem 3.2. Let (X, F, L, ∗, ♦) be a complete intuitionistic Menger space with t ∗ t ≥ t and (1 − t)♦(1 − t) ≤ (1 − t).
Let A, B, S ,T, I and J be selfmappings of X such that the following conditions are satisfied:
(i) AB(X) ⊆ J(X) and S T (X) ⊆ I(X),
(ii) I and J are continuous,
(iii) There exists k ∈ (0, 1) such that for every x, y ∈ X and t > 0,

FABx,S Ty(kt) ≥
{
FIx,Jy(t) ∗ FABx,Ix(t) ∗ FS Ty,Jy(t) ∗ FABx,Jy(t)

}
, (3.8)

LABx,S Ty(kt) ≤
{
LIx,Jy(t)♦LABx,Ix(t)♦LS Ty,Jy(t)♦LABx,Jy(t)

}
. (3.9)

If the pair (AB, I) and (S T, J) are compatible mappings of type (A-1), then AB, S T, I and J have a unique common
fixed point in X. Furthermore, if the pairs (A, B), (A, I), (B, I), (S ,T ), (S , J) and (T, J) are commuting mapping then
A, B, S ,T, I and J have a unique common fixed point.

Proof. From Theorem 3.1, z is the unique common fixed point of AB, S T, I and J.
Finally, we need to show that z is also a common fixed point of A, B, S ,T, I, and J. For this, let z be the unique

common fixed point of both the pairs (AB, I) and (S T, J). Then, by using commutativity of the pair (A, B), (A, I), and
(B, I), we obtain

Az = A(ABz) = A(BAz) = AB(Az),
Az = A(Iz) = I(Az),
Bz = B(ABz) = B

(
A(Bz)

)
= BA(Bz) = AB(Bz), Bz = B(Iz) = I(Bz), (3.10)

which show that Az and Bz are common fixed point of (AB, I), yielding thereby

Az = z = Bz = Iz = ABz, (3.11)

in the view of uniqueness of the common fixed point of the pair (AB, I).
Similarly, using the commutativity of (S ,T ), (S , J), (T, J) it can be shown that

S z = Tz = Jz = S Tz = z. (3.12)

Now, we need to show that Az = S z(Bz = Tz) also remains a common fixed point of both the pairs (AB, I) and
(S T, J). For this, put x = z and y = z in (3.8) and using (3.11) and (3.12), we get

FABz,S Tz(kt) ≥
{
FIz,Jz(t) ∗ FABz,Iz(t) ∗ FS Tz,Jz(t) ∗ FABz,Jz(t)

}

≥ FAz,S z(t).

By (3.9), we get

LABz,S Tz(kt) ≤
{
LIz,Jz(t)♦LABz,Iz(t)♦LS Tz,Jz(t)♦LABz,Jz(t)

}

≤ LAz,S z(t).

By Lemma 2.2, we get
Az = S z. Similarly, it can be shown that Bz = Tz. Thus z is the unique common fixed point of A, B, S ,T, I and J. �

Example 3.1. Let X = [0, 1] with the metric d defined by d(x, y) = |x − y| and for each t ∈ [0, 1] define

F(x, y, t) =
|x − y|

t + |x − y| , L(x, y, t) =
t

t + |x − y| ,
F(x, y, 0) = 1, L(x, y, 0) = 0 for all x, y ∈ X.

Clearly (X, F, L, ∗, ♦) is a complete intuitionistic Menger space where ∗ is defined by a ∗ b = min{a, b} and ♦ is
defined by a♦b = max{a, b}.

Define the self mappings A, B, S and T on X by

Ax = Bx = 0 for all x ∈ X

S x =

{
0, if 0 ≤ x < 1
1, if x = 1,

T x = x for all x ∈ X.

If we define a sequence {xn} in X by xn =
{

1
n

}
, then we have

lim
n→∞ Axn = lim

n→∞ S xn = 0,
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lim
n→∞ F(S Axn, 0, t) ≥ F(A0, 0, t) = 0,

lim
n→∞ L(S Axn, 0, t) ≤ L(A0, 0, t) = 1 and

lim
n→∞ Bxn = lim

n→∞T xn = 0,

lim
n→∞ F(T Bxn, 0, t) ≥ F(B0, 0, t) = 0,

lim
n→∞ L(T Bxn, 0, t) ≤ L(B0, 0, t) = 1.

That is the pairs (A,S), (B,T) are compatible of type (A − 1) and S ,T are continuous.
Therefore all the conditions of Theorem 3.1 are satisfied and so A, B, S and T have a unique common fixed point

0 in X.

Corollary 3.1. Let (X, F, L, ∗, ♦) be a complete intuitionistic Menger space with t ∗ t ≥ t and (1 − t)♦(1 − t) ≤ (1 − t).
Let S and T be self mappings of X and there exists k ∈ (0, 1) such that for every x, y ∈ X and t > 0,

Fx,y(kt) ≥
{
FS x,Ty(t) ∗ Fx,S x(t) ∗ Fy,Ty(t) ∗ Fx,Ty(t)

}
(3.13)

and Lx,y(kt) ≤
{
LS x,Ty(t)♦Lx,S x(t)♦Ly,Ty(t)♦Lx,Ty(t)

}
. (3.14)

Then S and T have a unique common fixed point in X.

Proof. If we set A = B = I (the identity mapping) in Theorem 3.1, then it is easy to check that the pairs (I, S ) and
(I,T ) are compatible of type (A-1) and the identity mapping I is continuous. Hence by Theorem 3.1, S and T have a
unique common fixed point in X. �

4. Conclusion
In this work, we proposed and proved some interesting common fixed point theorems in intuitionistic menger space
for compatible mappings of type (A-1). Our results improve and develop many known common fixed point theorems
available in the literature of intuitionistic menger fixed point theory.
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Abstract

In this paper, we consider a new subfamily of holomorphic (analytic) functions with bounded turning in the open
unit disk U = {z; |z| < 1}. Here, in this paper, we focus the coefficient estimates and upper bounds of fourth Hankel
determinant for this family. Moreover, the same bounds have been investigated for two-fold and three-fold symmetric
functions.
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1. Introduction
Let A denote the class of all analytic functions which are normalized by ψ(0) = 0 and ψ′(0) = 1 in the open unit disc
U = {z; |z| < 1}. Geometrically the normalization condition satisfies as ψ(0) = 0 like the transformations of the image
domain given by ψ′(0) = 1. The function ψ having the Taylor-Maclaurin series expansion given by

ψ(z) = z +
∑∞

n=2ψnzn. (1.1)

Also, let S be a subset of A which consists all the univalent functions. Without loss of generality, we can say an
univalent functions can be written in the form (1.1). Next, let P denote the class of analytic functions with real part
positive and has the form :

ρ(z) = 1 +
∑∞

k=1ρkzk. (1.2)

The Hankel determinant Hq,n(ψ) ; (q ∈ N0, n ∈ N) where N0 = N ∪ {0} for a function ψ ∈ S of the form (1.1) was
defined by Pommerenke [18, 19] as

Hq,n(ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣

ψn ψn+1 · · · ψn+q−1
ψn+1 ψn+2 · · · ψn+q
...

...
...

...
ψn+q−1 ψn+q · · · ψn+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.3)

The problem of figuring the upper bound of Hq,n over various subfamilies of A is fascinating and extensively studied
in the literature of Geometric Function Theory of Complex Analysis. For fixed q, n, the growth rate of Hq,n as n→ ∞
has been studied by Noonan and Noor [15, 14] for different subfamilies of univalent function. Sharp upper bound of
H2,2(ψ) = ψ2ψ4 −ψ2

3 of second Hankel determinant were obtained by various authors. It is worth citing a few of them,
for example [6, 7, 8, 10]. Unfortunately, the sharp bound of H2,2(ψ) for the whole class S is still not known. In [17],
Thomas conjectured that if ψ ∈ S, then |H2,n(ψ)| ≤ 1. As it was shown by Li and Srivastava in [13], this conjecture is
not true for n ≥ 4. Similarly, Răducanu and Zaprawa in [21] proved that it is also false for n = 2. In fact, they showed
that max {|H2,2(ψ)| ; ψ ∈ S} ≥ 1 : 175.

One of the paper on H3,1(ψ) by Babalola [3] for the families of S∗, C and R as 16, 0.714 and 0.742 respectively.
Moreover, Babalola claimed that the extremal function for class of starlike function is the rotations of ψ(z) = z

(1−z)2 . The
above estimates are true but not sharp. In fact, Zaprawa[23] meliorate [3] results by proving third Hankel determinant
for S∗, C and R as 1 , 0.090 , 0.683 respectively and alleged that improved bounds still not sharp. He considered
functions with m-fold symmetry for the sharpness of the subfamilies of S∗, C and R. Other related results can be
found in [4, 5, 11, 22].

Here, we will study the class R1 ⊂ A and satisfying the condition

Re(ψ′(z) + zψ′′(z)) > 0, (z ∈ U), (1.4)

and the class R ⊂ A satisfying Re(ψ′(z)) > 0, z ∈ U.
The class R is said to be of bounded turning because Re(ψ′(z)) > 0 is equivalent to | argψ′(z)| < π

2 and argψ(z) is
the angle of rotation of the image of a line segment starting from z under the mapping ψ. They are of special interest
since they are not part of a wide subclass of univalent functions known as starlike functions. See the counter example
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by Krzyz [12] showing that S∗ * R,R * S∗. In addition, classes R and R1 are related in a same way as are the classes
of starlike and convex functions, i.e., R1 ⊂ R [1] as C ⊂ S∗, as

ψ ∈ R1 ⇐⇒ zψ′(z) ∈ R,
as

ψ ∈ C ⇐⇒ zψ′(z) ∈ S∗.
Here we investigate the upper bounds of H4,1 for the class R1 with the motivation of paper by Arif et al. [2] for the
class of bounded turning functions R as if ψ ∈ R then |H4,1(ψ)| ≤ 0.78050 and [9] for α bounded turning functions.

2. Preliminary Lemmas
To investigate fourth Hankel determinant for class R1 we use the following results as:

Lemma 2.1 ([20]). If ρ belongs to P, then
|ρk | ≤ 2; k ∈ N, (2.1)

|ρm+n − λρmρn| ≤ 2; 0 ≤ λ ≤ 1, (2.2)

|ρpρq − ρrρs| ≤ 4; p + q = r + s, (2.3)

Theorem 2.1 ([2]). Let k(z) = z +
∑∞

r=1krzr ∈ S∗. Then

|k2
2(k3 − λk2

2)| =



4(3 − 4λ) f or λ ≤ 5
8 ;

1
2(2λ−1) f or λ ∈ [ 5

8 ,
3
4 ];

1
4(1−λ) f or λ ∈ [ 3

4 ,
7
8 ];

4(4λ − 3) f or λ ≥ 7
8 .

where λ is a real number.

Theorem 2.2 ([16]). Let ψ ∈ R1, then
|H3,1(ψ)| ≤ 0.2121 · · · . (2.4)

3. Bounds of fourth Hankel determinant
First of all, H4,1(ψ);ψ ∈ A of the form (1.1) is polynomial of six successive coefficients as:

H4,1(ψ) = ψ7H3,1(ψ) − ψ6∆1 + ψ5∆2 − ψ4∆3 (3.1)

where
∆1 = (ψ3ψ6 − ψ4ψ5) − ψ2(ψ2ψ6 − ψ3ψ5) + ψ4(ψ2ψ4 − ψ2

3), (3.2)

∆2 = (ψ4ψ6 − ψ2
5) − ψ2(ψ3ψ6 − ψ4ψ5) + ψ3(ψ3ψ5 − ψ2

4), (3.3)

∆3 = ψ2(ψ4ψ6 − ψ2
5) − ψ3(ψ3ψ6 − ψ4ψ5) + ψ4(ψ3ψ5 − ψ2

4). (3.4)

Theorem 3.1. Let ψ ∈ R1 then maximum of |H4,1(ψ)| ≤ 0.004495423.

Proof. Let ψ ∈ R1, then it follows that ψ′(z) + zψ′′(z) = ρ(z) with ρ(z) = 1 +
∑∞

n=1ρnzn ∈ P.
(
1 +

∑∞
n=2n2ψnzn−1

)
=

(
1 +

∑∞
n=1ρnzn) .

Comparing the coefficients we yields that
ψn =

ρn−1

n2 . (3.5)

Utilizing (3.5) in (3.2), (3.3) and in (3.4), we obtain

∆1 =
ρ2ρ5

324
− ρ3ρ4

400
− ρ

2
1ρ5

576
+
ρ1ρ2ρ4

900
+
ρ1ρ

2
3

1024
− ρ2

2ρ3

1296
;

∆2 =
ρ3ρ5

576
− ρ2

4

625
− ρ1ρ2ρ5

1296
+
ρ1ρ3ρ4

1600
+
ρ2

2ρ4

2025
− ρ2ρ

2
3

2304
;

∆3 =
ρ1ρ3ρ5

2304
− ρ1ρ

2
4

2500
− ρ2

2ρ5

2916
+
ρ2ρ3ρ4

1800
− ρ3

3

4096
.

Now rewrite the above equations as follow

∆1 =
ρ5

576
(ρ2 − ρ2

1) +
ρ3

1296
(ρ4 − ρ2

2) − ρ3

1024
(ρ4 − ρ1ρ3)
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− 4759ρ4

2073600
(ρ3 − ρ1ρ2) +

2455ρ2

2073600
(ρ5 − ρ1ρ4) +

ρ2ρ5

2073600
,

∆2 =
1

1296
ρ5(ρ3 − ρ1ρ2) − 1

2025
ρ4(ρ4 − ρ2

2) +
1

2304
ρ3(ρ5 − ρ2ρ3)

− 1559
3240000

ρ3(ρ5 − ρ1ρ4) − 56
50625

ρ4(ρ4 − ρ1ρ3) +
71

1440000
ρ3ρ5,

∆3 =
1

2916
ρ5(ρ4 − ρ2

2) − 1
2304

ρ5(ρ4 − ρ1ρ3) +
1

4096
ρ3(ρ6 − ρ2

3) − 1
4096

ρ3(ρ6 − ρ2ρ4)

+
1

2500
ρ4(ρ5 − ρ1ρ4) − 287

921600
ρ4(ρ5 − ρ2ρ3) +

4679
1866240000

ρ4ρ5.

By applying triangular inequality and the inequalities asserted by the Lemma in Section 2, we obtain

|∆1| ≤ 1
144

+
1

324
+

1
256

+
4759

518400
+

2455
518400

+
345

518400
=

77
2700

, (3.6)

|∆2| ≤ 1
324

+
4

2025
+

1
576

+
224

50625
+

1559
810000

+
71

1440000
=

19003
1440000

, (3.7)

|∆3| ≤ 1
729

+
1

576
+

1
512

+
1

625
+

287
230400

+
4679

466560000
=

57
7200

. (3.8)

Now, by substituting (3.6), (3.7), (3.8), (2.2) and (2.1) in (3.1), we find that

|H4,1(ψ)| ≤ 312769
361267200

+
77

48600
+

342054
324000000

+
57

57600

≤ 4027899
896000000

.

The proof of Theorem is now completed. �

4. Bounds for H4,1(ψ) for Two-fold and Three-fold Symmetric Functions
A function ψ is said to be m-fold symmetric if the following condition ψ(εz) = εψ(z) holds, where ε = exp( 2Πι

m )
denotes the principal m-th root of 1. S(m) denotes the class of normalized univalent functions.

S(m) = {ψ(z) ∈ S;ψ(z) = z +
∑∞

k=1ψmk+1zmk+1, z ∈ U. (4.1)

A function ψ ∈ S(m) in R(m)
1 if

ψ′(z) + zψ′′(z) = ρ(z) with ρ ∈ P(m),

where
P(m) = {ρ(z) : ρ(z) = 1 +

∑∞
k=1ρmkzmk}. (4.2)

We see that if ψ ∈ S(3) then ψ(z) = z +ψ4z4 +ψ7z7 + · · · and consequently H4,1(ψ) = ψ2
4(ψ2

4 −ψ7) and if ψ ∈ S(2) having
odd functions of S and of the form ψ(z) = z + ψ3z3 + ψ5z5 + · · · so H4,1(ψ) = ψ3ψ5ψ7 − ψ3

3ψ7 + ψ2
3ψ

2
5 − ψ3

5.

Theorem 4.1 (Three-fold Symmetric Functions). Let ψ ∈ R(3)
1 then

|H4,1(ψ)| ≤ 79
200704

.

Proof. If ψ ∈ R(3)
1 then ∃h̃(z) = z + h4z4 + h7z7 + · · · ∈ S∗(3) such that zh̃′(z)

h̃(z)
and ψ ∈ R(3)

1 ∈ S(m) for m = 3, we have

1 + 3h4z3 + (6h7 − 3h2
4)z6 + · · · = 1 + 16ψ4z3 + 49ψ7z6 + · · ·

.
Equating the coefficients, we get

3h4 = 16ψ4, 6h7 − 3h2
4 = 49ψ7. (4.3)

Since h̃ ∈ S∗(3), ∃k(z) = z +
∑∞

r=1krzr ∈ S∗ such that h̃(z) =
3
√

k(z3),

∴ z + h4z4 + h7z7 + · · · = z +
1
3

k2z4 + (
1
3

k3 − 1
9

k2
2)z7 + · · ·

Equating the coefficients

h4 =
1
3

k2, h7 = (
1
3

k3 − 1
9

k2
2). (4.4)
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Now rearranging (4.3) and (4.4), we find that

ψ4 =
1

16
k2, ψ7 =

1
49

(2k3 − k2
2). (4.5)

We have already seen that ψ2 = ψ3 = ψ5 = ψ6 = 0. Hence H4,1(ψ) = ψ2
4(ψ2

4 − ψ7). It follows that

|H4,1(ψ)| = 1
6272

|k2
2(k3 − 305

512
k2

2)|.
Thus, by utilizing (2.1) from Section 2, where λ = 305

512 ≤ 5
8 , we get our desired result as asserted by Theorem

4.1. �

Theorem 4.2 (Two-fold Symmetric Functions). Let ψ ∈ R(2)
1 then

|H4,1(ψ)| ≤ 8
11025

.

Proof. Here ψ ∈ R(2)
1 thereupon, H4,1(ψ) = ψ3ψ5ψ7 − ψ3

3ψ7 + ψ2
3ψ

2
5 − ψ3

5.
As long as ψ ∈ S∗(2) likewise ρ ∈ P(2). Hence ψ′(z) + zψ′′(z) = ρ(z) with the help of expansions (4.1) and (4.2) for

two fold, it follows that

1 + 9ψ3z2 + 25ψ5z4 + 49ψ7z6 + ... = 1 + ρ2z2 + ρ4z4 + ρ6z6 + . . . .

∴ ψ3 =
1
9
ρ2, ψ5 =

1
25
ρ4, ψ7 =

1
49
ρ6.

|H4,1(ψ)| =
∣∣∣∣∣

1
11025

ψ2ψ4ψ6 − 1
35721

ψ3
2ψ6 +

1
50625

ψ2
2ψ

2
4 −

1
15625

ψ3
4

∣∣∣∣∣ .

≤ 1
11025

∣∣∣∣∣∣

(
ρ2ρ6 − 441

625
ρ2

4

)∣∣∣∣∣∣

∣∣∣∣∣∣

(
ρ4 − 25

81
ρ2

2

)∣∣∣∣∣∣ .

Finally, applying the inequalities (2.2) and (2.3) of Lemma in Section 2, we get our Theorem proved. �

5. Conclusion
In this paper, we have presented a systematic study of class of analytic function associated with bounded turning
function in the open diskU. For function belonging to the subclass of analytic function class, which we have introduced
and studied here, we have derived the estimates of fourth Hankel determinant. Furthermore, we have also investigated
the same kind of bounds for some two-fold and three-fold functions.

Acknowledgement. The authors are deeply indebted to the Editors and learned referees for their careful reading of
the manuscript and constructive comments.
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Abstract

Over the years, the study of Bailey transform, Bailey lemma, Bailey pair, their variants and their applications are
the major subjects of interest. Of course, it is due to the efficiency of the Bailey transform and lemma in producing
many ordinary and q-hypergeometric identities, multiple series summation and transformation formulas, and the
Rogers-Ramanujan type identities. Andrews investigated a WP-Bailey lemma and the pairs with the help of Bailey
transform and used it to derive well-known summations and multiple series transformations. In this research paper,
we investigate an Andrews’ type WP-Bailey lemma and the pairs with the help of First Bailey Type Transform due
to Joshi and Vyas. The investigated Andrews’ type WP-Bailey lemma is then applied to obtain terminating multiple
q-hypergeometric identities and construct the WP-Bailey type chains and a binary tree.

The paper is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the
basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable
particularly in several diverse areas including number theory, theory of partitions and combinatorial analysis as well
as in the study of combinatorial generating functions.
2020 Mathematical Sciences Classification: 33D15, 33D90
Keywords and Phrases: Andrew’s type WP-Bailey lemma, pairs and chains; Bailey transform, lemma and pairs;
First Bailey Type Transform; WP-Bailey lemma, pairs and chains; Multiple q-hypergeometric identities

1. Introduction, Preliminaries and Motivation
The generalized basic (or q-) hypergeometric series rΦs [10] (see also [9] and [36]) is defined by

rΦs


a1, · · · , ar ;

b1, · · · , bs ;
q, z

 =
∑∞

n=0

(a1; q)n · · · (ar; q)n

(b1; q)n · · · (bs; q)n

zn

(q; q)n

[
(−1)n q(n

2)
]1+s−r

, (1.1)

where q , 0 when r > s + 1. We also note that

r+1Φr


a1, · · · , ar+1 ;

b1, · · · , br ;
q, z

 =
∑∞

n=0

(a1; q)n · · · (ar+1; q)n

(b1; q)n · · · (br; q)n

zn

(q; q)n
, (1.2)

where the q-shifted factorials are given by

(a; q)n := (1 − a) · · · (1 − aqn−1), (n ∈ N0) (1.3)

(a; q)0 := 1. (1.4)

In the definition (1.2), it is assumed that none of the denominator parameters are of the form q−k and the series (1.2)
will terminate if one of its numerator parameters is of the form q−k, where k is a non-negative integer. A detailed
discussion on convergence of the series in (1.2) can be found in [10, pp. 4–5].
Moreover, this series is very well-poised if a1q = a2b1 = · · · = ar+1br along with the condition a2 = q

√
a1, a3 =

−q
√

a1.
The recent research papers [33, 34, 35, 42] and many others, cited therein, are examples of ongoing trend and

interest in the field of q-analysis and q-calculus. Srivastava [33] used the concept of basic (or q-) calculus to introduce
the families of q-extensions of starlike functions, which are associated with the Janowski functions (in the open
unit disk U) of complex theory. He defined two general subclasses Sαn (limn→∞, β, b, q) and Gαn (limn→∞, β, b, q) of
normalized analytic functions with complex order and negative coefficients and their associated coefficient estimates,
radii of close-to-convexity, starlikeness and convexity, extreme points, and growth and distortion theorems. Moreover,
Srivastava [34] presents an excellent set of discussion and comments on the study of post-quantum or (p, q)-version
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of the classical q-analysis. In a survey-cum-expository review article by Srivastava [35], the overview and recent
developments in the theory of several extensively studied higher transcendental functions along with their applications
in widely investigated areas of various sciences have been nicely presented. Further, several contiguous extensions of
the q-analogues of the celebrated set of first, second and third summation theorems due to Kummer are investigated in
a recent paper by Vyas et al. [42].

The present work is motivated essentially by the fact that the basic (or q-) series, basic (or q-) polynomials and
basic (or q-) calculus, specifically the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric
polynomials have demonstrated applications around number theory such as, for example, the theory of partitions and
are also found to be useful in a wide range of fields including, for example, combinatorial analysis, finite vector spaces,
lie theory, particle physics, quantum mechanics, mechanical engineering, theory of heat conduction, nonlinear electric
circuit theory, cosmology and statistics (see, for details, [36, pp. 350–351], [33, p. 328], and [38, p. 1817]; see also the
references cited therein). Further motivation for studying such quantum (or q-) hypergeometric functions in this paper
can be found in the book entitled quantum calculus [14]. Here, in our present investigation, we are mainly concerned
with the celebrated Bailey transform and lemma, their extensions and applications to obtain multiple q-hypergeometric
identities.
1.1. Bailey Transform and Lemma
The well-known Bailey transform [31] is defined as:
If

βn =
∑n

r=0αr un−r vn+r (1.5)

and
γn =

∑∞
r=nδr ur−n vr+n, (1.6)

then, subject to convergence conditions, ∑∞
n=0αnγn =

∑∞
n=0βnδn. (1.7)

Bailey [6] studied the above transform, in the form of Bailey lemma as given below :

βn =
∑n

r=0
αr

(aq; q)n+r (q; q)n−r
, (1.8)

and used it to obtain a number of identities of Rogers-Ramanujan type including the two well-known Rogers-
Ramanujan identities. Following Bailey [6, Section 4], Slater [31] published a list of 130 identities of Rogers-
Ramanujan type. Specifically, the mechanism of production of an infinite family of identities out of one identity
is mentioned in [6, Section 4].
As explained in [6, Section 4], the Bailey transform (Equations (1.5) to (1.7)) and the following conjugate Bailey pair

γn =
∑∞

r=n
δr

(aq; q)r+n (q; q)r−n
(1.9)

with the choice δr =

(
b, c, q−N ; q

)
r

qr


bcq−N

a
; q


r

, ur =
1

(q; q)r
and vr =

1
(aq; q)r

gives:

∑
n≥0



(b, c; q)n

(aq

bc

)n
αn

(aq

b
,

aq

c
; q

)

n


1

(q; q)N−n (aq; q)N+n
=

∑
n≥0

(b, c; q)n

(aq

bc
; q

)

N−n

(aq

bc

)n
βn

(q; q)N−n

(aq

b
,

aq

c
; q

)

N

· (1.10)

However, Bailey [6] ignored the above-mentioned conjugate pair due to the complexity involved in it but, it was
Andrews [2] who observed the iteration of the Bailey lemma, that is, equation (1.10) is again an instance of equation
(1.8) with

α
′
r =

(b, c; q)r

(aq

bc

)r
αr

(aq

b
,

aq

c
; q

)

r

(1.11)
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and

β
′
N =

∑
n≥0

(b, c; q)n

(aq

bc
; q

)

N−n

(aq

bc

)n

(q; q)N−n

(aq

b
,

aq

c
; q

)

N

βn· (1.12)

In this way, the Bailey lemma was iterated ad infinitum, which originated the concept of Bailey pairs and chains, see
also [5].
1.2. WP-Bailey Lemma, Pairs and Chains
Andrews [3, p. 15, Def. 6.1] generalized the standard Bailey lemma as:

βn (a, k) =
∑n

p=0

(
k
a

; q
)

n−p
(k; q)n+p

(q; q)n−p (aq; q)n+p
αp (a, k) , (1.13)

where α0 (a, k) = 1 and named it as WP-Bailey lemma. The sequences αn (a, k) and βn (a, k) form a WP-Bailey pair.
For k = 0, (1.13) converts back to the standard Bailey pair (1.8). He also explained the construction of two distinct
WP-Bailey pairs as:
If the initial pair (αn (a, k) , βn (a, k)) satisfy (1.10), then the pairs

(
α
′
n (a, k) , β

′
n (a, k)

)
and

(
α̃n (a, k) , β̃n (a, k)

)
also,

where

α
′
n (a, k) =

(b, c; q)n
(aq

b
,

aq

c
; q

)

n

(
k
%

)r

αn (a, %) , (1.14)

and

β
′
N (a, k) =

(
kb
a
,

kc
a

; q
)

n
(aq

b
,

aq

c
; q

)

n

∑n
p=0

(
1 − %q2p

)
(b, c; q)p

(
k
%

; q
)

n−p

(1 − %)
(

kb
a
,

kc
a

; q
)

p

(k; q)n+p

(q%; q)n+p
βp (a, %)

(
k
%

)n

, (1.15)

with % =
kbc
aq

, and

α̃n (a, k) =


qa2

k
; q


2n

(
k2

qa2

)n

(k; q)2n
αn

a,
qa2

k

 , (1.16)

β̃n (a, k) =
∑n

p=0

(
k2

qa2
; q

)

n−p

(
k2

qa2

)p

(q; q)n−p
βp

a,
qa2

k

 · (1.17)

Thus, the Bailey pair (αn (a, k) , βn (a, k)) generates two separate Bailey chains as:
(αn (a, k) , βn (a, k))→

(
α
′
n (a, k) , β

′
n (a, k)

)
→

(
α
′′
n (a, k) , β

′′
n (a, k)

)
→ · · · (1.18)

and
(αn (a, k) , βn (a, k))→

(
α̃n (a, k) , β̃n (a, k)

)
→

(
α̃
′
n (a, k) , β̃′n (a, k)

)
→ · · · (1.19)

The above two Bailey chains together form a binary tree originated from the initial pair (αn (a, k) , βn (a, k)). The
repeated iteration of WP-Bailey lemma (1.13) with the different WP-Bailey pairs produced the well-known classical
Jackson 8φ7 summation theorem [10, p. 356, Equation (II.22)], Bailey’s 10φ9 identity [10, p. 363, Equation (III.28)]
etc. (see [3]) which were not possible to derive with the help of standard Bailey lemma (1.8). Later on, many
researchers, for example, [1, 4, 7, 8, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 39, 40, 41, 43, 44] and
references therein have explored the concept of WP-Bailey lemma in different ways to produce new q-hypergeometric
transformations and various types of combinatorial results containing mock-theta functions and elliptic functions.
Specifically, Srivastava et al. [39] used the WP-Bailey pair and its conjugate pair to investigate many transformations
and q-series identities. In a sequel, Srivastava et al. [40] investigated a derived WP-Bailey pair which was the limiting
case of the WP-Bailey pair and utilized it to establish the families of derived WP-Bailey pairs and their applications
in establishing many q-transformations. Recently, [41] studied different forms of Bailey transform and utilized them
to establish some transformation formulas for a q-hypergeometric series as well as bi-basic hypergeometric series,
together with several other related useful q-series identities.
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1.3. First Bailey Type Transform (FBTT) by Joshi and Vyas [12]
Joshi and Vyas [11] gave new dimensions to Bailey transform (Equations (1.5) to (1.7)) by investigating its two
different extensions with the help of series rearrangement technique [29, 37] and shown its efficiency in deriving
several transformations and summations for ordinary and q-hypergeometric functions and the double series Rogers-
Ramanujan type identities. Recently, Joshi and Vyas [12] developed two new series transforms of Bailey type, one of
which will be utilized in this paper and is as follows:
First Bailey Type Transform (FBTT): If

β(n,l) =
∑min(n,l)

m=0 αmun−mu
′
l−mvn+mv

′
l+mtn−lwl+n (1.20)

and
γm =

∑
n≥0

∑
l≥0δn+mδ

′
l+munu

′
lvn+2mv

′
l+2mtn+m−lwl+n+m, (1.21)

then, subject to convergence conditions
∑

m≥0αmγm =
∑

n,l≥0β(n,l)δnδ
′
l · (1.22)

Joshi and Vyas [12] utilized their Bailey type transforms in investigating some q-hypergeometric identities
involving very well-poised 10φ9 or 12φ11 series. In addition, they obtained two Bailey type lemmas (that is, First Bailey
Type Lemma (FBTL) and Second Bailey Type Lemma (SBTL)) and then applied the lemmas to investigate some
q-hypergeometric identities involving very well-poised 10φ9 or 12φ11 as well as the multiple series Rogers-Ramanujan
type identities [12, pp. 11–26]. They also explained the construction of two Bailey type chains. Zhang and Song [45]
obtained two identities related to mock theta functions by employing the 2-fold Bailey lemma or FBTL. Further, in a
series of papers, Patkowski [25, 26, 27, 28] utilized the new Bailey type pairs investigated by [12] to give applications
in the field of number theory.
Although, Andrews [3] investigated the WP-Bailey lemma from the Bailey transform (Equations (1.5) to (1.7)), the
Andrews’ type WP-Bailey lemma from FBTT (Equations (1.20) to (1.22)), has not been investigated till now. It will
be our endeavour in this research paper to obtain and study Andrews’ type WP-Bailey lemma, WP-Bailey pairs and to
point out their role in deriving a class of q-hypergeometric identities.
The proof of Andrews’ type WP-Bailey lemma, new WP-Bailey type pair, and the generated chain is given in Section
2. The applications of Andrews’ type WP-Bailey lemma in deriving the terminating multiple series hypergeometric
identities are discussed in Section 3. In Section 4, we shall construct the alternative WP-Bailey type pair satisfying
Andrews’ type WP-Bailey lemma and the corresponding WP-Bailey type chain.

2. Andrews’ Type WP-Bailey Lemma or WP-BTL
Theorem 2.1. If n, l ≥ 0, then sequences αm (a, k, k′) and β(n,l) (a, k, k′) form an Andrews’ Type WP-Bailey Pair or
WP-BTP, provided they satisfy the following Andrews’ Type WP-Bailey Lemma or WP-BTL:

β(n,l)
(
a, k, k′

)
=

∑min(n,l)
m=0

(
k
a

; q
)

n−m

(
k′

a
; q

)

l−m
(k; q)n+m (k′; q)l+m

(q; q)n−m (q; q)l−m (aq; q)n+m (aq; q)l+m
αm

(
a, k, k′

)
. (2.1)

Also

β
′
(n,l)

(
a, k, k′

)
=

∑min(n,l)
m=0

(
k
a

; q
)

n−m

(
k′

a
; q

)

l−m
(k; q)n+m (k′; q)l+m

(q; q)n−m (q; q)l−m (aq; q)n+m (aq; q)l+m
α
′
m
(
a, k, k′

)
(2.2)

where

α
′
m
(
a, k, k′

)
=

(b, c, b′, c′; q)m


a2q2

bcb′c′


m

(aq

b
,

aq

c
,

aq

b′
,

aq

c′
; q

)

m

αm

(
a,

kbc
aq

,
k′b′c′

aq

)
, (2.3)
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and

β
′
(M,N) (a, k, k′) =

∑
n,l≥0

(
kb
a
,

kc
a

; q
)

M
(aq

b
,

aq

c
; q

)

M

(
k′b′

a
,

k′c′

a
; q

)

N
(aq

b′
,

aq

c′
; q

)

N

·

(
q
√

kbc
aq ,−q

√
kbc
aq , b, c; q

)

n
(√

kbc
aq ,−

√
kbc
aq ,

kb
a
,

kc
a

; q
)

n

(aq

bc
; q

)

M−n
(k; q)M+n

(aq

bc

)n

(
kbc
a

; q
)

M+n
(q; q)M−n

·

(
q
√

q k′b′c′
aq ,−q

√
k′b′c′

aq , b′, c′; q
)

l
(√

k′b′c′
aq ,−

√
k′b′c′

aq ,
k′b′

a
,

k′c′

a
; q

)

l

( aq

b′c′
; q

)

N−l
(k′; q)N+l

( aq

b′c′

)l

(
k′b′c′

a
; q

)

N+l
(q; q)N−l

β(n,l)

(
a,

kbc
aq

,
k′b′c′

aq

)
·

(2.4)

Proof. For the choices

δr =

(
q
√

kbc
aq ,−q

√
kbc
aq , b, c, kqM , q−M; q

)

r
qr

q
√

kbc
aq ,−q

√
kbc
aq ,

kb
a
,

kc
a
,

kbcqM

a
,

bcq−M

a
; q


r

,

δ
′
r =

(
q
√

k′b′c′
aq ,−q

√
k′b′c′

aq , b′, c′, k′qN , q−N ; q
)

r
qr


√

k′b′c′
aq ,−

√
k′b′c′

aq ,
k′b′

a
,

k′c′

a
,

k′b′c′qN

a
,

b′c′q−N

a
; q


r

,

ur =

(
kbc

a2q
; q

)

r

(q; q)r
, u

′
r =

(
k′b′c′

a2q
; q

)

r

(q; q)r
,

vr =

(
kbc
aq

; q
)

r

(aq; q)r
, v

′
r =

(
k′b′c′

aq
; q

)

r

(aq; q)r
,

and tr = wr = 1 in (1.21) and then, the use of Jackson summation theorem [10, p. 238, Equation (II. 22)], leads to

γm =

(
kbc
a
,

aq

b
,

aq

c
; q

)

M
(
aq,

kb
a
,

kc
a
,

aq

bc
; q

)

M

(
k′b′c′

a
,

aq

b′
,

aq

c′
; q

)

N
(
aq,

k′b′

a
,

k′c′

a
,

aq

b′c′
; q

)

N

·
(
b, c, kqM , q−M , b′, c′, k′qN , q−N ; q

)
m

(aq

b
,

aq

c
, aq1+M ,

aq

b′
,

aq

c′
, aq1+N ; q

)

m

(
k
a

; q
)

M−m

(
k′

a
; q

)

N−m
q−m2+m


a2qM+N+2

bcb′c′


m

.

(2.5)

Now, we shall discuss the proof of (2.2).
Consider the right side of (2.2) as:

Ω =
∑min(M,N)

m=0

(
k
a

; q
)

M−m

(
k′

a
; q

)

N−m
(k; q)M+m (k′; q)N+m

(q; q)M−m (q; q)N−m (aq; q)M+m (aq; q)N+m
αm

′ (
a, k, k′

)
. (2.6)

Substituting the value of α
′
m (a, k, k′) from (2.3), we get

Ω =
∑min(M,N)

m=0

(
k
a

; q
)

M−m

(
k′

a
; q

)

N−m
(k; q)M+m (k′; q)N+m

(q; q)M−m (q; q)N−m (aq; q)M+m (aq; q)N+m

(b, c, b′, c′; q)m


a2q2

bcb′c′


m

(aq

b
,

aq

c
,

aq

b′
,

aq

c′
; q

)

m

αm

(
a,

kbc
aq

,
k′b′c′

aq

)
(2.7)
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=
(k; q)M (k′; q)N

(aq, q; q)M (aq, q; q)N

∑min(M,N)
m=0

(
k
a

; q
)

M−m

(
k′

a
; q

)

N−m
(
aq1+M , aq1+N ; q

)
m

(
b, c, kqM , q−M , b′, c′, k′qN , q−N ; q

)
m

(aq

b
,

aq

c
,

aq

b′
,

aq

c′
; q

)

m

· q−m2+m


a2qM+N+2

bcb′c′


m

αm

(
a,

kbc
aq

,
k′b′c′

aq

)

(2.8)

=
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kb
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kc
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aq
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; q

)

M
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kbc
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aq
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aq

c
, q; q
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(
k′,

k′b′

a
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k′c′

a
,

aq

b′c′
; q

)

N
(

k′b′c′

a
,

aq

b′
,

aq

c′
, q; q

)

N

∑min(M,N)
m=0 αm

(
a,

kbc
aq

,
k′b′c′

aq

)
γm (2.9)

=
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k,

kb
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kc
a
,

aq

bc
; q

)

M
(

kbc
a
,

aq

b
,

aq

c
, q; q

)

M

(
k′,

k′b′

a
,

k′c′

a
,

aq

b′c′
; q

)

N
(

k′b′c′

a
,

aq

b′
,

aq

c′
, q; q

)

N

∑M
n=0

∑N
l=0β(n,l)

(
a,

kbc
aq

,
k′b′c′

aq

)
δnδ
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l (2.10)

=
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(
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∑N
l=0β(n,l)
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aq
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·

(
q
√
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aq ,−q

√
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√
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√
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√
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aq ,

kb
a
,

kc
a

; q
)

n

·

(
q
√

k′b′c′
aq ,−q

√
k′b′c′

aq , b′, c′; q
)

l
(√

k′b′c′
aq ,−

√
k′b′c′

aq ,
k′b′

a
,

k′c′

a
; q

)

l

(k; q)M+m

(aq

bc
; q

)

M−n

(aq

bc

)n

(
kbc
a

; q
)

M+n
(q; q)M−m

(k′; q)N+l

(aq

bc
; q

)

N−l

(aq

bc

)l

(
k′b′c′

a
; q

)

N+l
(q; q)N−l

= β
′
(M,N) (a, k, k′)

(2.12)
�
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Remark 2.1. If αm (a, k, k′) and β(n,l) (a, k, k′) form a WP-BTP, then so do α
′
m (a, k, k′) and β

′
(n,l) (a, k, k′), which we refer

to as new WP-BTP and are given by (2.3) and (2.4).

Remark 2.2. Taking k, k′ = 0 in Theorem 2.1 leads to the First Bailey type lemma due to [12].

Remark 2.3. The notion of repeated application of WP-BTL gives rise to the concept of WP-Bailey type chain which
takes initial WP-BTP, that is,(

αm (a, k, k′) , β(n,l) (a, k, k′)
)

where

αm
(
a, k, k′

)
=

a, q
√

a,−q
√

a,
a2q

kk′
; q


m

(
kk′

a2q

)m

(
a,
√

a,−√a,
kk′

a
; q

)

m

(2.13)

and

β(n,l)
(
a, k, k′

)
=

(
k,

aq

k′
; q

)

n

(
k′,

aq

k
; q

)

l
(
q,

kk′

a
; q

)

n

(
q,

kk′

a
; q

)

l

(
kk′

a
; q

)

n+l

(
k
a

; q
)

n−l

(
kk′

a2q

)l

(aq; q)n+l

(aq

k′
; q

)

n−l

(2.14)

as input and generates new WP-BTP
(
α
′
m (a, k, k′) , β

′
(n,l) (a, k, k′)

)
. Now, by taking

(
α
′
m (a, k, k′) , β

′
(n,l) (a, k, k′)

)
as

initial WP-BTP in WP-BTL, we can obtain next pair as
(
α
′′
m (a, k, k′) , β

′′
(n,l) (a, k, k′)

)
. Continuing this process, we

obtain a sequence of WP-BTP’s called WP-Bailey type chain as:
(
αm (a, k, k′) , β(n,l) (a, k, k′)

)→
(
α
′
m (a, k, k′) , β

′
(n,l) (a, k, k′)

)
→

(
α
′′
m (a, k, k′) , β

′′
(n,l) (a, k, k′)

)
→ · · · .

(2.15)

3. Certain Terminating q-hypergeometric Identities
In this section, we provide certain terminating multiple series identities involving 12φ11 and 16φ15, as applications of
WP-BTL.

Theorem 3.1. The following assertion holds true:
(

k
a
,

kbc
a
,

aq

b
,

aq

c
; q

)

M
(
aq,

kc
a
,

kb
a
,

aq

bc
; q

)

M

(
k′

a
,

k′b′c′

a
,

aq

b′
,

aq

c′
; q

)

N
(
aq,

k′c′

a
,

k′b′

a
,

aq

b′c′
; q

)

N

· 12Φ11



a, q
√

a,−q
√

a, b, c, b′, c′, µ, kqM , k′qN , q−M , q−N ;

√
a,−√a,

aq

b
,

aq

c
,

aq

b′
,

aq

c′
,

aq

µ
,

aq1−M

k
,

aq1−N

k′
, aq1+M , aq1+N ;

q, q



=
∑

n,l≥0

(aq

µ
; q

)

n+l

(
kbc

a2q
; q

)

n−l

(aq; q)n+l


a2q2

k′b′c′
; q


n−l

·

q
√

kbc
aq ,−q

√
kbc
aq , b, c,

kbc
aq

,
a2q2

k′b′c′
, kqM , q−M; q


n

qn

q,
√

kbc
aq ,−

√
kbc
aq ,

kb
a
,

kc
a
,

kbcqM

a
,

bcq−M

a
,

aq

µ
; q


n
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·

q
√

k′b′c′
aq ,−q

√
k′b′c′

aq , b′, c′,
k′b′c′

aq
,

a2q2

kbc
, k′qN , q−N ; q


l

(aq

µ

)l


√

k′b′c′
aq ,−

√
k′b′c′

aq ,
k′b′

a
,

k′c′

a
,

k′b′c′qN

a
,

b′c′q−N

a
,

aq

µ
; q


l

(3.1)

where µ =
a4q3

kk′bcb′c′

Proof. The q-hypergeometric summation in Theorem 3.1 is the outcome of the assertion that the WP-BTP
(
α
′
m (a, k, k′) , β

′
(n,l) (a, k, k′)

)

satisfies the WP-BTL (Theorem 2.1) where the initial pair
(
αm (a, k, k′) , β(n,l) (a, k, k′)

)
is given by (2.13) and (2.14). �

Remark 3.1. The case k =
Aaq

bc
and k′ =

Baq

b′c′
of Theorem 3.1 leads to a hypergeometric identity due to [10, Equation

(3.2)].

Theorem 3.2. The following assertion holds true:

16Φ15



a, q
√

a,−q
√

a, b, c, b′, c′, d, e, d′, e′,

√
a,−√a,

aq

b
,

aq

c
,

aq

b′
,

aq

c′
,

aq

d
,

aq

e
,

aq

d′
,

aq

e′
,

ν, kqM , k′qN , q−M , q−N ;

aq

ν
,

aq1−M

k
,

aq1−N

k′
, aq1+M , aq1+N ;

q



=

(
aq,

kd
a
,

ke
a
,

aq

de
; q

)

M
(aq

d
,

aq

e
,

kde
a
,

k
a

; q
)

M

(
aq,

k′d′

a
,

k′e′

a
,

aq

d′e′
; q

)

N
(aq

d′
,

aq

e′
,

k′d′e′

a
,

k′

a
; q

)

N

· ∑i, j≥0

(
q
√

kde
aq ,−q

√
kde
aq , d, e, kqM , q−M; q

)

i
qi


√

kde
aq ,−

√
kde
aq ,

kd
a
,

ke
a
,

kdeqM

a
,

deq−M

a
; q


i

·

(
q
√

k′d′e′
aq ,−q

√
k′d′e′

aq , d′, e′, k′qN , q−N ; q
)

j
q j


√

k′d′e′
aq ,−

√
k′d′e′

aq ,
k′d′

a
,

k′e′

a
,

k′d′e′qN

a
,

d′e′q−N

a
; q


j

(3.2)
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· ∑n,l≥0

(
kcde

a2q
,

kbde

a2q
,

kde
aq

,
aq

bc
; q

)

i
(
q,

aq

b
,

aq

c
,

kbcde

a2q
; q

)

i

(
k′c′d′e′

a2q
,

k′b′d′e′

a2q
,

k′d′e′

aq
,

aq

b′c′
; q

)

j
(
q,

aq

b′
,

aq

c′
,

k′b′c′d′e′

a2q
; q

)

j

·

q
√

kbcde
a2q2 ,−q

√
kbcde
a2q2 , b, c,

kbcde

a2q2
,

a3q3

k′b′c′d′e′
,

kde
aq

qi, q−i; q


n

qn

q,
√

kbcde
a2q2 ,−

√
kbcde
a2q2 ,

kcde

a2q
,

kbde

a2q
,

aq

ν
,

kbcde

a2q
qi,

bcq−i

a
; q


n

·

(
q
√

k′b′c′d′e′
a2q2 ,−q

√
k′b′c′d′e′

a2q2 , b′, c′,
k′b′c′d′e′

a2q2
; q

)

l
(
q,

√
k′b′c′d′e′

a2q2 ,−
√

k′b′c′d′e′
a2q2 ,

k′c′d′e′

a2q
,

k′b′d′e′

a2q
,

aq

ν
; q

)

l

·


a3q3

kbcde
,

k′d′e′

aq
q j, q− j; q


l
ql

(
1
ν

)l


k′b′c′d′e′

a2q
qi,

b′c′q− j

a
; q


l

(aq

ν
; q

)

n+l

(
kbcde

a3q2
; q

)

n−l

(aq; q)n+l


a3q3

k′b′c′d′e′
; q


n−l

where ν =
a6q5

kk′bcb′c′ded′e′

Proof. First, we obtain the WP-BTP
(
α
′′
m (a, k, k′) , β

′′
(n,l) (a, k, k′)

)
using equations (2.3) and (2.4) with new pa-

rameters d, e, d′ and e′ and then apply it to WP-BTL (Theorem 2.1). Further simplification using the pair(
α
′
m (a, k, k′) , β

′
(n,l) (a, k, k′)

)
defined in the previous theorem completes the proof of the above theorem. �

4. Alternative WP-Bailey Type Pairs
In the present section, we obtain alternative WP-Bailey type pairs or alternative WP-BTP, which cannot be reduced to
(2.3) and (2.4) by any means.

Theorem 4.1. If n, l ≥ 0 and the two sequences (αm (a, k, k′)) and β(n,l) (a, k, k′) form a WP-BTP, then so do α̃m (a, k, k′)
and β̃(n,l) (a, k, k′), where

α̃m
(
a, k, k′

)
=


a2q

k
,

a2q

k′
; q


2m

(
k2k′2

a4q2

)m

(k, k′; q)2m
αm

a,
a2q

k
,

a2q

k′

 (4.1)

and

β̃(M,N) (a, k, k′) =
∑

n,l≥0

(
k2

a2q
; q

)

M−n

,

(
k′2

a2q
; q

)

N−l

(
k2

a2q

)n (
k′2

a2q

)l

(q; q)M−n (q; q)N−l

· β(n,l)

a,
a2q

k
,

a2q

k′

 .

(4.2)

Proof. Following the method similar to the proof of Theorem 2.1 and applying the q-Saalschütz summation theorem
twice, the assertion in Theorem 4.1 can be deduced easily. �

Remark 4.1. The first iteration of the investigated lemma mentioned in Theorem 2.1 with the pair
(
α̃m (a, k, k′) , β̃(n,l) (a, k, k′)

)

gives the following identity:

242



(
k,

k
a

; q
)

M

(
k′,

k′

a
; q

)

N
(
aq,

k2

a2q
; q

)

M

(
aq,

k′2

a2q
; q

)

N

16Φ15


a, q
√

a,−q
√

a,
√

a2q
k ,−

√
a2q
k ,

√
a2q2

k ,

√
a,−√a,

√
kq,−√

kq,
√

k,−√k,

−
√

a2q2

k ,

√
a2q
k′ ,−

√
a2q
k′ ,

√
a2q2

k′ ,−
√

a2q2

k′ ,
kk′

a2q
, kqM , k′qN , q−M , q−N ;

√
k′,−√k′,

√
k′q,−√

k′q,
a3q2

kk′
,

aq1−M

k
,

aq1−N

k′
, aq1+M , aq1+N ;

q



=
∑

n,l≥0


a2q

k
,

k′

a
, q−M; q


n


a2q

k′
,

k
a
, q−N ; q


l

q,
a3q2

kk′
,

a2q2−M

k2
; q


n

q,
a3q2

kk′
,

a2q2−N

k′2
; q


l

·


a3q2

kk′
; q


n+l

(aq

k
; q

)

n−l

(aq; q)n+l

(
k′

a
; q

)

n−l

qn


a2q2

kk′


l

(4.3)

Further iteration of the lemma mentioned in Theorem 2.1 produces many additional identities similar to (4.1).

Remark 4.2. Now, the alternative WP-Bailey type chain generated from the initial WP-Bailey pair
(
αm (a, k, k′) , β(n,l) (a, k, k′)

)

is as follows: (
αm (a, k, k′) , β(n,l) (a, k, k′)

)→
(
α̃m (a, k, k′) , β̃(n,l) (a, k, k′)

)
→

(
α̃
′
m (a, k, k′) , β̃′(n,l) (a, k, k′)

)
→ · · ·

(4.4)

The two types of Bailey chains (Equations (2.15) and (4.4)) are generated by a single WP-BTP (initial pair)(
αm (a, k, k′) , β(n,l) (a, k, k′)

)
and thus forms a binary tree.

5. Conclusion
The FBTT (Equations (1.20) to (1.22)) developed by Joshi and Vyas [12] is explored in the study of WP-BTL,
pairs, chains and a binary tree. The WP-BTL is then utilized to obtain the terminating very well-poised q-multiple
hypergeometric identities of order higher than the identities due to Joshi and Vyas [12]. Furthermore, by the repeated
application of investigated WP-BTL, one can develop the 2 (p − 2) fold identities along the line of Andrews [3].
Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions
and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas (see, for example,
[36, pp. 350–351] and [34, p. 328]). Moreover, in this recently-published survey-cum-expository review article by
Srivastava [34], the so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential variation of the
classical q-calculus, the additional parameter p being redundant (see, for details, [33, p. 340] and [35, pp. 1511–
1512]). This observation by Srivastava [33, 35] will indeed apply also to any future attempt to produce the rather
straightforward (p, q)-variants of the results which we have presented in this paper.

Acknowledgement. The authors are grateful to the reviewers for their useful suggestions.
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Abstract
In this paper, we investigate analogous of Milloux inequality and Hayman’s alternative for E-valued meromorphic

functions from the complex plane C to an infinite dimensional complex Banach space E with a Schauder basis. As an
application of our results, we deduce some interesting analogous results for E-valued meromorphic functions from
the complex plane C to an infinite dimensional complex Banach space E with a Schauder basis. And also we have
given the applications of homogeneous differential polynomials to the Nevanlinna’s theory of E-valued meromorphic
functions from the complex plane C to an infinite dimensional complex Banach space E with a Schauder basis and
given some generalizations by these polynomials.
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1. Introduction
In the 1970s, the value distribution theory of meromorphic function is expanded to the vector-valued meromorphic
function from the complex plane C to a finite dimensional space Cn (see Ziegler [25]). After that, some works related
to vector-valued meromorphic function in finite dimensional spaces were done by several authors ([4]-[6],[7]-[19]). C.
G. Hu and Q. J. Hu [2] investigated Nevanlinnas first and second fundamental theorems for an E-valued meromorphic
function from the disk to infinite-dimensional Banach spaces E with a Schauder basis. Bhoosnurmath and Pujari
[1] established some interesting results for the E-valued Borel exceptional values of meromorphic functions, Wu
and Xuan [21, 22] proved remarkable results on the characteristic functions, exceptional values, and deficiency of E-
valued meromorphic function, and Hu [3] proved the advancements of the Nevanlinna theory of E-valued meromorphic
functions and studied its related Paley problems.

2. The Value Distribution Theory on Banach Spaces
Nevanlinna theory for E-valued meromorphic function will play a key role in the proof of theorems. We shall use
standard notations of value distribution theory for E-valued meromorphic function, V(a,∞, f ), V(a, f ) m(r, f ), N(r, f ),
N(r, f ),T (r, f ),...([1]-[6], [20]-[25]).

Theorem 2.1 ([2]). (the E-valued Nevanlinna’s first fundamental theorem). Let f (z) be a non-constant E-valued
meromorphic function in CR = {|z| < R}, 0 < R ≤ ∞. then for 0 < r < R, a ∈ E and f (z) . a,

T (r, a) = V(r, a) + N(r, a) + m(r, a) + log+ ||cq(a)|| + ε(r, a)
Here ε(r, a) is a function such that

|ε(r, a)| ≤ log+ ||a|| + log 2, ε(r, 0) = 0
and cq(a) ∈ E is the coefficient of the first term in the Laurent series at the point a.

Theorem 2.2 ([2]). (the E-valued Nevanlinnas second fundamental theorem). Let f (z) be a nonconstant E-valued
meromorphic function of compact projection in CR = {|z| < R}, 0 < R ≤ ∞. then for 0 < r < R and ak ∈ E
(k = 1, 2, ..., q) be q ≥ 3 distinct points. Then for 0 < r < R,

(q − 2)T (r, f ) + G(r, f ) ≤ ∑q
k=1[V(r, ak) + N (r, ak)] + S (r, f )

and
(q − 1)T (r, f ) + G(r, f ) ≤ ∑q

k=1[V(r, ak) + N (r, ak)] + N(r,∞) + S (r, f ),
where

G(r, f ) = V(r, 0, f ′) =
∫ r

0

1
2πt

dt
∫

Cr
∆ log || f (ξ)||dx

∧
dy, ξ = x + iy.

or
Let f (z) be a nonconstant E-valued meromorphic function of compact projection in CR = {|z| < R}, 0 < R ≤ ∞. then
for 0 < r < R and ak ∈ E (k = 1, 2, ..., q) be q ≥ 3 distinct points. Then for 0 < r < R,∑q

k=1m(r, ak, f ) ≤ 2T (r, f ) − N1(r, f ) + V(r, f ) + S (r, f ),
where N1(r, f ) = 2N(r, f ) − N(r. f ′) + N(r, 1/ f ′).
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We use N
k)

(r, 1/ f − a j) to denote the zeros of f (z) − a whose multiplicities are no greater than k and are counted

only once. Likewise, we use C
(k+1
α,β (r, 1/ f − a j) to denote the zeros of f (z)− a in |z| < r whose multiplicities are greater

than k and are counted only once.

3. Main Results
In the value distribution theory, it is very important to introduce and study the derivative of a given function. It is
natural to ask whether can we establish the analogous of Milloux inequality and Hayman’s alternative for E-valued
meromorphic function of compact projection in CR = {|z| < R}, 0 < R ≤ ∞.

By adopting the notations of Nevanlinna functions in CR = {|z| < R}, 0 < R ≤ ∞, we proved the following theorems
and establish an interesting and remarkable result of the Milloux inequality and Heyman’s alternative in CR = {|z| < R},
0 < R ≤ ∞.

Theorem 3.1. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞. Let

Θ(z) =
∑k

l=0al f (l)(z), (3.1)

for any positive integer k, where a0, a1, a2, a3, ..., ak are small functions of f (z). Then

m
(
r,

Θ

f

)
= S (r, f ) (3.2)

and
T (r,Θ) ≤ (k + 1)T (r, f ) + G(r, f ) + S (r, f ). (3.3)

Theorem 3.2. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞ and Θ(z) be the function defined by (3.1). If Θ(z) is not a constant, then

T (r, f ) <

[
N(r, f ) + V(r, f )] + [N

(
r,

1
f

)
V(r,

1
f

)] + [N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)]

−
[
N(0)

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)]
+ S (r, f ), (3.4)

where (a , 0,∞) and N(0)
(
r, 1

Θ′
)

counts only zeros of Θ′ but not the repeated roots of Θ = a in CR = {|z| < R},
0 < R ≤ ∞.

Theorem 3.3. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞, Θ = f (k) and N(0)

(
r, 1

Θ′
)

be defined as in Theorem 3.2. Then

k[N1(r, f ) + V(r, f )] ≤
[
N

(2
(r, f ) + V(r, f )] + [N

(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)]

+[N(0)
(
r,

1
Θ′

)
+

(
r,

1
Θ′

)
] + S (r, f ),

(3.5)

where N1(r, f ) counts the simple poles of f (z) and N
(2

(r, f ) counts the multiple poles of f (z), not including multiplicity
in CR = {|z| < R}, 0 < R ≤ ∞.

Theorem 3.4. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞. Then

T (r, f ) ≤
(
2 +

1
k

)
[N

(
r,

1
f

)
+ V

(
r,

1
f

)
]

+

(
2 +

2
k

)
[N

(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
] + S (r, f ). (3.6)

By replacing Θ = f (k)(z) in the Theorem 3.2, we get the following result.

Corollary 3.1. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞ and k is any positive integer. Then

T (r, f ) ≤ [N (r, f ) + V (r, f )] + [N
(
r,

1
f

)
+ V

(
r,

1
f

)
]
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+[N
(
r,

1
f (k) − a

)
+ V

(
r,

1
f (k) − a

)
]

−[N(0)
(
r,

1
f (k+1)

)
+ V

(
r,

1
f (k+1)

)
] + S (r, f ). (3.7)

By Theorem 3.2, we get the following Corollary.

Corollary 3.2. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞ with only a finite number of zeros and poles. Then every function Θ as defined in (3.1) assumes every finite
complex value, except possibly zero, infinitely often or else is identically constant in CR = {|z| < R}, 0 < R ≤ ∞.

By replacing Θ = f (k)(z) in the Theorem 3.4, we get the following result.

Corollary 3.3. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞. Then

T (r, f ) ≤
(
2 +

1
k

)
[N

(
r,

1
f

)
+ V

(
r,

1
f

)
]

+

(
2 +

2
k

)
[N

(
r,

1
f (k) − a

)
+ V

(
r,

1
f (k) − a

)
] + S (r, f ).

By replacing the value of F =
f−ω1
ω2

, where ω1 and ω2 be complex numbers ω2 , 0 and T (r, F) = T (r, f ) + O(1) in
Theorem 3.4. Then we get the following result.

Corollary 3.4. (Hayman’s Alternative in annuli). Let f (z) be a transcendental E-valued meromorphic function of
compact projection in CR = {|z| < R}, 0 < R ≤ ∞. Then either f assumes every finite value infinitely often or f (k)

assumes every finite value except possibly zero infinitely often in CR = {|z| < R}, 0 < R ≤ ∞.

4. Proof of the main results
Proof of the Theorem 3.1.

First of all, we prove the Theorem 3.1 for the case Θ(z) = f (k) using induction on the number k and then deduce
the conclusion of the Theorem 3.1 for the general case.

By Theorem 2.1, we have

T
(
r, f ′

)
= T

(
r, f

f ′

f

)
≤ T (r, f ) + T

(
r,

f ′

f

)
+ O(1)

= T (r, f ) + m
(
r,

f ′

f

)
+ N

(
r,

f ′

f

)
+ V

(
r,

f ′

f

)
+ O(1)

≤ T (r, f ) + N(r, f ) + G(r, f ) + S (r, f )
≤ 2T (r, f ) + G(r, f ) + S (r, f ).

Hence the result is true for k = 1.
Suppose that the theorem is true for k = n. Then by assumption, we have

m
(
r,

f (n)

f

)
= S (r, f ) (4.1)

and
T (r, f (n)) ≤ (n + 1) T (r, f ) + G(r, f ) + S (r, f ). (4.2)

Also we have,

m
(
r, f (n+1)

)
= m

(
r, f (n)

)
+ m

(
r,

f (n+1)

f (n)

)
(4.3)

and

N(r, f (n+1)) + V(r, f (n+1)) = N(r, f (n)) + V(r, f (n)) + N(r, f (n)) + V(r, f (n))
= N(r, f (n)) + V(r, f (n)) + N(r, f ) + V(r, f )
≤ N(r, f (n)) + N(r, f ) + G(r, f ). (4.4)
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By Theorem 2.1, we have

m
(
r,

f (n+1)

f

)
≤ m

(
r,

f (n+1)

f (n)

)
+ m

(
r,

f (n)

f

)

≤ S (r, f (n)) + S (r, f )
≤ S (r, f ) (4.5)

and

T (r, f (n+1)) = m
(
r, f (n+1)

)
+ N(r, f (n+1)) + V(r, f (n+1))

≤ m(r, f (n)) + m
(
r,

f (n+1)

f (n)

)

+N(r, f (n)) + V(r, f (n)) + N(r, f ) + V(r, f ) + O(1)
≤ T (r, f (n)) + N(r, f ) + G(r, f ) + S (r, f )
≤ (n + 1)T (r, f ) + T (r, f ) + G(r, f ) + S (r, f )
≤ (n + 2)T (r, f ) + G(r, f ) + S (r, f ). (4.6)

Hence the result is true for all positive integer k.
Now, we consider the general case.
By above case, it is obvious that

m
(
r,

Θ

f

)
≤ ∑k

l=0m
(
r,

al f (l)

f

)
+ log(k + 1)

≤ ∑k
l=0m (r, al) + m

(
r,

f (l)

f

)
+ log(k + 1) ≤ S (r, f ). (4.7)

Thus, we have

m (r,Θ) ≤ m
(
r,

Θ

f

)
+ m (r, f )

≤ m(r, f ) + S (r, f ). (4.8)

On the other hand, we derive

N (r,Θ) + V (r,Θ) ≤ N
(
r, f (k)

)
+ V

(
r, f (k)

)

≤ N (r, f ) + V(r, f ) + kN (r, f ) + V(r, f ). (4.9)

Therefore, by (4.8) and (4.9), we have

T (r,Θ) = m (r,Θ) + N (r,Θ) + V (r,Θ)

≤ m (r, f ) + N (r, f ) + V(r, f ) + k N (r, f ) + V(r, f ) + S (r, f )
≤ T (r, f ) + k N (r, f ) + V(r, f ) + S (R, f )
≤ (k + 1)T (r, f ) + G(r, f ) + S (r, f )

T (r,Θ) ≤ (k + 1)T (r, f ) + G(r. f ) + G(r, f )

which completes the proof of Theorem 3.1.
Proof of the Theorem 3.2. By Theorem 2.2, we have

m (r,Θ) + m
(
r,

1
Θ

)
+ m

(
R,

1
Θ − a

)

≤ 2 T (r,Θ) − N(1)(r, f ) + V(r, f ) + S (r,Θ). (4.10)

By Theorem 2.1, we have

2T (r,Θ) − N(1)(r, f )
= m (r,Θ) + m (r, a,Θ) + N (r,Θ) + V (r,Θ) + N (r, a,Θ) + V (r, a,Θ)

−
[
2[N (r,Θ) + V (r,Θ)] − N

(
r,Θ′

)
+ V

(
r,Θ′

)
+ N

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)]

= m (r,Θ) + m (r, a,Θ) + N (r, a,Θ) + V (r, a,Θ)

249



−N
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
+ N

(
r,Θ′

)
+ V

(
r,Θ′

) − N (r,Θ) + V (r,Θ) . (4.11)

It is obvious that
N

(
r,Θ′

)
+ V

(
r,Θ′

) − [N (r,Θ) + V (r,Θ)] ≤ N (r, f ) + V(r, f ) (4.12)
and

N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
− [N

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
]

= N
(
r,

1
Θ − a

)
+

(
r,

1
Θ − a

)
− [N(0)

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
]. (4.13)

Hence it follows from (4.10), (4.11), (4.12) and (4.13) that

m
(
r,

1
Θ

)
≤ N (r, f ) + V(r, f ) + N

(
r,

1
Θ − a

)
+

(
r,

1
Θ − a

)

−[N0
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
] + S (R,Θ). (4.14)

From (3.3), we have
S (r,Θ) = S (r, f ).

By Theorem 2.1, we obtain

T (r, f ) = m
(
r,

1
f

)
+ N

(
r,

1
f

)
+ V

(
r,

1
f

)
+ O(1)

≤ m
(
r,

1
Θ

)
+ m

(
r,

Θ

f

)

+N
(
r,

1
f

)
+ V

(
r,

1
f

)
+ O(1)

≤ m
(
r,

1
Θ

)
+ N

(
r,

1
f

)
+ V

(
r,

1
f

)
+ S (r, f ). (4.15)

From (4.14) and (4.15), we have

T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
f

)
+ V

(
r,

1
f

)

+ N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)

−[N(0)
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
] + S (R, f )

which completes the proof of Theorem 3.2.
Proof of the Theorem 3.3.

We first define the function

g =

(
f (k+1)

)k+1

(
a − f (k))k+2 =

(Θ′)k+1

(a − Θ)k+2 . (4.16)

Suppose f has a simple pole at z0, in CR = {|z| < R}, 0 < R ≤ ∞. i,e f (z) = b(z − z0)−1 + O(1) for some b , 0.
Then differentiating k times,

f (k)(z) =
(−1)ka k!
(z − z0)k+1

(
1 + O((z − z0)k+1)

)
.

Differentiating again and then substituting it into g, we find that

g =
(−1)k(k + 1)k+1

a k!

(
1 + O((z − z0)k+1)

)
.

Thus, at a simple pole of f , g , 0, ∞, in CR = {|z| < R}, 0 < R ≤ ∞ but g′ has a zero of order at least k in
CR = {|z| < R}, 0 < R ≤ ∞. Now we apply first Theorem 3.1 to g′

g , assuming g to be non constant, giving

m
(
r,

g′

g

)
− m

(
r,

g
g′

)
+ O(1)
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= N
(
r,

g
g′

)
+ V

(
r,

g
g′

)
− [N

(
r,

g′

g

)
+ V

(
r,

g′

g

)
]

= N (r, g) + V(r, g) + N
(
r,

1
g′

)
+

(
r,

1
g′

)
− [N

(
r, g′

)
+ V(r, g′)]

− [N
(
r,

1
g

)
+ V

(
r,

1
g

)
]

= N
(
r,

1
g′

)
+ V

(
r,

1
g′

)
− [N

(
r,

1
g

)
+ V

(
r,

1
g

)
] − [N (r, g) + V(r, g)]

= N(0)
(
r,

1
g′

)
+ V

(
r,

1
g′

)
− [N

(
r,

1
g

)
+ V

(
r,

1
g

)
] − [N (r, g) + V(r, g)].

(4.17)

Thus using (4.17), Theorem 2.1 and the property that m
(
r, g

g′
)

is non negative, we establish

k [N1(r, f ) + V(r, f )] ≤ N(0)
(
r,

1
g′

)
+ V

(
r,

1
g′

)
≤ [N

(
r,

1
g

)
+ V

(
r,

1
g

)
]

+ N (r, g) + V(r, g) + m
(
r,

g′

g

)
+ O(1)

≤ N
(
r,

1
g

)
+ V

(
r,

1
g

)
+ N (r, g) + V(r, g) + S (r, g).

(4.18)

By (4.18) and zeros and poles of g can only occur at multiple poles of f , a-points of Θ or zeros of Θ′ which are not
a-points of Θ in CR = {|z| < R}, 0 < R ≤ ∞ and so

N
(
r,

1
g

)
+ V

(
r,

1
g

)
+ N (r, g) + V(r, g)

≤ N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)

+ N
(2

(r, f ) + V(r, f ) + N(0)
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
.

Hence by (4.15), we derive

k[ N1(r, f ) + V(r, f )] ≤ N
(2

(r, f ) + V(r, f ) + N
(
r,

1
Θ − a

)

+V
(
r,

1
Θ − a

)
+ N(0)

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
+ S (r, f ).

Proof of the Theorem 3.4.
We start by noting that in N(r, f ), multiple poles are counted at least twice in CR = {|z| < R}, 0 < R ≤ ∞ and then

apply (3.4)

N1(r, f ) + V(r, f ) + 2 [N
(2

(r, f ) + V(r, f )] ≤ T (r, f )

≤ N (r, f ) + V(r, f ) + N
(
r,

1
f

)
+ V

(
r,

1
f

)

+ N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
− [N(0)

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
] + S (r, f ).

Since N(r, f ) + V(r, f ) = N1(r, f ) + V(r, f ) + N
(2

(r, f ) + V(r, f ), hence by (4.19), we get

N
(2

(r, f ) + V(r, f ) ≤ N
(
r,

1
f

)
+ V

(
r,

1
f

)
+ N

(
r,

1
Θ − a

)
+

(
r,

1
Θ − a

)

−[N(0)
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
] + S (r, f ). (4.19)
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By (4.19) and (3.5), we obtain

k [N1(r, f ) + V(r, f )]

≤ N
(
r,

1
f

)
+ V

(
r,

1
f

)
+ N

(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)

− [N(0)
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
]

+ N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
+ N(0)

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
+ S (r, f )

k[N1(r, f ) + V(r, f )] ≤ N
(
r,

1
f

)
+ V

(
r,

1
f

)

+ 2 [N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
] + S (r, f ).

(4.20)

Now making an appeal to (4.19) and (4.20), we can write

N(r, f ) + V(r, f )

= N1(r, f ) + V(r, f ) + N
(2

(r, f ) + V(r, f )

≤ 1
k

[N
(
r,

1
f

)
+ V

(
r,

1
f

)
] +

2
k

[N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
]

+ N
(
r,

1
f

)
+ V

(
r,

1
f

)

+ N
(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
− [N(0)

(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
] + S (r, f )

N(r, f ) + V(r, f )

≤
(
1 +

1
k

)
[N

(
r,

1
f

)
+ V

(
r,

1
f

)
] +

(
1 +

2
k

)
N

(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
]

− [N(0)
(
r,

1
Θ′

)
+ V

(
r,

1
Θ′

)
] + S (r, f ). (4.21)

Since N(0)
(
r, 1

Θ′
)
≥ 0, therefore applying (4.21) into (3.4), we obtain

T (r, f ) ≤
(
2 +

1
k

)
[N

(
r,

1
f

)
+ V

(
r,

1
f

)
]

+

(
2 +

2
k

)
[N

(
r,

1
Θ − a

)
+ V

(
r,

1
Θ − a

)
] + S (r, f ).

5. On the deficiencies of differential polynomials for E-valued meromorphic functions
We shall concerned with E-valued meromorphic functions P which are polynomials in the E-valued meromorphic
function f (z) and derivatives of f (z) with coefficients of the form a(z) in CR = {|z| < R}, 0 < R ≤ ∞.

Let
Fk = a ( f )t0 [ f 1]t1 [ f 2]t2 ...[ f m]tm

and
P =

∑N
k=1Fk,

where f (1), f (2), ..., f (m) are the successive derivatives of f in CR = {|z| < R}, 0 < R ≤ ∞ and t0, t1, ..., tm are non
negative integers.

Definition 5.1. If t0 +t1 + ...+tm for a fixed positive integer in every term of P, then P is called a E-valued homogeneous
differential polynomial in f (z) of degree n in CR = {|z| < R}, 0 < R ≤ ∞.
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Lemma 5.1. Let f (z) be a transcendental E-valued meromorphic function of compact projection in CR = {|z| < R},
0 < R ≤ ∞ and a j ∈ C ( j = 1, 2, ..., q) be q distinct complex numbers. Then we have

∑q
j=1m

(
r,

1
f − a j

)
= m

(
r,

∑q
j=1

1
f − a j

)
+ O(1).

Proof. The proof of the Lemma 5.1 follows on similar lines as in the [25]. Therefore we omitted the proof of Lemma
5.1. �

We introduce some Lemmas which are important and useful in further investigation.

Lemma 5.2. If P is a E-valued homogeneous differential polynomial in f in CR = {|z| < R}, 0 < R ≤ ∞ of degree
n ≥ 1 , then

m
(
r,

P
f n

)
= S (r, f ) (5.1)

Proof. We know that

m
(
r,

f (i)

f

)
= S (r, f ),

for i = 1, 2, 3, ....
By definition, P is the sum of finite number of terms of the type

Fk = a ( f )t0 [ f 1]t1 [ f f 2]t2 ...[ f m]tm ,

where t0 + t1 + ... + tm are non-negative integers satisfying
∑m

i=0ti = n.

Then
Fk

f n = a
(

f (1)

f

)t1 (
f (2)

f

)t2

...

(
f (1)

f

)tm

.

So,

m
(
r,

F(k)

f n

)
≤ m (r, a) +

∑m
i=0tim

(
r,

f (i)

f

)

≤ S (r, f ).

Thus,

m
(
r,

P
f n

)
= m

(
r,

∑
k

F(k)

f n

)

≤ ∑
km

(
r,

F(k)

f n

)
+ O(1)

≤ S (r, f ),

which proves the Lemma 5.2. �

Lemma 5.3. Let P be a E-valued homogeneous differential polynomial in f of degree n in CR = {|z| < R}, 0 < R ≤ ∞
and suppose that P is a E-valued homogeneous polynomial of degree n in f f (1), f (2), ..., f (m) with coefficients of the
form a(z) in CR = {|z| < R}, 0 < R ≤ ∞. If P is not a constant and a1, a2, ..., aq are distinct elements of C where q is
any positive integer, then

n
∑q

i=1m
(
r,

1
f − a

)
≤ T (r, P) − [N

(
r,

1
P

)
+ V

(
r,

1
P

)
] + S (r, f ) (5.2)

or

n q T (r, f ) ≤ T (r, P) + n
∑q

i=1[N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
] − [N

(
r,

1
P

)
+ V

(
r,

1
P

)
] + S (r, f ) (5.3)
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Proof. We may assume that q ≥ 2.
Let

F(z) =
∑q

i=1
1

( f (z) − a)n .

By Lemma 5.1, we have

m(r, P) + O(1) ≥ ∑q
i=1m

(
r,

1
f − ai

)n

= n
∑q

i=1m
(
r,

1
f − ai

)
. (5.4)

Thus,

n
∑q

i=1m
(
r,

1
f − ai

)
≤ m(r, F) + O(1)

≤ m(r, PF) + m
(
r,

1
P

)
+ O(1)

≤ m(r,
1
P

) +
∑q

i=1m
(
r,

P
f − ai

)n

. (5.5)

Now for 1 ≤ i ≤ q, P is a E-valued homogeneous differential polynomial of degree n in f − ai in CR = {|z| < R},
0 < R ≤ ∞, since the successive derivative of f − ai are precisely those of f and so by Lemma 5.1, we have

m
(
r,

P
f − ai

)n

= S (r, f ),

for i = 1, 2, 3, ..., q.
Hence from (5.5), we have

n
∑q

i=1m
(
r,

1
f − ai

)
≤ m

(
r,

1
P

)
+ S (r, f ).

So,

n
∑q

i=1m
(
r,

1
f − ai

)
+ N

(
r,

1
P

)
+ V

(
r,

1
P

)

≤ m
(
r,

1
P

)
+ N

(
r,

1
P

)
+ V

(
r,

1
P

)
+ S (r, f )

n
∑q

i=1m
(
r,

1
f − ai

)

≤ T
(
r,

1
P

)
− [N

(
r,

1
P

)
+ V

(
r,

1
P

)
] + S (r, f )

≤ T (r, P) − [N
(
r,

1
P

)
+ V

(
r,

1
P

)
] + S (r, f ), (5.6)

which proves (5.2).
Next by (5.6), we prove (5.3)

n
∑q

i=1m
(
r,

1
f − ai

)
+ n

∑q
i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

≤ T (r, P) + n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]
−

[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
+ S (r, f )

n q T
(
r,

1
f − ai

)
≤ T

(
r,

1
P

)
+ n

∑q
i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]
−

[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
+ S (r, f )

n q T (r, f ) ≤ T
(
r,

1
P

)
+ n

∑q
i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]
−

[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
+ S (r, f ),

which proves (5.3). �
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Theorem 5.1. Let P be a E-valued homogeneous differential polynomial in f of degree n in CR = {|z| < R}, 0 < R ≤ ∞
and a , b. If f is a non constant E-valued meromorphic function in CR = {|z| < R}, 0 < R ≤ ∞, then

T (r, f ) ≤ N(r, P) + V(r, P) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ V

(
r,

1
f − b

)

−[N(r, f ) + V(r, f )] −
[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
+ S (r, f ). (5.7)

Proof. Since a , b, we have
1

f − b
=

(
P

f − b
− P

f − a

) (
f − a

P

)
1

b − a
.

Therefore by Lemma 5.1, we obtain

m
(
r,

1
f − b

)

≤ m
(
r,

P
f − b

)
+ m

(
r,

P
f − a

)
+ m

(
r,

f − a
P

)
+ O(1)

≤ m
(
r,

P
f − b

)
+ m

(
r,

P
f − a

)
+ m

(
r,

P
f − a

)

+N
(
r,

P
f − a

)
+ V

(
r,

P
f − a

)
−

[
N

(
r,

f − a
P

)
+ V

(
r,

f − a
P

)]
+ O(1)

≤ N (r, P) + V(r, P) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
−

[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]

−[N (r, f ) + V(r, f )] + S (r, f ), (5.8)
where

m
(
r,

P
f − b

)
≤ S (r, f )

and

N
(
r,

P
f − a

)
−

[
N

(
r,

f − a
P

)
+ V

(
r,

f − a
P

)]

= N (r, P) + V(r, P) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)

−
[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
− [N (r, f ) + V(r, f )].

If we add the term N
(
r, 1

f−b

)
on both sides of the inequality (5.8), we get

T (r, f ) ≤ N (r, P) + V(r, P) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ V

(
r,

1
f − b

)

−
[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
− [

N (r, f ) + V(r, f )
]
+ S (r, f ). (5.9)

If we restrict P = f ′(z), the inequality (5.9) becomes

T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ V

(
r,

1
f − b

)

−
[
N

(
r,

1
f ′

)
+ V

(
r,

1
f ′

)]
− [

N (r, f ) + V(r, f )
]
+ S (r, f ).

�

Theorem 5.2. Let P be a E-valued homogeneous differential polynomial in f of degree n and b , 0 in CR = {|z| < R},
0 < R ≤ ∞. If f is a non constant E-valued meromorphic function in CR = {|z| < R}, 0 < R ≤ ∞, then

T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

−
[
N(0)

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ). (5.10)
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Proof. Since b , 0, we have
1

f − a
=

(
P

f − a
− P′

f − a
P − b

P′

)
1
b
.

By Lemma 5.1, we derive

m
(
r,

1
f − a

)
≤ m

(
r,

P
f − a

)
+ m

(
r,

P′

f − a

)

+m
(
r,

P − b
P′

)
+ O(1)

≤ N
(
r,

P′

P − b

)
+ V

(
r,

P′

P − b

)
+ N

(
r,

P − b
P′

)

+V
(
r,

P − b
P′

)
+ S (r, f ),

where

m
(
r,

P
f − a

)
+ m

(
r,

P′

f − a

)
m

(
r,

P − b
P′

)
≤ S (r, f ).

Therefore,

m
(
r,

1
f − a

)
≤ N

(
r, P′

)
+ V

(
r, P′

)
+ N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
− [N (r, P) + V(r, P)] + S (r, f )

≤ N (r, f ) + V(r, f ) + N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f )

≤ N (r, f ) + V(r, f ) + N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ). (5.11)

Thus,

N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
−

[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]

= N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
−

[
N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)]

+N
(
r,

1
P′

)
+ V

(
r,

1
P′

)
−

[
N

(
r,

1
P − b

)
+ N

(
r,

1
P − b

)]

= N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
− N(0)

(
r,

1
P′

)
+ V

(
r,

1
P′

)
,

where

N(0)
(
r,

1
P′

)
+ V

(
r,

1
P′

)
= N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
+ N

(
r,

1
P′

)
+ V

(
r,

1
P′

)
−

[
N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)]
.

If we add the term N
(
r, 1

f−b

)
on both sides of the inequality (5.11) we get

T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)

+N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
−

[
N(0)

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ).

If we restrict P = W (k)(z), the inequality (5.10) becomes

T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
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+N
(
r,

1
f (k) − b

)
+ V

(
r,

1
f (k) − b

)
−

[
N(0) + V

(
r,

1
f (k+1)

)]
+ S (r, f ),

which is one of the Milloux result. �

Theorem 5.3. Let P be a homogeneous differential polynomial in f of degree n in CR = {|z| < R}, 0 < R ≤ ∞. If f is
a non constant E-valued meromorphic function in CR = {|z| < R}, 0 < R ≤ ∞, then

T (r, f ) ≤ N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

+N
(
r,

1
P − c

)
+ V

(
r,

1
P − c

)
−

[
N1 (r, P) + V(r, P)

]
+ S (r, f ), (5.12)

where

N1 (r, P) + V(r, P) = 2[N (r, P) + V(r, P)] − [N
(
r, P′

)
+ V(r, P′)] + N

(
r,

1
P′

)
+ V

(
r,

1
P′

)
.

are non negative.

Proof. It is easy to write
1

f − a
=

1
P

P
f − a

.

By Lemma 5.1, we have

m
(
r,

1
f − a

)
≤ m

(
r,

1
P

)
+ m

(
r,

P
f − a

)

≤ m
(
r,

1
P

)
+ S (r, f )

≤ T (r, P) −
[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
+ S (r, f ). (5.13)

By Lemma 5.2, we have

T (r, P) ≤ N
(
r,

1
P

)
+ V

(
r,

1
P

)
+ N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

+N
(
r,

1
P − c

)
+ V

(
r,

1
P − c

)
− [N1 (r, P) + V(r, P)] + S (r, f ).

If we use Lemma 5.1 in the equality (5.13), we have

T (r, f ) ≤ N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
P

)
+ V

(
r,

1
P

)

+N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
+ N

(
r,

1
P − c

)
+ V

(
r,

1
P − c

)

−[N1 (r, P) + V(r, P)] −
[
N

(
r,

1
P

)
+ V

(
r,

1
P

)]
+ S (r, f )

or

T (r, f ) ≤ N
(
r,

1
f − a

)
+ N

(
r,

1
P − b

)
+ N

(
r,

1
P − c

)
− N1 (r, P) + S (r, f )

If we restrict P = f (k)(z), the inequality (5.12) becomes

T (r, f ) ≤ N
(
r,

1
f − a

)
+ V

(
r,

1
f − a

)
+ N

(
r,

1
f (k) − b

)
+ V

(
r,

1
f (k) − b

)

+N
(
r,

1
f (k) − c

)
+ V

(
r,

1
f (k) − c

)

−
[
N(1)

(
r, f (k)

)
+ V

(
r, f (k)

)]
+ S (r, f ).

�
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Theorem 5.4. Let P be a homogeneous differential polynomial in f of degree n in CR = {|z| < R}, 0 < R ≤ ∞. If f is
a non constant E-valued meromorphic function in CR = {|z| < R}, 0 < R ≤ ∞, then

nq T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

+ n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ). (5.14)

Proof. By Lemma 5.2, we have

T (r, P) ≤ N
(
r,

1
P

)
+ V

(
r,

1
P

)
+ N (r, P) + V(r, P)

+N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
− [N1 (r, P) + V(r, P)] + S (r, P),

where

N1 (r, P) = 2[N (r, P) + V(r, P)] − [N
(
r, P′

)
+ V(r, P′)] + N

(
r,

1
P′

)
+ V

(
r,

1
P′

)
.

T (r, P) ≤ N
(
r,

1
P

)
+ V

(
r,

1
P

)
+ N (r, P) + V(r, P)

+N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
−

[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]

− 2[N (r, P) + V(r, P)] + N
(
r, P′

)
+ V(r, P′) + S (r, P)

≤ N (r, P) + V(r, P) + N
(
r,

1
P

)
+ V

(
r,

1
P

)
+ N

(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, P).

Therefore,

T (r, P) ≤ N (r, P) + V(r, P) + N
(
r,

1
P

)
+ V

(
r,

1
P

)

+N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
−

[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, P).

On the other hand, it is easy to write N (r, P) + V(r, P) ≤ N (r, f ) + V(r, f ) + S (r, f ). If we use the inequality (5.7),
we can write

n q T (r, f ) ≤ N (r, P) + V(r, P) + N
(
r,

1
P

)
+ V

(
r,

1
P

)

+N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)
−

[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]

+ n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f )

or

n q T (r, f ) ≤ N (r, f ) + V(r, f ) + N
(
r,

1
P − b

)
+ V

(
r,

1
P − b

)

+ n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]
−

[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ).

If n = 1 and q = 1 the inequality (5.14) gives the inequality (5.10). That is, the inequality (5.14) is the generalization
of the inequality (5.10). �
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Theorem 5.5. Let P be a E-valued homogeneous differential polynomial in f of degree n in CR = {|z| < R}, 0 < R ≤ ∞
and s = 1, 2, 3, ..., if f is a non constant E-valued meromorphic function in CR = {|z| < R}, 0 < R ≤ ∞.

Then

(s − 1)n q T (r, f ) ≤ N (r, f ) + V(r, f ) + (s − 1) n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

+
∑s

j=1

[
N

(
r,

1
P − b j

)
+ V

(
r,

1
P − b j

)]

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ) (5.15)

If s = 3, 4, 5, ..., then

(s − 2)n q T (r, f ) ≤ (s − 2) n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

+
∑s

j=1

[
N

(
r,

1
P − b j

)
+ V

(
r,

1
P − b j

)]

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ). (5.16)

Proof. By Lemma 5.2 in terms of the E-valued homogeneous differential polynomial P in CR = {|z| < R}, 0 < R ≤ ∞,
then we have

(s − 1)T (r, f ) ≤ N (r, f ) + V(r, f ) +
∑s

j=1

[
N

(
r,

1
P − b j

)
+ V

(
r,

1
P − b j

)]

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f ) (5.17)

and

(s − 2)T (r, f ) ≤ ∑s
j=1

[
N

(
r,

1
P − b j

)
+ V

(
r,

1
P − b j

)]

−
[
N(1) (r, P) + V(r, P)

]
+ S (r, f ), (5.18)

where

N(1) (r, P) + V(r, P) = 2[N (r, P) + V(r, P)] − [N
(
r, P′

)
+ V(r, P′)] + N

(
r,

1
P′

)
+ V

(
r,

1
P′

)

non negative.
If we use the inequality (5.17) and (5.18) in the equality (5.7), we get

(s − 1)n q T (r, f ) ≤ N (r, f ) + V(r, f ) + (s − 1) n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

+
∑s

j=1

[
N

(
r,

1
P − b j

)
+ V

(
r,

1
P − b j

)]

−
[
N

(
r,

1
P′

)
+ V

(
r,

1
P′

)]
+ S (r, f )

and

(s − 2)n q T (r, f ) ≤ (s − 2) n
∑q

i=1

[
N

(
r,

1
f − ai

)
+ V

(
r,

1
f − ai

)]

+
∑s

j=1

[
N

(
r,

1
P − b j

)
+ V

(
r,

1
P − b j

)]

−
[
N

(
r,

1
P′

+ V
(
r,

1
P′

))
+

]
+ S (r, f ).
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6. Conclusion
In this article, we obtain analogous of Milloux inequality and Hayman’s alternative for E-valued meromorphic
functions from the complex plane C to an infinite dimensional complex Banach space E with a Schauder basis. As an
application of our theorems, we deduce some interesting analogous results for E-valued meromorphic functions from
the complex plane C to an infinite dimensional complex Banach space E with a Schauder basis. And also we have
given the applications of homogeneous differential polynomials to the Nevanlinna’s theory of E-valued meromorphic
functions from the complex plane C to an infinite dimensional complex Banach space E with a Schauder basis and
given some generalizations by these polynomials.
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