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Abstract— Systems of coupled nonlinear oscillators inspired
from animal central pattern generators (CPGs) are increasingly
used for the control of locomotion in robots, in particular
for online trajectory generation. Indeed, such systems present
interesting characteristics like limit cycle behavior (i.e. stability),
synchronization, and the possibility to be entrained and modu-
lated by external signals. There are now good methodologies for
designing systems that exhibit specific gaits, i.e. specific phase
relations between oscillators, however techniques to modulate
the shape of the rhythmic signals in a controlled way are still
missing.

In this article, we present a method for shaping the signals
of an oscillatory system according to several criteria that are
relevant for locomotion control (but which could also be useful
for other applications). These criteria include being able to adjust
the relative durations of ascending and descending phases in a
cycle, and to temporarily modulate the dynamics of one oscillator
according to the states of another one. The first criterion is
important for locomotion in order to adjust the duration of swing
and stance phases, while the second allows one to introduce signal
shape variations to deal with proper inter-limb coordination.

We apply the method to the design of a system of coupled
oscillators used to control crawling in a simulated humanoid
robot. Using some key characteristics of signal shapes extracted
from recordings of baby crawling, we design the system to
produce stable trot-like crawling gaits. Insights from symmetry
groups’ theory are used to design the right phase lags. The
oscillators are designed such that the speed of locomotion can
be adjusted by varying the duration of the stance phase while
keeping the duration of the swing phase constant, like in most
tetrapod animals.

I. INTRODUCTION

This work is part of the RobotCub project, a 5-year Euro-
pean project whose purpose is to build a 54-degrees of freedom
humanoid robot with the cognitive abilities of a child [1].
The project has two main goals: first, to create an open and
freely-available humanoid platform for research in embodied
cognition, and second, to study cognitive development. Like to
a child, the robot (called the iCub) should be able to explore
its environment by crawling and sitting to manipulate objects.

This contribution presents a design methodology for the
crawling controller, based on the Central Pattern Generator
(CPG) paradigm. CPGs are neural networks located in the
spine of vertebrates and are able to automatically generate
the control signals for the coordination of the muscles during
periodic movements (e.g. locomotion, respiration) [2], [3].
Although CPGs are controlled by simple descending paths

from higher parts of the brain, they are able to generate the
signals that control the complex coordination of the muscles
during rhythmic movement. CPGs are oscillatory networks
that can be modeled as coupled oscillators [4], [5]. Models
of CPGs for robotics applications have proven successful,
especially for locomotion control where they are used to
generate joint trajectories [6]–[8]. Their advantage is that it
is easy to modulate the trajectories for locomotion and they
have stability properties that makes them suitable for adding
feedback pathways. However, very few design methodologies
are currently available to construct them [9], [10]. In particular,
techniques to modulate the shape of the rhythmic signals in a
controlled way are still missing.

Our design methodology follows a biologically inspired ap-
proach. Indeed, to design the controller we study the crawling
behavior of infants in order to extract important principles
for our controller. Then we present a mathematical model of
CPG based on coupled nonlinear oscillators to reproduce the
crawling gait of infants. The originality of the model resides
both in the design of the oscillator and in the design of the
coupling scheme of the CPG. Note that while we design a CPG
for a specific task, we develop tools that are general enough
to be used in other applications.

We designed our oscillator from the observation that the
gait pattern of animals and humans can be separated into two
distinct phases for each limb. The stance phase is the phase
during which the limb touches the ground. The swing phase
is the phase during which the limb lifts off the ground. It is
a well-known fact that when quadrupeds change their speed
of locomotion, they might change their gait and the duration
of the stance phase, but the duration of the swing phase tends
to remain the same [11]. However, most of the CPG models
based on coupled oscillators are not able to separate the swing
and stance phases durations. In this contribution, we present
an oscillator model in which we can independently control the
duration of each of these phases. This is an important feature,
since during the swing phase, one limb is off the ground,
thus making the system less stable and more dependent on
dynamical properties of the controlled robot. So it seems
important to control independently the duration of both phases.

Furthermore, we present a coupling scheme based on the
analysis of the crawling pattern of real infants to reproduce
a similar gait. This coupling is based on the fact that the
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Fig. 1. Schematic of the joint angle we measured. We look at the movement
of the limbs in the sagittal plane.

infants have a trot-like gait for the temporal synchronization
of the limbs but the stance and swing phases durations are
very different compared to most trotting animals. Moreover, it
appears that there exists a correlation between the movement
of a limb during its stance phase and the swing phase of the
opposite limb. We reproduce this influence in the coupling
scheme we present and we use the theory of symmetric
dynamical systems [12]–[14] to infer the architecture of the
network of coupled oscillators. The validation of the design is
done by testing the CPG controller with a physics simulation
of the iCub, since the real robot is still under construction.

In the next section, we first review data on crawling in
infants (Section II). We then present the design approach
behind our model of coupled oscillators (Section III). The
design is done incrementally with first the construction of
a nonlinear oscillator with two controlled time scales, then
the addition of inter-limb influences between oscillators of
opposite limbs, and finally the addition of inter-limb couplings
between the complete four-oscillator system for implementing
the trot-like crawling gait. The model is tested with a rigid
articulated body simulation of the iCub, and compared to
the original infant crawling gaits (Section IV). The paper
concludes with a short discussion (Section V).

II. CRAWLING IN INFANTS

Very few studies about crawling in babies have been made.
Some psychological studies about the development of crawling
in infants are available [15], [16] but they all focus on the
cognitive development of infants through locomotion and none
have focused on the kinematic details of crawling babies.

Babies can have various types of crawling and in this
contribution we only focused on the standard gait [15]. Indeed,
this gait is the most widespread one among infants and for a
first study of crawling it seemed to be the most appropriate.
This gait corresponds to the locomotion of the baby on its
hands and knees, with the phase relation of a trot. More
information about the different types of crawling can be found
in [15].

In order to study crawling in infants, we used recordings
of the trajectories of the limbs of crawling babies. These
recordings were made in the Department of Psychology at
Uppsala University, with a Qualisys Motion Capture System.
These recordings where then converted into joint angle coor-
dinates because this is a more natural coordinate frame for
the control of a robot. Figure 1 shows the basis for the joint
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Fig. 2. Typical evolution of the joint angles of a baby during crawling. This
is a reconstruction of a crawling sequence from the recordings of a crawling
baby. We plot the joint angles (in radian) of the 4 limbs. For each limb, we
plot the joint angles as defined in Figure 1. Hip and shoulder joints are plotted
in plain line, the knee and elbow joints are in dashed line. The vertical lines
delimit the swing and stance phases, the swing phase being the shortest one.

angles and Figure 2 shows a typical crawling gait we got from
the recordings. In this study we only focus on the joint angles
in the sagittal plane.

The first general remark we can state from these data is that
standard crawling is a trot-like gait for its temporal relations
between limbs. It means that the diagonal limbs (e.g. left arm
and right leg) are in phase and half a period out of phase with
the opposite limbs. However, this trot-like gait is very different
from trot gaits found in animals. Generally, the trot gait is a
medium speed gait between walk and gallop and the duration
of the stance phase is quite short compared to the swing
phase. The baby crawling gait has different properties in terms
of these relative durations. Indeed, the stance phase is really
long compared to the swing phase, it represents about 70% of
a whole cycle. A comparative study between the kinematics
of crawling babies and monkeys can be found in [17] and
supports these remarks about the crawling gait and the relative
durations of the swing and stance phases.

When looking at the movement of the hip and shoulder
joints (as defined in Figure 1), we notice that during the stance
phase the joint slows down or even sometimes stops during
the swing phase of the opposite limb. It is as if the swing
phase of a limb was inhibiting the movement of the opposite
limb. This observation is also supported by the data shown in
[17], although this fact is not mentioned by the authors.

The knee joint of each limb is folding in order to follow



the movement of the hip. Since the baby is crawling on its
knees, the exact control of this joint is less important (i.e. the
tibia tends to simply rest on the ground). The elbow joints are
folding during the swing phase, to allow the arm to reach a
further region in front of the baby but do not move significantly
during the stance phase.

Our goal here is not to study in detail the crawling sequence
of the baby, but to extract the features that seem important in
order to reproduce the same gait in a robot. The main features
we would like to emphasize from these observations and from
the study of [17] are first that the crawling gait is a trot-like
gait in terms of phase relations between the limbs but with a
stance phase that is much longer than the swing phase contrary
to usual trot gaits. Second, there is a correlation between the
swing phase of a limb and the arrest of movement of the hip
(or shoulder) joint of the opposite limb. Third, the elbow is
folding to allow the arm to do the swing phase.

III. MODEL

In this section we construct a model of CPG by means
of coupled oscillators. The CPG will be used to generate the
crawling trajectories for the iCub humanoid robot. To construct
a CPG model, we define a number of features we would like
our model to have.

From biology, we know that during locomotion at various
speeds, the duration of the swing phase of animals is always
constant. Only the duration of the stance phase (and the change
of gait) influence the speed of locomotion [3], [11]. Thus, we
would like to be able to control independently the duration
of each of these phases in the CPG. From the observations
of the previous section, we would like our CPG to generate a
trot-like gait, with inhibition of the movement of the hip and
shoulder joints during the swing phase of the opposite limbs.

From a robotics point of view, the CPG must have
properties that makes it suitable for the control of a real
robot. We therefore want the CPG to show limit cycle behavior
and to be stable against perturbations, to allow for further
integration of sensory feedback. We also want to be able
to smoothly modulate the generated trajectory in frequency
and in amplitude to have a larger range of possible locomotion.

In summary our CPG must have the following properties

• Smooth modulation of the generated trajectory in fre-
quency and amplitude

• Independent control of the duration of the swing and
stance phases (the ascending and descending phases)

• Trot-like gait with a stance phase much longer than the
swing phase

• Inhibition of the movement of the hip and shoulder joints
during the swing phase of the opposite limbs

• Stability to perturbations to allow feedback integration

A. Two time-scale oscillator

We first present a model of a stable oscillator with the
possibility to control independently the duration of the swing
and stance phases and the amplitude of the oscillations.

If we take a simple spring-like oscillatory system, the
equation of motion of the joint angle can be expressed as

ẋ = y (1)

ẏ = −Kx (2)

The frequency of oscillations will be
√

K and we will have
harmonic oscillations whose amplitude will depend on the
initial conditions of the system.

We want a duration of the stance phase different from the
duration of the swing phase, thus we can think of an oscillator
changing its spring constant according to the phase. It will
have a kstance spring constant during stance phase and kspring

constant during swing phase. The oscillator will switch among
these two constants according to the phase, that is according
to the sign of the velocity y of the system. We can thus write
a general spring constant as

K = kstance + (kswing − kstance)
1

eby + 1
(3)

where the exponential function works as a step function which
selects either kswing or kstance according to the sign of the
velocity of movement y, b controls the speed of the switch.

Now we have a system that oscillates with different speeds
according to the direction of the oscillations. Therefore we
can independently control the duration of the swing and the
stance phases.

The problem with such an oscillatory system is that no limit
cycle exists. There exist infinitely many periodic orbits around
the unstable center 0 and thus the system is not stable. We can
point the flow toward one periodic orbit by constraining the
total energy of the system, since it defines the maximum value
x can take in a spring system. The total energy of the system
is defined by

E =
1

2
(Kx2 + y2) (4)

which is the sum of the potential and kinetic energies of the
system (we take the mass equal to one). At y = 0 we have

E = 1
2Kx2, which gives xmax = ±

√

2E
K

. We can choose a
total energy such that xmax is bounded to a certain value,
E = µ2K

2 and xmax = ±µ.

In order to constraint the amplitude of oscillations, we add
a damping term to the preceding equation which bounds the
total energy of the system. We then rewrite the whole system
as

ẋ = y (5)

ẏ = αy(µ2K − (Kx2 + y2)) − Kx (6)

where α is a constant controlling the speed of convergence
of the energy of the system 1

2 (Kx2 + y2) to the wanted total
energy 1

2µ2K.
The stability of the system can be seen if we set E =

1
2 (Kx2 + y2), then differentiation with respect to time gives

Ė =
1

2
K̇x2 + αy2(Kµ2 − E) (7)
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Fig. 3. This figure shows how we can independently control the ascending
and descending durations of the oscillator, in 3(a) we plot the oscillations
when kstance = kswing = 4.(2π)2, in 3(b) we plot kstance = 1

3
kswing =

4.(2π)2. In each plot we show the oscillations x and the velocity y. At time
t = 1.5, we perturb the system by setting x and y to a random value, we
clearly see that the oscillations are stable.

In our application, K can be approximated as a switching
function, whose value equals either kswing when y < 0 or
kstance when y > 0. Thus, for y 6= 0, we see that the flow is
always directed toward E = Kµ2. When y = 0, K changes
its value from a spring constant to the other and we see that E
changes also its value in the direction of this change because of
the K̇ term. Thus the flow is always directed toward Kµ2 and
the system is stable. The stable limit cycle has then equation
Kx2 + y2 = Kµ2. It is composed of two half-ellipses that
share the same semi-minor axis µ (so they are connected) and
with foci at y = ±µ

√

kswing − 1 and y = ±µ
√

kstance − 1
respectively.

Now we have an oscillator bounded in energy for which
we can independently control the duration of the swing and
the stance phases. Moreover, with the bounded energy, we
assure that the oscillator is stable and that we can control the
amplitude of the oscillations which are equal to µ. Figure 3
shows an example of oscillations with different values for the
stance and the swing phases.

B. Inhibitory coupling

In this section we describe the inhibitory coupling scheme
we use to replicate the slow down of the hip and shoulder
joints during the swing phase of the opposite limbs. We
introduce an inhibitory coupling that sets the stance spring
constant kstance to 0 when the opposite limb starts its swing
phase, i.e. when the speed of the oscillator becomes negative

Ki =
kstance

(e−byi + 1)(e−kyj + 1)
+

kswing

ebyi + 1
(8)

where i denotes the oscillator that is inhibited and j the
opposite oscillator, k controls the speed of slow down of the
oscillator. With this coupling scheme, when one limb starts its
swing phase, the opposite limb will slow down its movement.
The amount of deceleration will depend on the kinetic energy
the oscillator has at this moment and the energy damping term
α.

PSfrag replacements

1 2

34

Right Arm

Right LegLeft Leg

Left Arm

Fig. 4. The architecture of the CPG

K Possible Periodic Solutions Stability

Γ x1(t) = x2(t) = x3(t) = x4(t) Unstable
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Fig. 5. From the symmetry of the network, we derived the possible pattern of
synchronization according to the possible subgroups of spatial symmetry. For
each subgroup, we indicate the possible periodic solutions and their stability.
The stability of the solutions was evaluated numerically, as shown in Figure
6.

To assure that this slow down will be fast enough when
x ' 0, we change the damping term so it has a very high
value when x ' 0 and a smaller value otherwise. To do this,
we transform α into a Gaussian function centered around 0.

αi = ν(1 + βe−σx2
i ) (9)

where ν is the damping constant, β controls the change
of the damping around 0 and σ controls the width of the
Gaussian. With αi we can now independently control the
general damping term that constrains the total energy of the
system and the damping when x ' 0, i.e. during the inhibition.

C. Architecture of the CPG

In addition to the coupling scheme for inhibition, we have to
introduce a coupling to maintain the phase relations between
each limb. We want a half a period out of phase relation
between opposite limbs (e.g. between the arms) and an in-
phase relation between diagonal limbs (e.g. right arm and left
leg).

To design such a network, we use the theory of symmetric
coupled cell networks [12]–[14]. By looking only at the
symmetries of a network of coupled oscillators, we can deduce
the existence of stable solutions having the same symmetries.
These symmetries are defined as the group of permutations of
the cells of the network which preserve its architecture.

Of course, the symmetries of the network induce that the
corresponding ordinary differential equations (ODEs) describ-
ing the network have the same symmetry. In this case we can
distinguish two kinds of symmetries. The spatial symmetries
of a certain set of ODEs which are the symmetries γ such
that for any solution x(t) of the set of ODEs γx(t) = x(t).
The spatio-temporal symmetries are the symmetries ϕ which
preserve the orbit of a solution, which means that if x(t) is a
solution with orbit {x(t)}, then ϕx(t) has the same orbit. In
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Fig. 6. We show the 4 possible patterns of synchrony we predicted from
the symmetries of the network. We also show their stability properties by
perturbing the oscillators. For patterns of Figs. 6(a) and 6(b) at time t = 10s
we add a perturbation of 0.01 to x1, we see that such a small perturbation
completely destroys the patterns and the crawling pattern appears. For the
pattern of Figure 6(c), which is the crawling pattern, at time t = 10 we add
1.0 to x1 and at time t = 20 we set the state variables of each oscillator
at a random value between [−2, 2], it is clear that this pattern is stable. The
pattern in Figure 6(d) is a pace gait, at time t = 10s we add a random noise
between [−0.2, 0.2] on each xi. For all the experiment, we set kswing =
kstance = π2, c1 = c2 = 1.0, β = 100, σ = 10, ν = 0.45, b = k = 100
and µ = 1.

other word, if x(t) is a periodic solution, then ϕx(t) will be
the same solution with some phase shift.

For the crawling gait, if we number the limbs as in Figure
4, we want the permutation of the diagonal limbs (13)(24) to
be a spatial symmetry and ((12)(34), 1

2 ) and ((14)(23), 1
2 ) to

be spatio-temporal symmetries with half a period phase shift.

We can construct a coupled cell network that is symmetric
under the group generated by these symmetries. By the H/K
theorem, we know that the crawling gait is a periodic solution
of any network having the same symmetries.

Theorem 1: H/K Theorem [14] Let Γ be the symmetry
group of a coupled cell network in which all cells are cou-
pled and the internal dynamics of each cell is at least two-
dimensional. Let K ⊂ H ⊂ Γ be a pair of subgroups. Then
there exist periodic solutions to some coupled cell systems
with spatio-temporal symmetries H and spatial symmetries K
if and only if H/K is cyclic and K is an isotropy subgroup.
Moreover, the system can be chosen so that the periodic
solution is asymptotically stable.

In our case, we have

Γ = H =
{

I,
(

(13)(24), 0
)

,
(

(12)(34),
1

2

)

,
(

(14)(23),
1

2

)}

and
K =

{

I,
(

(13)(24), 0
)}

We clearly see that H/K ∼= Z2 is cyclic and thus the trot-like
gait exists as a solution of the system as long as we choose a
coupling scheme such that K is an isotropy subgroup (which
is easy).

We just have to choose a coupling such that the trot gait
is stable, but we already know that it is possible. Since we
have inhibitory coupling between opposite limbs, we add
standard subtractive coupling between these oscillators in
order to enforce the half a period phase shift. As we also
want in-phase relations between diagonal limbs, we also add
additive coupling between opposite limbs. These couplings are
well studied and we know that they make the desired phase
shifts between 2 oscillators stable [18]. Figure 4 shows the
architecture of the network with the coupling scheme.

The general equations of the CPG that generates the trajec-
tories for the hip and shoulder joints are then

ẋi = yi (10)

ẏi = αiyi(Ki(µ
2 − x2

i ) − y2
i ) − Kixi − c1yj + c2yk

(11)

Ki =
kstance

(e−byi + 1)(e−kyj + 1)
+

kswing

ebyi + 1
(12)

αi = ν(1 + βe−σx2
i ) (13)

where i = 1...4 denotes the ith oscillator, j the opposite
oscillator and k the diagonal oscillator, c1 and c2 are positive
coupling constants. We can verify that K is an isotropy
subgroup for this set of equations.

Another advantage of this method to design the architecture
of the CPG is that we can directly calculate the existence of
other patterns of oscillations by simply calculating the other
subgroups of Γ as is shown in Figure 5. It is very important
to be able to calculate the possible patterns of oscillations and
to investigate their stability properties in order to be able to
guarantee the behavior of our controller when adding feedback
loops. This method transforms the analytic problems of finding
these modes of oscillations into an algebraic one, which is
easier.

We see that there exist three other oscillatory regimes
and we evaluated numerically the stability of each of these
patterns, as can be seen in Figure 6. We note that the only
stable pattern of oscillation with a wide basin of attraction is
the trot gait. The pace gait has a small region of stability that
is limited and for a random noise between [−0.2, 0.2], this
pattern disappears. The two other patterns are unstable. After
the perturbations, all these patterns converge to the trot gait.

Now we have a CPG that can generate the trajectories
for the hip and shoulder angles. This CPG is stable against
perturbations. We can also smoothly modulate the frequency
of the pattern by changing independently the frequency of the
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Fig. 7. In Figure 7(a) we modulate the frequency of the CPG. Initially we
have kswing = kstance = π2, at t = 10 we set kswing = 4kstance =
4π2, which corresponds to a doubling of the speed of the swing and at t = 20
we set kstance = 4kswing = 4π2. In Figure 7(b) we modulate the amplitude
of the pattern, we set µ = 1 at t = 0, then µ = 0.5 at t = 10 and µ = 1.5
at t = 20. Note that an abrupt change in the control parameters (ki, µ) leads
to a smooth transition in the generated pattern.
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Fig. 8. Comparison of the real trajectories of the hip and shoulder joints and
the trajectories generated by the CPG. The trajectories of the CPG are only
shifted to oscillate around the same mean values as the real trajectories. We
see that the trajectories generated by our model fit quite well the real ones,
especially for the right limbs.

ascending and descending oscillations. A smooth modulation
of the amplitude is straightforward by changing the parameter
µ. Examples of such modulations can be seen in Figure 7.

IV. VALIDATION OF THE MODEL

A. Comparison with the real baby

In this section we compare the trajectories of the shoulder
and hip joints of a baby with the ones generated by the CPG.
In Figure 8 we see the result of the comparison. The theoretical
trajectories match quite well the experimental ones. This result
shows that the CPG can reproduce the main features of
crawling and therefore it supports our design methodology.
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Fig. 9. Characterization of the speed of the simulated iCub according to
the duration of the stance and swing phases. The left color bar shows the
correspondence between the colors and the speed (in m · s−1).

B. Crawling on the simulated robot

In this section we show experiments where we use our CPG
to control a crawling simulated robot. The simulation is done
with Webots [19], a simulator based on ODE [20], an open
source physics engine for simulating 3D rigid body dynamics.
The simulation is as close as possible to the robot currently
under construction. This means that we use the correct lengths
and mass distributions for each limbs.

The CPG we developed generates the trajectories for the
hip and shoulder joints, so we use these trajectories to control
the position of the hip and shoulder joints. However, we saw
in Section II that the elbow was also used during the swing
phase of the corresponding arm. The elbow is folding during
the swing phase, allowing the arm to reach the region in front
of the baby.

We thus set the angle of the elbow joint according to the
phase of the arm, that is, according to the sign of y. The
angle of the elbow, θi, will follow a Gaussian movement
corresponding to

θi = γe−
(yi−

√
kswing)2

τ (14)

where i corresponds to the left or right arm, γ is the amplitude
of the movement and τ is the width of the Gaussian. The
Gaussian is centered on −

√

kswing which corresponds to the
maximum speed of the shoulder during the swing phase. The
oscillator reaches this value at x ' 0. The elbow will then
fold during the swing phase, following a Gaussian movement
and will not move during the stance phase. We also control
the DOF of the arm, which is orthogonal to the sagittal plane,
in the same way. This allows the hand to have more height
during the swing phase. Figure 10 shows a crawling sequence
of the simulated robot and of a real baby.

We also investigated the importance of the kswing and
kstance constants for the speed of locomotion of the robot.



Fig. 10. We show a sequence of crawling of both a real baby and the simulated robot. There is an interval of 120ms between each picture.

The result of this experiment can be seen in Figure 9. We see
in this figure that the simulated robot could crawl up to 0.3
m · s−1. A baby crawls around 0.18 m · s−1 [17], so the robot
can attain the speed of a real baby. In this figure, we see that
increasing kstance increases the speed of the robot. However,
we see that beyond a certain value the speed of locomotion
becomes really small, which corresponds to cases where the
robot falls. We also note that increasing kswing for a given
kstance does not lead to a significantly faster crawling. This
seems normal since the swing phase is not the longer part of
the movement. However the value of kswing is important for
the stability of locomotion, a too slow swing phase leads to
cases where the robot falls or the swinging arm touches the
ground too early, in the middle of the swing phase.

V. CONCLUSION

In this contribution, we presented an oscillator in which we
can independently control the duration of the ascendant and
descendant phases. In locomotion control it enables us to set
the duration of the swing and the stance phases separately.

We also presented an original way of coupling two oscilla-
tors, in order to reproduce the inhibited movement of a limb
during the swing phase of the opposite limb. Moreover, we
showed that we can use the theory of symmetric coupled
cells to construct the architecture of a network of coupled
oscillators, given a desired symmetry in the oscillations. This
also allowed us to derive the other patterns of oscillations our
network could support in a very simple manner, transforming
the analytic problem into an algebraic one. The CPG we
constructed has several properties that are relevant to robotics:
it is stable against perturbations, which is good for sensory
feedback integration, and we can easily modulate the pattern
in frequency and amplitude.

Finally we showed that our model of CPG matched quite
well the experimental data of crawling babies and we showed
that it could be successfully used to control a simulated
humanoid robot.

The oscillator we constructed and the design methodology
we followed to build the network of coupled oscillators are
general enough to be used in many other applications where
rhythmic pattern generation is necessary.

Our future research goals will be to explore how we can
integrate sensory feedback to deal with unexpected perturba-
tions and how we can also control the direction of locomotion
with this CPG. Finally we will test this controller on the real
robot, as soon as it is built.
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