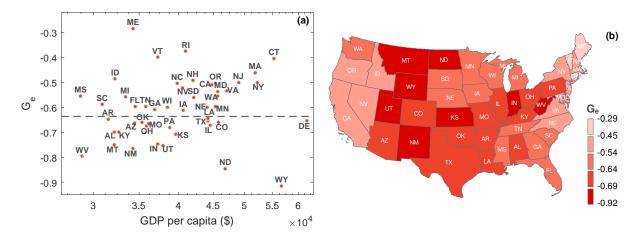
## S1 File

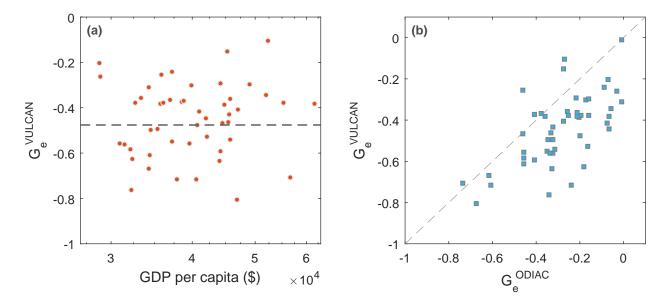
## 2 Additional Figures

 $_3$  In S1(a) Fig the  $G_e$ -values are plotted vs. the corresponding GDP per capita values, as in Fig 4  $_4$  in the main text, but here for states in the USA (analogous to Fig 6 in the main text). In contrast  $_5$  to the country analysis, we do not find correlations ( $\rho = 0.07$ , p-value: 0.64, not statistically  $_6$  significant). However, the  $G_e$ -values are consistently in the negative range so that overall high  $_7$  population densities come along with lower CO $_2$  per capita (consistent with Fig 4 in the main  $_8$  text).



S1 Fig: Sub-national inhomogeneity index  $G_e$  for the USA. (a) The  $G_e$ -values are plotted against the corresponding state GDP per capita values on a logarithmic scale (excluding District of Columbia), analogous to Fig 4 in the main text. The dashed line indicates the country-level mean  $G_e$ . (b) Map of contiguous USA where the states are color-coded according to the inhomogeneity index  $G_e$ . The development dependence found in Fig 4 does not hold on the sub-national scale – at least for the USA. However, spatially the values are not random: large  $G_e$ -values occur at the east and west coasts while smaller ones occur in the predominantly sparsely populated states.

- Results of the analogous analysis for the USA and the Vulcan data are displayed in S2(a) Fig.
- As can be seen, still there are no correlations between the obtained  $G_e$ -values and the GDP per
- capita. Comparing the resulting  $G_e$ -values from the Vulcan data with those obtained for the ODIAC
- data, we do find weak correlations [S2(b) Fig]. In comparison to the ODIAC, the Vulcan data



S2 Fig: Sub-national inhomogeneity index  $G_e$  based on the Vulcan data. We calculated the  $G_e$  on the state level for the USA based on th Vulcan data for the year 2002 at 10 km resolution  $^{1,2}$ . In (a) the  $G_e$ -values are plotted against the corresponding state GDP per capita values on a logarithmic scale (excluding District of Columbia), analogous to Fig 1(a). The dashed line indicates the country-level mean  $G_e$ . It can be seen that also for the Vulcan data the development dependence does not hold on the sub-national scale in the USA. In (b) we show the correlations between the  $G_e$  obtained from the ODIAC data and the corresponding values obtained from the Vulcan data.

- overall tends to exhibit lower  $G_e$ -values, indicating that there are more emissions from sites of low
- 14 population.

## S1 Appendix: Derivation of the relationship between $\beta$ and $G_e$

Denoting probability distribution functions with F, the theoretical quasi-Lorenz curve for emissions  $E \sim F_E$  with respect to population  $P \sim F_P$  is defined as

$$L_{E \circ P}(\theta) = \frac{1}{\mu_E} \int_{-\infty}^{S_P^{-1}(\theta)} \mu_{E|P}(t) dF_P(t) \quad 0 \le \theta \le 1$$
 (S1)

where  $\mu_P$  and  $\mu_E$  are the respective means of P and E and  $\mu_{E|P}$  is the conditional mean of E given P. In contrast to the classical concentration curves<sup>3</sup>, the upper boundary of integration is given through the generalized inverse of  $S_P(p)$ 

$$S_P^{-1}(\theta) = \inf\{p : S_P(p) \ge \theta\}.$$
 (S2)

We call  $S_P(p)$  the share function defined as

$$S_P(p) = \frac{1}{\mu_P} \int_{-\infty}^{p} t dF_P(t).$$
 (S3)

If we assume that the population P is Pareto distributed with shape parameter  $\lambda>1$  and scale  $p_{\min}>0$ , the inverse share function  $S_P^{-1}(\theta)$  is given through

$$S_P^{-1}(\theta) = p_{\min}(1-\theta)^{\frac{1}{1-\lambda}}.$$
 (S4)

If we further assume that the scaling relation  $E=aP^{\beta}$  holds, the conditional mean is simply given as  $\mu_{E|P}(t)=at^{\beta}$  and the unconditional mean for  $\beta<\lambda$  can be calculated as

$$\mu_E = \frac{\lambda}{\lambda - \beta} a p_{\min}^{\beta}. \tag{S5}$$

If  $\beta \geq \lambda$  the unconditional mean becomes infinite and the quasi-Lorenz curve can not be computed. Given the previous assumptions the quasi-Lorenz curve can be derived as

$$L_{E \circ P}(\theta) = \left[\frac{\lambda}{\lambda - \beta} a p_{\min}^{\beta}\right]^{-1} \int_{p_{\min}}^{p_{\min}(1-\theta)^{\frac{1}{1-\lambda}}} a \lambda p_{\min}^{\lambda} t^{\beta-\lambda-1} dt$$
 (S6)

which simplifies to

$$L_{E \circ P}(\theta) = 1 - (1 - \theta)^{\frac{\lambda - \beta}{\lambda - 1}}.$$
 (S7)

The generalized Gini coefficient  $G_e$  is then given by

$$G_e = 1 - 2 \int_0^1 L_{E \circ P}(\theta) d\theta = \frac{\beta - 1}{2\lambda - \beta - 1}$$
 (S8)

as stated in Eq (1) in the main text.

## 17 References

- [1] Gurney, K. R. *et al.* High Resolution Fossil Fuel Combustion CO 2 Emission Fluxes for the United States. *Environmental Science & Technology* **43**, 5535–5541 (2009).
- [2] Gurney, K. R. *et al.* Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city. *Environmental science & technology* **46**, 12194–202 (2012).
- 23 [3] Yitzhaki, S. & Olkin, I. *Concentration indices and concentration curves*, vol. 19 of *Lecture*Notes—Monograph Series, 380–392 (Institute of Mathematical Statistics, 1991). URL https:

  //doi.org/10.1214/lnms/1215459867.