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Abstract—The success of personal service robotics hinges upon
reliable manipulation of everyday household objects, such as
dishes, bottles, containers, and furniture. In order to accurately
manipulate such objects, robots need to know objects’ full 6-DOF
pose, which is made difficult by clutter and occlusions. Many
household objects have regular structure that can be used to
effectively guess object pose given an observation of just a small
patch on the object. In this paper, we present a new method
to model the spatial distribution of oriented local features on
an object, which we use to infer object pose given small sets
of observed local features. The orientation distribution for local
features is given by a mixture of Binghams on the hypersphere of
unit quaternions, while the local feature distribution for position
given orientation is given by a locally-weighted (Quaternion
kernel) likelihood. Experiments on 3D point cloud data of
cluttered and uncluttered scenes generated from a structured
light stereo image sensor validate our approach.

I. I NTRODUCTION

The goal of this paper is to determine a set of possible
object poses, given a 3D object point cloud and a point cloud
observation of a scene containing the object. To answer this
question, we will consider the observed point cloud to be
made up of many tiny overlapping surface patches, and we
will construct a model of the information each observed patch
gives us about the object’s pose, by considering the range of
locations the patch may have come from on the model. When
such a surface patch contains orientation information in the
form of a normal vector and principal curvature direction (or
when the normal and principal curvature can be estimated from
the local patch geometry), we call it anoriented local feature
(or “oriented feature” for short).

In this paper, we present a new method to model the spatial
distribution of oriented local features on an object, whichwe
use to infer object pose given small sets of observed features.
We split up the spatial distribution of oriented local features
into two parts, one modeling the distribution over feature
orientations, and another modeling the conditional distribution
of feature position given orientation. Splitting up the feature
distributions in this way allows us to exploit predictable
relationships between the orientation of local surface patches
on an object and the object’s pose (Figure 1).

The distribution for feature orientation is given by a mix-
ture of Binghams on the hypersphere of unit quaternions.
The Bingham distribution [3] is an antipodally symmetric
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Figure 1. Four 3-D point clouds and their corresponding Q-Image transforms,
respresenting the distribution of local 3-D surface orientations on each object
(see section III for details).

probability distribution on a unit hypersphere. It can be used
to represent many types of uncertainty, from highly peaked
distributions to distributions which are symmetric about some
axis to the uniform distribution. It is thus an ideal distribution
for 3D rotations, which can be modeled as unit quaternions
on the 4-D hypersphere,S3.

The distribution for feature position given orientation is
given by a locally-weighted (Quaternion kernel) likelihood.
Local likelihood is a non-parametric, kernel-based technique
for modeling a conditional distribution,p(x|q), as a smoothly
varying function of the observed variable,q.

A. Outline

The technical portion of this paper is organized in a top-
down fashion. We present our pose estimation algorithms in
section II. Our main contribution—a new way to model the
distribution of oriented local features on an object—is given
in section III. Section IV reviews the Bingham distribution
and introduces its mixture model, the BMM, which we use to
represent uncertainty over the space of 3-D rotations. Section
V contains experimental results, followed by related work and
the conclusion in sections VI and VII.

II. M ONTE CARLO POSEESTIMATION

At its core, this paper presents a new way to model the
spatial relationship between an object and its oriented local



Figure 2. The Single Object Pose Estimation (SOPE) problem: given a
model and a (partial) observation (left), we wish to estimate the pose of the
object (right).

• Given: a model,M , and an observed point cloud,Fobs.
• For i = 1 . . . N

– 1) Sample a “proposal” oriented feature,fp, at random from
Fobs.

– 2) Sample an object pose,(xi,qi) from pM (x,q|fp).
– 3) Samplek “validation” oriented features,{fv1...k} at

random fromFobs.
– 4) Set sample weightwi ← pM (xi,qi|{fv1...k}).

• Return: the topn samples(xi,qi) ranked by weight,wi.

Table I
MC-SOPE

features. This model can be used for many perceptual tasks,
since there are many uses for such spatial models in a percep-
tual processing pipeline. As an application, we test the acuity
of our model for object pose estimation, in a probabilistic
Random-Sampling-Consensus (RANSAC) framework.

RANSAC [7] is a classic Monte-Carlo algorithm for using
small random subsets from a large set of features to quickly
generate many guesses of whatever the algorithm is trying to
estimate. It then ranks the guesses according to an evaluation
criterion, and returns the topn answers. RANSAC is part
of a larger trend to solve perceptual problems by applying
successive filters, or sieves, to a set of guesses (or samples),
keeping good samples and throwing away the bad ones,
until (one hopes) only good samples are left. The key to
making such a filtering scheme work efficiently is to generate
reasonable guesses early on in the pipeline, and throw away as
many bad samples with the early, fast filters, so that the later,
discriminative (but slow) filters don’t have to sift throughas
much junk to find the right answers.

Our model fits perfectly at the early stage of such a filtering
scheme for pose estimation. By squeezing all the information
one can from a single oriented local feature, and then from
small sets of oriented local features, we can quickly generate
many good guesses for object pose. Later filters—which for
example iteratively align a model at a sample pose with the
observed point cloud and then compute a fitness score using
all the points in the model—can be used to further refine the
set of pose estimates, and are well explored in the literature.
However, that final alignment stage is omitted in this work in
order to focus on our primary contribution—generating good
initial sample poses using just a few local oriented features at
a time, which is crucial for pose estimation in cluttered scenes,
where only a small portion of an object may be visible.

(a) (b)

Figure 3. The Single Cluttered Object Pose Estimation (SCOPE) problem:
given a model, an observation, and a region of interest (a), wewish to estimate
the pose of the object (b).

• Given: a model,M , and an observed point cloud,Fobs with sub-
cloud region of interest,Fobs,roi.

• For i = 1 . . . N

– 1) Sample a “proposal” oriented feature,fp, at random from
sub-cloudFobs,roi.

– 2) Sample an object pose,(xi,qi) from pM (x,q|fp).
– 3) Samplek “validation” features,{fv1...k} using a random

walk in the full point cloudFobs, starting fromfp.
– 4) Set sample weightwi ← pM (xi,qi|{fv1...k}).

• Return: the topn samples(xi,qi) ranked by weight,wi.

Table II
MC-SCOPE

A. Problem Statement

There are two primary pose estimation problems we address
in this paper. The first problem, which we call “Single Object
Pose Estimation” (SOPE), is to estimate an object’s pose given
a point cloud observation,Fobs, of part of the object (Figure 2).
For this task, we have a model (i.e. we know the object’s
identity) and a segmentation (i.e. we know which points in
the observation correspond to the model), and the goal is
to return samples from the distribution over possible object
poses(x,q) ∈ R

3 × S
3 given the observation,p(x,q|Fobs).

The SOPE problem is well suited to “separable” scenes, for
example when one or more objects are separated on a table
or a shelf.

The second problem is “Single Cluttered Object Pose Esti-
mation” (SCOPE). In this task, we have a model, an observed
point cloud containing several objects, and a rough location
(e.g. a bounding box) in which to look for the desired object.
The goal once again is to return a set of samples from the
posterior pose distribution,p(x,q|Fobs), of the desired object.

B. MC-SOPE Algorithm

Our solution to the SOPE problem, MC-SOPE, is shown
in table I. It starts by sampling a pose using the information
from one “proposal” oriented local featurefp which is cho-
sen at random from the observed point cloud,Fobs. Then,
it uses k “validation” features,fv1

, . . . , fvk
, to compute a

weight/score for the proposed object pose. AfterN poses have
been proposed and weighted, the algorithm returns the topn
samples, ranked by weight. As we will see in section III,
sampling from pM (x,q|fp) and computing the validation
densitypM (x,q|{fv1...k

}) are bothO(1) operations whenk
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Figure 4. Informative oriented local (surface patch) features. Observing
just a single patch of an object can often constrain the set offeasible object
poses to a narrow range of possibilities. In the top row, two different patches
on a wine glass are shown, along with four possible object poses consistent
with each patch. In the bottom row, a bowl feature is shown, along with four
object poses consistent with the observed patch. Both of thethe observed
glass features constrain the orientation of the glass to be aligned with the
z-axis, while the bowl feature places much weaker constraintson orientation.

is a small constant (we usek = 5 in our experiments),
so the entire algorithm isO(N), allowing us to generate
large numbers of good samples quickly. This is in contrast
to traditional RANSAC-type methods for model fitting and
pose estimation, which typically useall the observed features
in Fobs to rank each proposal, resulting in a running time of
O(N · |Fobs|).

C. MC-SCOPE Algorithm

Our solution to the SCOPE problem, MC-SCOPE, is shown
in table II. It is nearly identical to MC-SOPE, with the main
difference being that MC-SCOPE samples validation points
using a random walk (since the observed point cloud contains
more than one object and the region of interest,Fobs,roi may
not be a perfect segmentation of the desired object). The
random walk is performed by taking a random step according
to an isotropic normal distribution with stdev.ǫ (3cm in all
our experiments), then finding the closest point in the point
cloud to the new location.

III. L OCAL FEATURE DISTRIBUTIONS

Both pose estimation algorithms in the previous section
require a model forpM (x,q|fp) andpM (x,q|{fv1...k

})—the
likelihood of an object pose, given one or more observed
oriented local features. Although the oriented local features
on an object may not be unique, they can still be quite
informative. For example, in figure 4, observing a curved patch
of the surface on the cup or a flat patch on the base tells us
that the object is aligned with thez-axis, at a narrow range
of positions. In contrast, oriented local features on the surface
of a hemispherical bowl tell us very little about the bowl’s
orientation, and constrain the bowl’s position to a bowl-shaped
set of locations, centered on the observed patch.

Our approach to computingpM (x,q|fi) will be to flip it
around using Bayes’ rule,

pM (x,q|fi) ∝ pM (fi|x,q)pM (x,q)

wherepM (x,q) is a prior probability andpM (fi|x,q) is the
likelihood of observingfi given the object pose(x,q). We
will gain further purchase onpM (fi|x,q) by examining the
components of an oriented local feature,fi.

A. Oriented Local Features

We describe an oriented local featurefi with three
components—

1) a shape descriptor,si,
2) a position,xi ∈ R

3, and
3) a quaternion orientation,qi ∈ S

3.
The shape descriptorsi should be invariant to position and
orientation, while describing the local surface geometry of
the feature. After testing different 3D shape descriptors,we
selected the Fast Point Feature Histogram (FPFH)[18], due
to its favorable performance in the presence of noise and
missing data. The positionxi and orientationqi are relative
to a fixed model coordinate frame; they describe the rigid
body transform which maps model coordinates to local feature
coordinates. Unit quaternions are used to describe rotations
because they avoid the topological degeneracies of other
representations, and fit perfectly into the Bingham mixture
distributions we develop in this work.

In this paper, an oriented local feature is a descriptor for the
pose and shape of a local surface patch on a 3D point cloud.
Given a surface patch (i.e. a local set of 3D pointsP on a
modelM ) with estimated surface normalsU at every point, we
compute the transform(xi,qi) by picking an arbitrary (fixed)
model coordinate frame, and estimating the local coordinate
frame whose origin is at the center of patchP, with axes given
by u, the estimated surface normal at the center of patchP , v,
the direction of maximal surface curvature1, andw = u× v.
Then (xi,qi) is the transform which takes the model frame
to the local frame. An example of a local coordinate frame is
shown on the left side of figure 6.

B. Local Feature Likelihood

The next step in modelingpM (fi|x,q) is generate a “vocab-
ulary” Ω of local shape types for the given model. We do this
using K-Means clustering (with|Ω| = 10 in this paper) on the
set of all local shape descriptors,{si} in the model point cloud,
yielding a shape vocabulary,{Ωj}. We then segment the model
point cloud into|Ω| clusters, where clusterj contains all the
oriented local features in the model whose closest vocabulary
shape isΩj . Examples of three feature clusters on a wine
glass, with their local coordinate frames, is shown in the top
row of figure 5.

For a newly observed oriented local feature,fi, we compute
the local feature likelihood,pM (fi|x,q) by expandingfi into

1The direction of maximal surface curvature, orprincipal curvature, is
estimated using principal components analysis on the neighborhood of local
surface patch normals, projected into the tangent space to the central normal
vector; the principal curvature is the eigenvector corresponding to the largest
eigenvalue, and is only defined up to sign.
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Figure 5. Cluster Q-Images.

components(si,xi,qi), and classifyingsi into one of the
shape vocabulary clusters,Ωj , yielding

pM (fi|x,q)
∝ pM (xi,qi|x,q,Ωj)pM (Ωj |x,q)
= pM (qi|x,q,Ωj)pM (xi|qi,x,q,Ωj)pM (Ωj |x,q)

(1)

where we can drop the dependence onx in the first term (since
the orientation of a local feature on an object shouldn’t depend
on the object’s position in space), and wherepM (Ωj |x,q) is
assumed to be uniform.2 Thus,

pM (fi|x,q) = pM (qi|q,Ωj)pM (xi|qi,x,q,Ωj). (2)

To modelpM (qi|q,Ωj), we consider the set of all local feature
orientations on the model from feature clusterΩj , which we
visualize using the “Q-Image” transform3 for three features
types in the bottom row of figure 5. We then fit a Bingham
Mixture Model (BMM)—defined in section IV-D—to the set
of all rotations mapping model axes into local axes, so that

pM (qi|q,Ωj) = p(qiq
−1;Bj) (3)

whereBj are parameters of the BMM for feature clusterj.
To model pM (xi|qi,x,q,Ωj), we use a non-parametric

technique, called local likelihood, to fit a distribution tothe
set of all translations mapping model origin to rotated local
feature origin; that is,

pM (xi|qi,x,q,Ωj) = pM (q−1(xi − x)|qiq
−1,Ωj). (4)

Local Likelihood is a technique introduced by Tibshirani and
Hastie [21] to model the parameters of a conditional prob-
ability distribution, p(Y |X), as a smoothly varying function
of X. In our case, we wish to model the conditional local

2pM (Ωj |x,q) is a view-dependent term; we would need to know the
sensor pose in addition to the object pose in order to utilizeview-based
statistics. Adding this is a direction for future work.

3The Q-Imageof a 3D point cloud is defined as the set of all quaternion
local feature orientations; we visualize the Q-Image in 3D using the axis-angle
format of 3D rotation.
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(a) local feature coordi-
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positions

Figure 6. Given that an oriented local feature with shape typeΩj has
the coordinate frame shown in (a), the range of possible feature positions is
restricted to lie on the dark band of the cup in (b).

feature pose distributionp(x|q) within a particular feature
class,Ωj (where x|q is shorthand forq−1(xi − x)|qiq

−1

in equation 4). To do so, we choose a particular parametric
model for p(x|q = q′) (multivariate normal distribution),
with parameters(µ,Σ). To fit parameters, we use a locally-
weighted data log-likelihood function,ℓ(), with Gaussian
kernel K(q,qi) to weight the contribution of each(xi|qi)
in the model point cloud according to how closeqi is to q,

ℓ(µ,Σ;q, X,Q) =

n
∑

i=1

K(q,qi)ℓ(µ,Σ;xi). (5)

We use a local likelihood model in this work for its flexibility,
since finding a good parametric model forp(x|q) which works
for all q’s is quite difficult. An example ofp(x|q) for a
particularq is shown on the right side of figure 6.

C. Multi-Feature Likelihood

Given multiple observed oriented local features,{fi} =
{(si,xi,qi)}, i = 1 . . . k, the idea for the multi-feature
likelihood model is that we consider the average feature log-
likelihood to be a random variable drawn from an exponential
distribution with parameterλ.

p({fi}|x,q) = λ exp

[

λ

k

k
∑

i=1

log p(fi|x,q)
]

(6)

If the local features were independent given the object pose,
then λ would be equal to 1. However, since features may
overlap, we smooth the log-likelihood contribution from each
feature by settingλ < 1 (0.5 in all of our experiments).

IV. T HE BINGHAM DISTRIBUTION

The Bingham distribution is an antipodally symmetric
probability distribution on a unit hypersphere. Its probability
density function (PDF) is

f(x; Λ, V ) =
1

F
exp{

d
∑

i=1

λi(vi
Tx)2} (7)

where x is a unit vector on the surface of the sphere
S
d ⊂ R

d+1, F is a normalization constant,Λ is a vector of
concentration parameters, and the columns of the(d+ 1)× d
matrix V are orthogonal unit vectors. By convention, one



typically definesΛ andV so thatλ1 ≤ λ2 ≤ · · · ≤ λd ≤ 0.
Note that a large (negative)λi indicates that the distribution is
highly peaked along the directionvi, while a small (negative)
λi indicates that the distribution is spread out alongvi.

The Bingham distribution is derived from a zero-mean
Gaussian onRd+1, conditioned to lie on the surface of the unit
hypersphereSd. Thus, the exponent of the Bingham PDF is
the same as the exponent of a zero-mean Gaussian distribution
(in principal components form, with one of the eigenvalues of
the covariance matrix set to infinity).

The Bingham distribution is most commonly used to rep-
resent uncertainty in axial data onS2. In geology, it is often
used to encode preferred orientations of minerals in rocks [14].
Higher dimensional, complex forms of the Bingham distribu-
tion are also used to represent the distribution over 2-D planar
shapes [5]. In this work, we use the Bingham onS3 as a
probability distribution over 3-D quaternion rotations. Since
the unit quaternionsq and−q represent the same rotation in
3-D space, the antipodal symmetry of the Bingham distribution
correctly captures the topology of quaternion rotation space.

A. The Normalization Constant

The primary difficulty with using the Bingham distribution
in practice lies in computing the normalization constant,F .
Since the distribution must integrate to one over its domain
(Sd), we can write the normalization constant as

F (Λ) =

∫

x∈Sd

exp{
d

∑

i=1

λi(vi
Tx)2} (8)

In general, there is no closed form for this integral, which
means thatF must be approximated. Typically, this is done
via series expansion [3], [12], although saddle-point approxi-
mations [13] have also been used.

Following Bingham [3], we note thatF (Λ) is proportional
to a hyper-geometric function of matrix argument, with series
expansion

F (Λ) = 2 · 1F1(
1

2
;
d+ 1

2
;Λ) =

2
√
π

∞
∑

α1,...,αd=0

Γ(α1 +
1

2
) · · ·Γ(αd +

1

2
)

Γ(α1 + · · ·+ αd +
d+1

2
)
· λ

α1

1 · · ·λαd

d

α1! · · ·αn!

(9)

For practical usage, we precompute a lookup table ofF -values
over a discrete grid ofΛ’s, and use interpolation to quickly
estimate normalizing constants on the fly.

B. Parameter Estimation

Following Bingham [3], we estimate the parametersV and
Λ given a set ofN samples,{xi}, using a maximum likelihood
approach. Finding the maximum likelihood estimate (MLE)V̂
is an eigenvalue problem—the MLE mode of the distribution is
equal to the eigenvector of the scatter matrixS = 1

N

∑

i xix
T
i

corresponding to the largest eigenvalue, while the columns
of V̂ are equal to the eigenvectors corresponding to the2nd
through(d+ 1)th eigenvalues ofS.

The maximum likelihood estimatêΛ is found by setting
the partial derivatives of the data log likelihood functionwith

(a) (b) (c) (d)

Figure 7. Fitting a Bingham Mixture Model (BMM). (a) A cluster of similar
oriented local features. (b) The local coordinate frames of the oriented local
features. (c-d) The local coordinate frames (only the axis part of the axis-
angle format is visualized), along with the fitted Binghams (represented by
the light bands on the two spheres).

respect toΛ to zero, yielding

1

F (Λ)

∂F (Λ)

∂λj

=
1

N

N
∑

i=1

(vj
Txi)

2 = vj
TSvj, (10)

for j = 1, . . . , d. Just as we did forF (Λ), we can pre-compute
values of the gradient ofF with respect toΛ, ∇F , and store
them in a lookup table. Using a kD-tree, we can find the
nearest neighbors of a new sample∇F/F in O(d logM) time
(where Md is the size of the lookup table), and use their
indices to findΛ via interpolation (since the lookup tables for
F and∇F are indexed byΛ).

Notice that the maximum likelihood estimates forV andΛ
are both computed given only the scatter matrix,S. Thus,S is
a sufficient statistic for the Bingham distribution. In fact, there
is a beautiful result from the theory of exponential families
which says that the Bingham distribution is themaximum
entropy distribution on the hypersphere which matches the
sample inertia matrix (scatter matrix)S = E[xxT ] [17]. This
gives us further theoretical justification to use the Bingham
distribution in practice, if we assume that all of the relevant
information about the data is captured in the inertia matrix.

C. Sampling

Because of the complexity of the normalization constant,
sampling from the Bingham distribution directly is difficult.
Therefore, we use a Metropolis-Hastings sampler, with target
distribution given by the Bingham density, and proposal dis-
tribution given by the projected zero-mean Gaussian4 in R

d+1

with covariance matrix equal to the Bingham’s sample inertia
matrix, S. Because the proposal distribution is very similar
to the target distribution, the sampling distribution fromthe
Metropolis-Hastings sampler converges to the true Bingham
sampling distribution after just a few iterations.

D. Bingham Mixture Models (BMMs)

The Bingham distribution is a natural, maximum entropy
model for second order distributions on a hypersphere,S

d.
However, the Q-Image in a local feature distribution model
will almost always be explained best by a more complex

4To sample from the projected Gaussian, we first sample from a Gaussian
with covarianceS, then project the sample onto the unit sphere.
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Figure 8. Sample error distributions (bar plots), compared to random
guessing for orientation (solid red lines). (a-c) MC-SOPE/uncluttered, (d) MC-
SCOPE/cluttered

distribution, as one can see in figures 1 and 5. For this purpose,
we introduce the Bingham Mixture Model (BMM), with PDF

fBM (x;B,α) =

k
∑

i=1

αif(x;Bi). (11)

where theBi’s are the component Bingham parameters and
theαi’s are weights.

E. BMM Parameter Estimation via Sample Consensus

To fit a mixture model to a set of data points we must
estimate the cluster parameters,θi, the cluster weights,αi,
and the number of clusters,k. We have found iterative pa-
rameter estimation—the standard technique for fitting mixture
models—for BMMs to be highly susceptible to getting stuck
in local minima5, so instead we use a greedy algorithm
based on the sample consensus framework which works well
in practice, but for which there are unfortunately very few
theoretical guarantees. The BMM sample-consensus (BMM-
SAC) algorithm starts by fittingM Binghams toM random
sets of 4 points each. The BinghamB∗ which fits the data best
under a capped loss function (where outliers all contributea
minimum likelihood,ℓmin, so as not to give them too much
influence on the total fitness) is added to the mixture if it is a
good enough fit (i.e. has data likelihood> ℓthresh). Then, the
inlier points with respect toB∗ (those points with likelihood
greater thanℓmin) are removed from the training set, and the
algorithm searches for another Bingham to add to the mixture.
When no further Binghams can be found, the remaining points
are considered outliers, and a uniform mixture component is
added6. A reasonable choice for the outlier threshold,ℓmin, is
given by the uniform probability density,

ℓmin = punif (x) = 1/A(d), (12)

whereA(d) is the surface area of the hypersphereS
d.

5This is probably due to the great flexibility of the Bingham distribution,
and the non-Euclidean nature of the hypersphere.

6Recall that a Bingham with all its concentration parametersλi set to zero
is a uniform distribution onSd; thus, the uniform component of a BMM is
also a Bingham distribution.
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Figure 9. (a) Search orientation accuracy of MC-SOPE and MC-SCOPE on
each dataset. Each point,(X,Y ), in the figure shows the percentageY of
trials for which a “good” pose sample was found in the topX samples. (b)
Comparison to the proposal sample distribution of SAC-IA (orientation error
thresholds are the same as in (a)).

V. EXPERIMENTAL RESULTS

We tested our pose estimation algorithms on three dif-
ferent datasets—one containing 41 rotationally-symmetric
IKEA objects (mostly dishes), one containing 29 rotationally-
asymmetric household items, such as soap bottles, tools, and
food containers, and one containing 8 manipulable objects for
a PR2 robot. Each dataset consisted of a set of 3D point clouds
which were scanned in from real objects; however, novel point
cloud views of objects (for both training and testing) were
generated in three different ways. For the IKEA dataset, we
used ray-tracing with additive Gaussian noise to generate 41
views of each object. For the Household dataset, we used
a 3-D simulator to emulate output from a texture-projection
stereo camera pair. Then we ran a stereo vision algorithm on
the simulated images to estimate pixel depth, and extracted
point clouds from the rectified depth images for 71 views per
object. For the PR2 dataset, we captured point clouds from the
Willow Garage PR2 robot’s projected light stereo cameras. To
generate 3D models, we drove the robot around each object,
placed in varying orientations on a table, collecting 34-40
views of each object; point clouds from all the views were then
aligned using an occupancy-grid approach. The PR2 dataset
also contained 11 point clouds of cluttered scenes with varying
configurations of the 8 objects on a tabletop in front of the
robot; we painstakingly hand-labelled every scene with each
object’s true pose for testing purposes.

To fit local feature models for the objects in each dataset,
we calculated normals, local shape descriptors (FPFHs), and
principal curvatures for the points in each point cloud. After
downsampling to reduce the number of oriented local features
in each model to around 2000 points, we clustered features
across all views by their FPFH using KMeans withk = 10.
We then fit a Bingham Mixture Model (BMM) to the local
coordinate frames (Q-Image) in each cluster. For the purposes
of testing the MC-SOPE algorithm, we used cross-validation
with 5 training and testing set pairs. For each testing set, we
used the corresponding (non-overlapping) training set to learn
FPFH clusters and BMMs. We then ran MC-SOPE on each
point cloud withN = 1000 proposal samples in the testing
sets, returning the topn = 100 pose samples for each view.

We ran the MC-SCOPE algorithm on the objects in each



scene of the cluttered PR2 dataset withN = 5000 proposal
samples, returning the topn = 100 pose samples for each
object. In figure 10, we show examples of top pose samples
for one of the scenes.

In figure 8, average error histograms across all MC-SOPE
tests are shown for the three datasets, and for the clutteredPR2
dataset for the MC-SCOPE trials. For the IKEA dataset, we
show orientation error in thez-axis, since the IKEA objects
are all symmetric about thez-axis. For the Household and
PR2 datasets, we show orientation errorin thez-axis, and also
about the z-axis for samples withz-axis error< 20 degrees.
Error in translation (XYZ) for samples withz-axis error< 20
degrees is shown for all datasets.

In figure 9, we show the search orientation accuracy of MC-
SOPE and MC-SCOPE on each dataset. Each point,(X,Y ),
in figure 9 shows the percentageY of trials for which a “good”
pose sample was found in the topX samples. A “good” sample
is defined asz-axis error< 10 degrees for the IKEA dataset,
and bothz-axis error< 20 degrees and about-z-axis error
< 20 degrees for the Household and PR2 datasets. Position
accuracy is not measured in figure 9, since we saw in figure 8
that most samples with small orientation error have translation
error within a few centimeters (and the average model size is
about 10 cm). In figure 9(b), we also compare performance
on the SOPE/uncluttered datasets to the proposal7 sample
accuracy of SAC-IA, the RANSAC-based alignment method
in the original FPFH paper[18]. Our method, MC-SOPE, is
either comparable or better to the proposal method of SAC-
IA on all three datasets, with the biggest improvement being
on the PR2 dataset (which has the most sensor noise). Further
gains in MC-SOPE may be acheived by incorporating some of
the feature selection/pruning methods in SAC-IA, which we
have not yet explored in this work.

VI. RELATED WORK

Many modern techniques for pose estimation of a rigid
3D object are correspondence-based, relying on the pres-
ence of unique visual features on the object’s surface so
that a rigid-body transform can be found which mini-
mizes the sum of squared distances between corresponding
points [10], [18], [16]. Unfortunately, many common house-
hold objects—such as dishes, tools, or furniture—do not
have such uniquely-identifiable visual features (or they have
too few unique features to lock down a pose). Furthermore,
these correspondence-based techniques are typically limited to
recognition and pose estimation of specific objects, ratherthan
classes of objects.

Current alternatives to the correspondence-based approach
tend to be limited in some way. Spherical harmonics can
be used in an attempt to bring the object into a “standard”
reference frame [4], and tend to work better than pure
moment matching techniques. However, such standardization
approaches may fail when a unique reference frame can’t be
found, and are sensitive to noise and occlusions. Brute force

7The validation part of SAC-IA, which ranks each pose sample bycom-
puting an inlier percentage over the entire observed point cloud, is left out of
the experiment for a fair comparison of how each algorithm doesusing only
a few local features at a time.

techniques using Extended Gaussian Images [9], [11] or reg-
istration [2] must exhaustively search the space of 3D object
rotations, and are currently too slow for real-time applications.
The generalized Hough transform [1] uses local geometric
information to vote for object parameters (e.g. position and
orientation), and is robust to occlusions. However, it suffers
from quantization noise which can make parameter searches in
high dimensions difficult [8]. Geometric hashing [15] triesto
alleviate this quantization difficulty by voting among a discrete
set of basis point tuples, but it has a worst case running timeof
O(n4) for n 3D model points. Classification-based techniques,
such as [19], which classify object observations by viewpoint,
appear to work well when the object is perfectly segmented
out of the scene, but are sensitive to clutter and occlusions.

Our method can be most accurately described as a hybrid
between the Generalized Hough transform and RANSAC, in
that we try to model the relationship between the poses of
local features and the pose of the model in a random sampling
framework. However, unlike the Hough transform, our model
is continuous, which allows us to avoid discretization issues
and perform extremely fast, constant time inference.

VII. C ONCLUSION

Robust recognition and pose estimation of common house-
hold objects is an important capability for any personal service
robot. However, real-world scenes often contain a great deal
of clutter and occlusion, making the estimation task difficult.
Therefore, it is necessary to infer as much as possible from
small object features, such as the oriented surface patcheswe
considered in this work. Although our results on both un-
cluttered and cluttered datasets demonstrated the applicability
of our approach to 3D point cloud models, the full power
of 3D oriented local feature distributions will only be seen
when more feature types (based on color, edges, local image
appearance, etc.) are added to the model. Then, the pose of
objects with unique visible features, such as the logo on a
mug, will be locked down immediately, while observations of
non-unique features such as the ones considered in this paper
will still lead to a much smaller set of possible object poses
that the algorithm will ultimately need to consider.

We also believe the Bingham distribution is a valuable
but underutilized tool in robotics for modeling rotational
uncertainty, and plan to release an open-source library to allow
others to easily incorporate the Bingham distribution and its
mixture model into their algorithms.
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