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Abstract—The success of personal service robotics hinges upon .
reliable manipulation of everyday household objects, such as Point Cloud
dishes, bottles, containers, and furniture. In order to accuraely
manipulate such objects, robots need to know objects’ full 6-DG
pose, which is made difficult by clutter and occlusions. Many
household objects have regular structure that can be used to
effectively guess object pose given an observation of just a ath
patch on the object. In this paper, we present a new method
to model the spatial distribution of oriented local features on
an object, which we use to infer object pose given small sets
of observed local features. The orientation distribution for local
features is given by a mixture of Binghams on the hypersphere of 3%
unit quaternions, while the local feature distribution for position
given orientation is given by a locally-weighted (Quaternion
kernel) likelihood. Experiments on 3D point cloud data of

cluttered and uncluttered scenes generated from a structured Figure 1. Four 3-D point clouds and their corresponding Q-Image frarss,
light stereo image sensor validate our approach respresenting the distribution of local 3-D surface oaéinhs on each object

(see section Il for details).

Q-Image

I. INTRODUCTION

b-.rh? goal of _this pa?E)Der IbS tot de_tetrn}ineda sdet of p(issiibb%bability distribution on a unit hypersphere. It can bedis
ODJECL poses, given a object paint cloud and a poin CO'I’(Sl represent many types of uncertainty, from highly peaked

obseryation of a scene containing the object_. To answer t}ailiitributions to distributions which are symmetric aboorne
question, we will consider the observed point cloud to b is to the uniform distribution. It is thus an ideal distrilon

m.ade up of many tiny overlgppmg ;urface patches, and 3D rotations, which can be modeled as unit quaternions
will construct a model of the information each observed Ip)at%n the 4-D hyperspheré&?

lglvei us ?EOUI tthf] objecrt]s Pose, byf conS|detrr|]ng thz rlar\l/gﬁ Otl'he distribution for feature position given orientation is
ocations the patch may have come from on the mode. Ven by a locally-weighted (Quaternion kernel) likeliltbo

such a surface patch contains orientation information & tf J ., |ikelihood is a non-parametric, kernel-based teghei

form of a normal vector ar_1d principal curvature dl_rectlom (Qfor modeling a conditional distributiom(x|q), as a smoothly
when the normal and principal curvature can be estimated er/arying function of the observed variablg

the local patch geometry), we call it amiented local feature
(or “oriented feature” for short). A. Outline

In this paper, we present a new method to model the spatialrhe technical portion of this paper is organized in a top-
distribution of oriented local features on an object, whigh  down fashion. We present our pose estimation algorithms in
use to infer object pose given small sets of observed festurgection 11. Our main contribution—a new way to model the
We split up the spatial distribution of oriented local feasi djstribution of oriented local features on an object—is give
into two parts, one modeling the distribution over featurg section Ill. Section IV reviews the Bingham distribution
orientations, and another modeling the conditional digtion  gnd introduces its mixture model, the BMM, which we use to
of feature position given orientation. Splitting up thette@ represent uncertainty over the space of 3-D rotations.i@ect

distributions in this way allows us to exploit predictable/ contains experimental results, followed by related wank a
relationships between the orientation of local surface€®® the conclusion in sections VI and VII.

on an object and the object’s pose (Figure 1).

The distribution for feature orientation is given by a mix- Il. MONTE CARLO POSEESTIMATION
ture of Binghams on the hypersphere of unit quaternions.At its core, this paper presents a new way to model the
The Bingham distribution [3] is an antipodally symmetrispatial relationship between an object and its orientedlloc
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Model Observed Point Cloud Pose
Figure 2.  The Single Object Pose Estimation (SOPE) problem: given a (@ (b)
model and a (partial) observation (left), we wish to estimate fose of the
object (right). Figure 3. The Single Cluttered Object Pose Estimation (SCOPE) pnoble

given a model, an observation, and a region of interest (ajyiafe to estimate
the pose of the object (b).

o Given: a model, M, and an observed point cloud,.

Fori=1...N . ; ;
. o “ .o « Given: a model,M, and an observed point cloufi,;s with sub-
— 1) Sample a “proposal” oriented featur,, at random from cloud region of interestF, s ;.

Fops- e FOri=1...N

— 2) Sample an object poséx;, q;) from pas(x, qa|fp). . I
— 3) Samplek “validation” oriented features{f,, ,} at - i&g%rgﬁfFa proposal” oriented featurg,, at random from
- obs,roi*

- Ef;”g’g{" S;mﬁﬁgigm. — par(xiy il {for 1) — 2) Sample an object poséx;, ai) from pa (x, al fp)-
) ‘ DLk S — 3) Samplek “validation” features{ f,, ,} using a random
« Return: the topn samples(x;, qi) ranked by weightz;. walk in the full point cloudF, ., starting fromf,.
— 4) Set sample weight; < pas(xi, dil{ v, })-

Table | o Return: the topn samples(x;, q;) ranked by weightw;.
MC-SOPE
Table Il
MC-SCOPE

features. This model can be used for many perceptual tasks,
since there are many uses for such spatial models in a percep-
tual processing pipeline. As an application, we test thétacu”- Problem Statement
of our model for object pose estimation, in a probabilistic There are two primary pose estimation problems we address
Random-Sampling-Consensus (RANSAC) framework. in this paper. The first problem, which we call “Single Object
RANSAC [7] is a classic Monte-Carlo algorithm for usingPose Estimation” (SOPE), is to estimate an object’s posangiv
small random subsets from a large set of features to quickdypoint cloud observatiott,,,, of part of the object (Figure 2).
generate many guesses of whatever the algorithm is tryingHor this task, we have a model (i.e. we know the object’s
estimate. It then ranks the guesses according to an ewaluatiilentity) and a segmentation (i.e. we know which points in
criterion, and returns the top answers. RANSAC is part the observation correspond to the model), and the goal is
of a larger trend to solve perceptual problems by applyirig return samples from the distribution over possible abjec
successive filters, or sieves, to a set of guesses (or sgmpleeses(x,q) € R? x S? given the observationp(x, q|Fyps ).
keeping good samples and throwing away the bad ond$ie SOPE problem is well suited to “separable” scenes, for
until (one hopes) only good samples are left. The key txample when one or more objects are separated on a table
making such a filtering scheme work efficiently is to generaty a shelf.
reasonable guesses early on in the pipeline, and throw asvay aThe second problem is “Single Cluttered Object Pose Esti-
many bad samples with the early, fast filters, so that the, lateration” (SCOPE). In this task, we have a model, an observed
discriminative (but slow) filters don’t have to sift througls point cloud containing several objects, and a rough lopatio
much junk to find the right answers. (e.g. a bounding box) in which to look for the desired object.
Our model fits perfectly at the early stage of such a filteringhe goal once again is to return a set of samples from the
scheme for pose estimation. By squeezing all the informatigosterior pose distributiom(x, q| ), of the desired object.
one can from a single oriented local feature, and then from _
small sets of oriented local features, we can quickly geaerd: MC-SOPE Algorithm
many good guesses for object pose. Later filters—which forOur solution to the SOPE problem, MC-SOPE, is shown
example iteratively align a model at a sample pose with the table 1. It starts by sampling a pose using the information
observed point cloud and then compute a fitness score usirgn one “proposal” oriented local featurg which is cho-
all the points in the model—can be used to further refine tlsen at random from the observed point cloud,;,. Then,
set of pose estimates, and are well explored in the litegatuit uses £ “validation” features, f,,,..., f,,, 10 compute a
However, that final alignment stage is omitted in this work imeight/score for the proposed object pose. Afieposes have
order to focus on our primary contribution—generating godoeen proposed and weighted, the algorithm returns the:top
initial sample poses using just a few local oriented featate samples, ranked by weight. As we will see in section lll,
atime, which is crucial for pose estimation in clutteredsse sampling from p/(x,q|f,) and computing the validation
where only a small portion of an object may be visible.  densitypas(x,ql{f,, ,.}) are bothO(1) operations wherik



Our approach to computing,(x, q|f;) will be to flip it
around using Bayes' rule,

pa(%,4lfi) o< par(filx, a)par (%, q)

wherep,(x,q) is a prior probability and (f;|x,q) is the
likelihood of observingf; given the object poséx,q). We
will gain further purchase o,/ (fi|x,q) by examining the
components of an oriented local featuye,

@ (b) A. Oriented Local Features

We describe an oriented local featurg with three
components—
1) a shape descriptos;,
2) a positionx; € R3, and
3) a quaternion orientatiory; € S3.
_Figture 4. | |nff;rr:]1&tive Ofibe_ntetd |00<’nllft(surfacet pf’itct?]) fe;ﬁ;;ﬁebsl- ‘ﬂg_ﬁgt The shape descriptas; should be invariant to position and
Poses 1o a nartow range of possibiliies. In the top row. tiiaent patches OTieNtation, while describing the local surface geometfy o
on a wine glass are shown, along with four possible objecepasnsistent the feature. After testing different 3D shape descriptars,
Wti)t_h Piach patch. In t?eemb(xittohmtrzgwégsgf\\//gdfea;gcfﬁ i% z?ﬁmg'ggggggd selected the Fast Point Feature Histogram (FPFH)[18], due
glajlzg fggtsuerfescggilsstrain the orientation of tﬂe gléss toligaeal with the to its favorable performance in the presence of noise and
z-axis, while the bowl feature places much weaker constrainterientation. Missing data. The positior; and orientationg; are relative
to a fixed model coordinate frame; they describe the rigid
body transform which maps model coordinates to local featur
is a small constant (we usk = 5 in our experiments), coordinates. Unit quaternions are used to describe ragtio
so the entire algorithm i€)(N), allowing us to generate because they avoid the topological degeneracies of other
large numbers of good samples quickly. This is in contragtpresentations, and fit perfectly into the Bingham mixture
to traditional RANSAC-type methods for model fitting andlistributions we develop in this work.
pose estimation, which typically usdl the observed features In this paper, an oriented local feature is a descriptortfer t
in F,,, to rank each proposal, resulting in a running time d#ose and shape of a local surface patch on a 3D point cloud.

©

O(N - |Fops))- Given a surface patch (i.e. a local set of 3D poiRton a
model M) with estimated surface normdl$ at every point, we
C. MC-SCOPE Algorithm compute the transforrix;, q;) by picking an arbitrary (fixed)

. . model coordinate frame, and estimating the local coordinat
Our solution to the SCOPE problem, MC-SCOPE, is showpame whose origin is at the center of palhwith axes given
in table II. It is nearly identical to MC-SOPE, with the mainOy u, the estimated surface normal at the center of p&ch,
difference being that MC-SCOPE samples validation poinfge direction of maximal surface curvatiy@ndw = u x v.
using a random walk (since the observed point cloud contaifigen (xi,q;) is the transform which takes the model frame

more than one object and the region of interégks ..; May o the local frame. An example of a local coordinate frame is
not be a perfect segmentation of the desired object). TBgown on the left side of figure 6.

random walk is performed by taking a random step according o
to an isotropic normal distribution with stdew.(3cm in all B. Local Feature Likelihood
our experiments), then finding the closest point in the point The next step in modeling,, (f;|x, q) is generate a “vocab-

cloud to the new location. ulary” © of local shape types for the given model. We do this
using K-Means clustering (witl2| = 10 in this paper) on the
I1l. L oCAL FEATURE DISTRIBUTIONS set of all local shape descriptofs; } in the model point cloud,

o ) _ _ _yielding a shape vocabular{f2; }. We then segment the model
Both pose estimation algorithms in the previous sectiqiyint cloud into|(| clusters, where clustei contains all the
require a model fopa(x, alf,) andpar(x, al{fu, ., })—the oriented local features in the model whose closest vocapula
likelihood of an object pose, given one or more observegape isq);. Examples of three feature clusters on a wine
oriented local features. Although the oriented local feegu glass, with their local coordinate frames, is shown in the to
on an object may not be unique, they can still be quitgyy of figure 5.
informative. For example, in figure 4, observing a curveapat gqy 5 newly observed oriented local featufg,we compute

of the surface on the cup or a flat patch on the base tells (48 |ocal feature likelinoody, (f:|x, q) by expandingf; into
that the object is aligned with the-axis, at a narrow range
of positions. In contrast, oriented local features on théase 1The direction of maximal surface curvature, principal curvature is

of a hemispherical bowl tell us very little about the bowl'€stimated using principal components analysis on the neigbbd of local
surface patch normals, projected into the tangent spacestoettral normal

Or'entat'onv_and constrain the bowl's position to a bo"‘m vector; the principal curvature is the eigenvector coroesiing to the largest
set of locations, centered on the observed patch. eigenvalue, and is only defined up to sign.
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Figure 6. Given that an oriented local feature with shape t§pg has
the coordinate frame shown in (a), the range of possible fegiasitions is
restricted to lie on the dark band of the cup in (b).
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Figure 5. Cluster Q-Images.

feature pose distributiop(x|q) within a particular feature
class, Q; (wherex|q is shorthand forg~*(x; — x)|qiq ™"

in equation 4). To do so, we choose a particular parametric
model for p(x|q = q') (multivariate normal distribution),
with parameterqy,X). To fit parameters, we use a locally-
weighted data log-likelihood function{(), with Gaussian
kernel K(q,q;) to weight the contribution of eaclix;|q;)

in the model point cloud according to how cloggis to q,

components(s;, Xj, q;), and classifyings; into one of the
shape vocabulary cluster,;, yielding

pu(filx, q) n
oc pa (i, Gilx, 4, ©)par (€%, ) (1) %50, X,Q) = > K(a,a)l(p, %), (5)
= PMm (qi‘X7 q, Q])pM (Xi|(li7 X, q, Q])pM (Q] |Xa q) i=1

We use a local likelihood model in this work for its flexibyljt
since finding a good parametric model fgx|q) which works
for all g's is quite difficult. An example ofp(x|q) for a
particularq is shown on the right side of figure 6.

where we can drop the dependencexan the first term (since
the orientation of a local feature on an object shouldn’testep
on the object’s position in space), and wherg(2,|x, q) is
assumed to be uniforiThus,

C. Multi-Feature Likelihood

o Given multiple observed oriented local featurd$;} =
. ) . {(si,xi,qi)}, ¢ = 1...k, the idea for the multi-feature
orientations on the model from feature clustgy, which we likelihood model is that we consider the average feature log

wsuah;e using the Q-Imagt_e transfofnor thrge fea_tures likelihood to be a random variable drawn from an exponential
types in the bottom row of figure 5. We then fit a Bmgharraistribution with parametei

Mixture Model (BMM)—defined in section IV-D—to the set
of all rotations mapping model axes into local axes, so that

pu(filx,a) = pu(aila, )pa (xilai x, 4, 25). (2)
To modelpy (qilq, ©2;), we consider the set of all local featur

k
A

_ p({fi}[x,q) = Aexp | - ) logp(filx,q) (6)
pu(aila, Q) = plaiq ™" B;) 3) k ;
where B; are parameters of the BMM for feature clusjer If the local features were independent given the object pose

To model pys(xilai, x,q,8;), we use a non-parametricthen A would be equal to 1. However, since features may
technique, called local likelihood, to fit a distribution tiee overlap, we smooth the log-likelihood contribution froncka
set of all translations mapping model origin to rotated locéeature by setting\ < 1 (0.5 in all of our experiments).
feature origin; that is,

) ) IV. THE BINGHAM DISTRIBUTION

par(xilai, x4, ) = par(a™ (xi = x)laid™ ). (4)  The Bingham distribution is an antipodally symmetric
Local Likelihood is a technique introduced by Tibshirandanprobability distribution on a unit hypersphere. Its proitigb
Hastie [21] to model the parameters of a conditional prollensity function (PDF) is
ability distribution, p(Y'|X'), as a smoothly varying function d
of X. In our case, we wish to model the conditional local FA V) = %QXP{Z A(viTx)?) @)

=1

2pa(Q4]x,q) is a view-dependent term; we would need to know the
sensor pose in addition to the object pose in order to utiiesv-based where x iS a unit vector on the surface of the sphere

statistics. Adding this is a direction for future work. S? c R, F is a normalization constanty is a vector of
3The Q-Imageof a 3D point cloud is defined as the set of all quaternion t t.’ t d th | fithe 1 d
local feature orientations; we visualize the Q-Image in 3Dgithe axis-angle concentration parameters, an € columns o ( ) X

format of 3D rotation. matrix V' are orthogonal unit vectors. By convention, one



typically definesA andV so thatA; < Xy < --- < Xy < 0.

Note that a large (negative); indicates that the distribution is

highly peaked along the directiory, while a small (negative) i ”"'\& 4 T

Y indicat_es that thg d_istri_butic_)n is spread out along . x S }
The Bingham distribution is derived from a zero-mean Ly hee,

Gaussian ofR?*+1, conditioned to lie on the surface of the unit #h o,

hyperspheres?. Thus, the exponent of the Bingham PDF is i f "

the same as the exponent of a zero-mean Gaussian distnbutio , ) © 0

(in principal components form, with one of the eigenvalués o

the covariance matrix set to infinity). Figure 7. Fitting a Bingham Mixture Model (BMM). (a) A cluster of sinait

. s . oriented local features. (b) The local coordinate frameshefdriented local
The Bingham distribution is most commonly used t0 reQaatyres. (c-d) The local coordinate frames (only the axis phthe axis-

resent uncertainty in axial data @f. In geology, it is often angle format is visualized), along with the fitted Binghamsp(esented by
used to encode preferred orientations of minerals in robi} [ the light bands on the two spheres).

Higher dimensional, complex forms of the Bingham distribu-

tion are also used to represent the distribution over 2-Dasla o

shapes [5]. In this work, we use the Bingham Bh as a eSPect toA to zero, yielding

probability distribution over 3-D quaternion rotationan& N
the unit quaterniong; and —q represent the same rotation in L@F(A) — e Z(V'TXi)2 = v:T Sv. (10)
3-D space, the antipodal symmetry of the Bingham distrasuti F(A) 0A; N &Y P
correctly captures the topology of quaternion rotationcepa

forj=1,...,d. Just as we did foF'(A), we can pre-compute
A. The Normalization Constant values of the gradient of" with respect toA, VF, and store
them in a lookup table. Using a kD-tree, we can find the
nearest neighbors of a new sampié’/F' in O(dlog M) time
a_{Where M? is the size of the lookup table), and use their
indices to findA via interpolation (since the lookup tables for
F andVF are indexed by\).
d Notice that the maximum likelihood estimates fidrand A
F(A) = / exp{ > _ X\i(vi"x)’} (8) are both computed given only the scatter matsixThus, S is
ves =1 a sufficient statistic for the Bingham distribution. In fatttere
In general, there is no closed form for this integral, whici$ a beautiful result from the theory of exponential fanslie
means that"" must be approximated. Typically, this is donévhich says that the Bingham distribution is tineaximum
via series expansion [3], [12], although saddle-point apr entropy distribution on the hypersphere which matches the
mations [13] have also been used. sample inertia matrix (scatter matri%) = E[xx”] [17]. This
Following Bingham [3], we note thaF (A) is proportional gives us further theoretical justification to use the Bingha
to a hyper-geometric function of matrix argument, with esri distribution in practice, if we assume that all of the relgva

The primary difficulty with using the Bingham distribution
in practice lies in computing the normalization constafit,
Since the distribution must integrate to one over its dom
(S%), we can write the normalization constant as

expansion information about the data is captured in the inertia matrix
1 d+1 .
F(A) =2-1Fi(5——A) = C. Sampling
ad r 1 T 1 o NC)) Because of the complexity of the normalization constant,
2w Z (a1 +5) - Tlaat 3) AT A sampling from the Bingham distribution directly is diffitul
o mamo Tlaa 4o+ 1) anloagl Therefore, we use a Metropolis-Hastings sampler, withetarg

) distribution given by the Bingham density, and proposat dis
For practical usage, we precompute a lookup tablE-oBlues - inytion given by the projected zero-mean GaussiarR?+!
over a discrete grid of\'s, and use interpolation to quickly \yith covariance matrix equal to the Bingham’s sample igerti
estimate normalizing constants on the fly. matrix, S. Because the proposal distribution is very similar
to the target distribution, the sampling distribution frahe
Metropolis-Hastings sampler converges to the true Bingham

Following Bingham [3], we estimate the parametéraind sampling distribution after just a few iterations.
A given a set ofV samples{x;}, using a maximum likelihood

approach. Finding the maximum likelihood estimate (MUIE) D. Bingham Mixture Models (BMMs)
is an eigenvalue problem—the MLE mode of the distribution is
equal to the eigenvector of the scatter maffix- 4 Y, xix;
corresponding to the largest eigenvalue, while the colum
of V' are equal to the eigenvectors corresponding to2tine
through(d + 1)th eigenvalues of.

The maximum likelihood estimaté is found by setting g, sample from the projected Gaussian, we first sample from @<&au
the partial derivatives of the data log likelihood functiafth  with covarianceS, then project the sample onto the unit sphere.

B. Parameter Estimation

The Bingham distribution is a natural, maximum entropy
model for second order distributions on a hypersphé&fe,

Powever, the Q-Image in a local feature distribution model
will almost always be explained best by a more complex



error in the z-axis. error in the z-axis error in the z-axis error in the z-axis

1 0.4 0.2 0.2
B3
2

0.5 0.2 0.1 g 0.1
s
&

0 0 o 0
0 100 0 100 0 100 0 100

sample %

sample %

sample %

accuracy

. os /L e |KEA (MC-SOPE)
error (degrees) error (degrees) error (degrees) error (degrees) 04 L —— SOPE, IKEA (er<10°) 0al,’ ,* —— PR2 (MC-SOPE)
error about the z-axis error about the z-axis error about the z-axis 4, - — = - SOPE, PR2 (err<20) , - IKEA(SACI)
0.4 04 0.2 ’ ! 03f « -~
< < < ——— SOPE, HOUSEHOLD (er<20°) ] . = Household (MC-SOPE)
%‘El’ 02 %;1 02 ;—‘Ei 01 ozp ~ = - SCOPE, PR2 (em<20°) 02 - = = Household (SAC-IA)
3 8 8 —— random (em<20°) 0.1 - - - PR2 (SAC-IA)
0 0 0
[}
0 100 0 100 0 100 0 20 4 60 0 1 2 8 4 5 6 7 8 9 10
error (degrees) error (degrees) error (degrees) #samples #san’ples

translation error translation error translation error translation error
0.4 0.2 0.4 0.2
0.2 0.1 .
llh.. OMIl.I..._._ o Figure 9. (a) Search orientation accuracy of MC-SOPE and MC-SCOPE on
® aroromm) % aror oy oot tom) © ooy each dataset. Each poirtX,Y’), in the figure shows the percentage of
trials for which a “good” pose sample was found in the t8psamples. (b)

Comparison to the proposal sample distribution of SAC-IAdtation error
thresholds are the same as in (a)).

@ (b)

sample %
sample %

sample %
o
N
sample %
o
o =

(a) IKEA (b) Household (c) PR2 (d) PR2, SCOPE

Figure 8.  Sample error distributions (bar plots), compared to random
guessing for orientation (solid red lines). (a-c) MC-SQRtluttered, (d) MC-

SCOPE/cluttered V. EXPERIMENTAL RESULTS

We tested our pose estimation algorithms on three dif-
distribution, as one can see in figures 1 and 5. For this perpoferent datasets—one containing 41 rotationally-symmetric
we introduce the Bingham Mixture Model (BMM), with PDFIKEA objects (mostly dishes), one containing 29 rotatityal

k asymmetric household items, such as soap bottles, todals, an
fem(z;B,a) = Z o f (23 By). (11) food containers, and one containing 8 manipulable objeuts f
=1 a PR2 robot. Each dataset consisted of a set of 3D point clouds
rY}]qﬂich were scanned in from real objects; however, noveltpoin
cloud views of objects (for both training and testing) were
generated in three different ways. For the IKEA dataset, we
E. BMM Parameter Estimation via Sample Consensus used ray-tracing with additive Gaussian noise to generate 4
To fit a mixture model to a set of data points we mugtieWS of each ObjeCt. For the Household dataset, we used
estimate the cluster parametets, the cluster weightsq;, @ 3-D simulator to emulate output from a texture-projection
and the number of clusterg. We have found iterative pa- stereo camera pair. Then we ran a stereo vision algorithm on
rameter estimation—the standard technique for fitting méxtuthe simulated images to estimate pixel depth, and extracted
models—for BMMs to be highly susceptible to getting stucRoint clouds from the rectified depth images for 71 views per
in local minimé, so instead we use a greedy a|gor|thrﬁbject For the PR2 dataset, we CathrEd pOint clouds frem th
based on the sample consensus framework which works wafillow Garage PR2 robot’s projected light stereo cameras. T
in practice, but for which there are unfortunately very feWenerate 3D models, we drove the robot around each object,
theoretical guarantees. The BMM sample-consensus (BMmlaced in varying orientations on a table, collecting 34-40
SAC) algorithm starts by fittingl/ Binghams toM random Views of each object; point clouds from all the views werenthe
sets of 4 points each. The Binghat which fits the data best aligned using an occupancy-grid approach. The PR2 dataset
under a capped loss function (where outliers all contritaute@!So contained 11 point clouds of cluttered scenes withingry
minimum likelihood, £,,,;,,, S0 as not to give them too muchconfigurations of the 8 objects on a tabletop in front of the
influence on the total fitness) is added to the mixture if it is ®bot; we painstakingly hand-labelled every scene wittheac
good enough fit (i.e. has data likelihoodl/;,..;). Then, the Objects true pose for testing purposes.
inlier points with respect td3* (those points with likelihood  To fit local feature models for the objects in each dataset,
greater thart,,;,) are removed from the training set, and th&e calculated normals, local shape descriptors (FPFHS), an
algorithm searches for another Bingham to add to the mixtufincipal curvatures for the points in each point cloud.eft
When no further Binghams can be found, the remaining poirfi§wnsampling to reduce the number of oriented local feature
are considered outliers, and a uniform mixture componentifs €ach model to around 2000 points, we clustered features
added. A reasonable choice for the outlier threshdlgl,,,, is across all views by their FPFH using KMeans with= 10.

where theB;’s are the component Bingham parameters a
the a;’s are weights.

given by the uniform probability density, We then fit a Bingham Mixture Model (BMM) to the local
coordinate frames (Q-Image) in each cluster. For the pegos
Umin = Punif(x) = 1/A(d), (12)  of testing the MC-SOPE algorithm, we used cross-validation
where A(d) is the surface area of the hypersphgfe with 5 training and testing set pairs. For each testing set, w

used the corresponding (non-overlapping) training se¢aon
5This is probably due to the great flexibility of the Binghanstdbution, FPFH clusters and BMMs. We then ran MC-SOPE on each

and the non-Euclidean nature of the hypersphere. point cloud with N = 1000 proposal samples in the testing
SRecall that a Bingham with all its concentration parameferset to zero

is a uniform distribution or?; thus, the uniform component of a BMM is sets, returning the top = 100 po;e samples for ?aCh \_/'ew'
also a Bingham distribution. We ran the MC-SCOPE algorithm on the objects in each



scene of the cluttered PR2 dataset with= 5000 proposal techniques using Extended Gaussian Images [9], [11] or reg-
samples, returning the top = 100 pose samples for eachistration [2] must exhaustively search the space of 3D abjec
object. In figure 10, we show examples of top pose samplestations, and are currently too slow for real-time appiass.
for one of the scenes. The generalized Hough transform [1] uses local geometric
In figure 8, average error histograms across all MC-SORformation to vote for object parameters (e.g. position an
tests are shown for the three datasets, and for the clut&R@d orientation), and is robust to occlusions. However, it esf
dataset for the MC-SCOPE trials. For the IKEA dataset, wieom quantization noise which can make parameter searohes i
show orientation error in the-axis, since the IKEA objects high dimensions difficult [8]. Geometric hashing [15] tries
are all symmetric about the-axis. For the Household andalleviate this quantization difficulty by voting among aatiste
PR2 datasets, we show orientation elirothe z-axis, and also set of basis point tuples, but it has a worst case running dime
aboutthe z-axis for samples with:-axis error< 20 degrees. O(n*) for n 3D model points. Classification-based techniques,
Error in translation (XYZ) for samples with-axis error< 20 such as [19], which classify object observations by viewpoi
degrees is shown for all datasets. appear to work well when the object is perfectly segmented
In figure 9, we show the search orientation accuracy of M@ut of the scene, but are sensitive to clutter and occlusions
SOPE and MC-SCOPE on each dataset. Each p@itY’), Our method can be most accurately described as a hybrid
in figure 9 shows the percentayeof trials for which a “good” between the Generalized Hough transform and RANSAC, in
pose sample was found in the tdpsamples. A “good” sample that we try to model the relationship between the poses of
is defined as:-axis error< 10 degrees for the IKEA dataset,local features and the pose of the model in a random sampling
and bothz-axis error < 20 degrees and aboutaxis error framework. However, unlike the Hough transform, our model
< 20 degrees for the Household and PR2 datasets. Positisrcontinuous, which allows us to avoid discretization éssu
accuracy is not measured in figure 9, since we saw in figureaBd perform extremely fast, constant time inference.
that most samples with small orientation error have trdiosia
error within a few centimeters (and the average model size is VII. CONCLUSION
about 10 cm). In figure 9(b), we also compare performance . o
on the SOPE/uncluttered datasets to the proposample Robu_st re(_:ognlt]on and pose es.t_lmatmn of common house-
accuracy of SAC-IA, the RANSAC-based alignment methddP!d objects is an important capability for any personaViser
in the original FPFH paper[18]. Our method, MC-SOPE, jeobot. However, reaI_—worId scenes often contain a grga_l dea
either comparable or better to the proposal method of SAEE clutter and occlusion, making the estimation task difficu
IA on all three datasets, with the biggest improvement beirlg'€réfore, it is necessary to infer as much as possible from
on the PR2 dataset (which has the most sensor noise). Furfi8@l! object features, such as the oriented surface patoes
gains in MC-SOPE may be acheived by incorporating some ¢gnsidered in this work. Although our results on both un-
the feature selection/pruning methods in SAC-IA, which weluttered and cluttered datasets demonstrated the apifiiya

have not yet explored in this work. of our approach to 3D point cloud models, the full power
of 3D oriented local feature distributions will only be seen
VI. RELATED WORK when more feature types (based on color, edges, local image

Many modern techniques for pose estimation of a rigidPpearance, etc.) are added to the model. Then, the pose of
3D object are correspondence-based, relying on the prébiects with unique visible features, such as the logo on a
ence of unique visual features on the object's surface B89, will be locked down immediately, while observations of
that a rigid-body transform can be found which minihon-unique features such as the ones considered in this pape
mizes the sum of squared distances between correspondiilg still lead to a much smaller set of possible object poses
points [10], [18], [16]. Unfortunately, many common housethat the algorithm will ultimately need to consider.
hold objects—such as dishes, tools, or furniture—do notWe also believe the Bingham distribution is a valuable
have such uniguely-identifiable visual features (or theyehabut underutilized tool in robotics for modeling rotational
too few unique features to lock down a pose). Furthermorgncertainty, and plan to release an open-source librarljaw a
these correspondence-based techniques are typicaltgdito  others to easily incorporate the Bingham distribution asd i
recognition and pose estimation of specific objects, ratiem mixture model into their algorithms.
classes of objects.
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Figure 10. Top sample poses for 7 objects found by the MC-SCOPE algoridr a cluttered scene. When a “good” pose sample is found mitie top
20 samples, the caption under the best sample is shown in bold.
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