
Vector-based, Structure Preserving Stroke Gesture Recognition

Nathan Magrofuoco1, Paolo Roselli2, J.L. Pérez Medina1,3, Jean Vanderdonckt1, Santiago Villarreal1
1 Université catholique de Louvain (UCL). Louvain-la-Neuve, Belgium

2 Università degli Studi di Roma “Tor Vergata”. Rome, Italy
3 Intelligent & Interactive Systems Lab, Universidad de las Américas. Quito, Ecuador

Abstract— Unistroke and multistroke gesture recognizers
have always striven to reach some robustness with respect to
all variations encountered when people issue gestures by hand
on touch surfaces or with sensing devices. For this purpose,
successful stroke recognizers rely on a gesture recognition
algorithm that satisfies a series of invariance properties such
as: stroke-order invariance, stroke-number invariance, stroke-
direction invariance, position, scale, and rotation invariance.
Before initiating any recognition activity, these algorithms
ensure these properties by performing several pre-processing
operations. These operations induce an additional computa-
tional cost to the recognition process, as well as a potential error
bias. To cope with this problem, we introduce an algorithm that
ensures all these properties analytically instead of statistically
based on a vector algebra. Instead of points, the recognition
algorithm works on vectors between vectors. We demonstrate
that this approach not eliminates the need for these pre-
processing operations but also satisfies an entire structure-
preserving transformation.

I. INTRODUCTION

Gesture user interfaces [4], [6], [28] are User Interfaces
(UIs) fostering a natural interaction by capturing gestures
issued by the user and by letting the system to recognize
them and turn them into commands. Such UIs are applicable
to a wide range of activities, such as menu item selection by
gesture [2], hand recognition [13], diagram sketching [7],
electronic commerce [3], handwriting [10].

Recognizers exploit a large palette of techniques to recog-
nize stroke gestures [28], such as machine learning [6], data
mining [5], template-based matching [23], pattern recogni-
tion [11], or Nearest Neighbor Classification (NCC) [1], [9],
[12], [13], [16], [19], [25], [24], [27] due to several demon-
strated advantages: high recognition rate, low execution
time, low memory consumption, reasonable computational
complexity, and understandable geometric interpretation.

When a stroke is acquired by an end user on a particular
device (e.g., a smartphone, a trackpad, a ring device), it is
usually subject to several potential variations which could
affect its recognition: variations due to the end user, the input
device, the output device, the underlying operating system
and its software. Any stroke gesture recognizer is perpetually
challenged by coping with these variations and address
them by ensuring some properties of invariance, like stroke-
order invariance, stroke-number invariance, stroke-direction
invariance, position, scale, and rotation invariance [11]. To
establish and preserve these properties, recognizers perform

several pre-processing steps (e.g., re-sampling, re-rotation,
normalization) before any recognition activity is actually
launched, thus consuming some resources. A vector-based
recognizer escapes from performing these pre-processing
steps, thus saving important resources. Working directly
with vectors enables us to be released from the physical
coordinates space and calculations, which mix points, lines,
angles, surfaces, volumes. To discuss these aspects, this paper
proofs some invariance properties, leading to a structure-
preserving recognizer that is beyond articulation-invariant
recognizers. This paper extends [22] as follows: it focuses
on structure preservation by elaborating on invariance prop-
erties, by adding isotropicity, it provides the mathematical
demonstrations of invariance properties, it expresses Rubine
features in terms of vectors, and it introduces shape distance
for unoriented and oriented curves.

The remainder of this paper is structured as follows:
Section 2 discusses related work with a focus on invariance
properties; Section 3 introduces a vector-based approach
for stroke gesture recognition; Section 4 demonstrates how
structure-preserving capability is achieved by ensuring in-
variance properties algebraically instead of statistically or
heuristically; Section 5 concludes this work.

II. RELATED WORK

A stroke gesture recognizer is said to be invariant if it
remains robust, stable, or independent enough with respect to
variations of a gesture to be recognized. Such variations can
be classified into two categories: a global variation concerns
a transformation applied to a gesture considered as a whole
(e.g., a scaling, a dilatation) while a local variation only
concerns a specific part of a gesture (e.g., cropping).

A first invariance property is training set-invariance: when
the training set is modified (e.g., for adding a new gesture,
for removing, or modifying an existing one), the algorithm
remains unmodified. For example, synthetic gestures [14]
enrich a training set without requiring more participants to
provide additional samples.

Sampling invariance refers to the independence of a recog-
nizer with respect to the amount of points [11], and therefore
strokes between these points. Experiments show that 8 points
are sufficient to recognize a sample stroke, but best results
are obtained with 32 points [25].

Direction invariance [11], or isotropicity, refers to the
independence of a recognizer with respect to the direction
and ordering of stroke composing a gesture. Time invarianceDOI reference number: 10.18293/DMSVIVA2019-013

ε

Training
gesture Candidate

gesture

ε

ε

ε

p1
q1

p2

p3

p4

q2

q3

q4
(a) $P with Euclidean d

P

Training
gesture

Candi‐
date

gesture

p1
q1

p2

p3

p4

q2

q3

q4

P

P Training
gesture

Candi‐
date

gesture

p1
q1

p2

p3

p4

q2

q3

q4

P

P

P

Training
gesture

Candidate
gesture

p1
q1

p2

p3

p4

q2

q3

q4

pi

Training
gesture Candidate

gesture

p1
q1

p2

p3

p4

q2

q3

q4
(b) $1 with Mahalanobis d (c) Penny Pincher with vp

ε

Training
gesture Candidate

gesture

ε

ε

q1

p2

p3

p4

q2

q3

q4

p1

(d) $3 with 3D bowl (e) !FTL in 2D with LSD (f) !FTL in 3D with LSD

Fig. 1. Geometric interpretation of gesture recognition of a candidate gesture against a reference gesture: (a) 2D distance in $P, (b) 3D bowl of center
pi and radius ε in $3, (c) 2D vector-based LSD, (d) 3D vector-based LSD.

[23] refers to the independence of a recognizer with respect
to the time required by a end user to issue a gesture.

Position invariance refers to the independence of a rec-
ognizer to recognize a gesture wherever it is located on an
interaction surface or in the air. Signer [18], imposed that a
gesture should be issued in a given bounding box on a certain
surface because recognition is conditioned by a partition of
this space into regions.

Scale invariance refers to the independence of a recognizer
with respect to size and scale of the gesture. People tend to
issue larger gestures on a large surface [26]. UI sketches
are larger on a tabletop than on a graphical tablet even if
they represent the same concept [7]. Gesture size could also
convey a particular meaning: a small, medium, or large arrow
expresses a slow, medium, or fast navigation movement.

Rotation invariance refers to the independence of a rec-
ognizer to recognize the same gesture whatever its orien-
tation is. People sitting around a circular tabletop need all
orientations possible since no reference position is privileged.
For instance, PennyPincher [19] in its early version was not
rotation-invariant while its successor was [20]. Protractor3D
[13] supports 3D gestures in a rotation-invariant way.

Articulation invariance groups the above properties to-
gether to refer to a recognizer that does not depend on how
end users may produce gestures to give results.

Reflection invariance refers to the independence of a
recognizer to recognize the same gesture whatever the face of
the interactive surface is, such as on a mirror or a transparent
window. Since end users are not generally aware of the
influence of their location with respect to the display, they
prefer to forget it: two users located on each part of a
transparent display collaborate regardless the reflection.

Projection invariance expresses the same property in
space: whether a gesture is issued in the vertical, horizontal,
or saggital plane, its recognition remains the same. Projection
invariance is more complicated to satisfy because points
acquired in a particular system of coordinates may not mesh
well with a projection. Several pre-processing steps should
be performed: resampling or reparameterization, edgification,
normalization, rotation to a reference point.

These pre-processing steps satisfy their corresponding
properties, but negatively affect the overall performance, its
complexity, and could introduce some approximations and/or
error rounding due to these calculations that have nothing to
do with the recognition process.

III. VECTOR-BASED GESTURE RECOGNITION
A. Initial Definition

To characterize structure preservation, we refer to iso-
metricity as the property of a gesture set to hold a
set of n-equally distanced points: ∀i ∈ n−1,d(pi, pi+1) =
constant. A representative example exist when ‖pi+1− pi‖=

1
n−1 ∑

n
i=1 ‖pi+1 − pi‖. We hereby refer to isochronicity as

the property of a gesture set to hold a set of n equally-
timestamped points, i.e., ∀i ∈ n−1,‖ti − ti+1‖ = constant,
e.g., ‖ti+1− ti‖= 1

n−1 ∑
n
i=1 ‖(ti+1− ti)‖. We refer to isotrop-

icity as the property of a gestre set to hold a set of stroke
having the same orientation, such as left-to-right (L2R). We
also define isoparametrization as the property of two or
more gestures/sets to contain the same amount of points,
i.e. ∀G={pi}i=1,...n, H={q j} j=1,...,m : m=n. Two gesture sets
could be isoparametrized whether they are isometric or not,
isochronic or not, isotropic or not.

A gesture expresses a motion between an initial point and a
final point based on features such as position, scale, direction,
curvature, pressure, tangential acceleration, to be extracted
and classified [5], [21]. A point-based representation of a ges-
ture has the advantage of significantly simplifying a gesture
to a series of points, thus reducing the gesture recognition
to a comparison of two series of points. This approach
works well for static shapes, like symbols, letters, simple
commands, where shape is more important than motion.

B. Definition of a Basic Gesture

The continuous trace of two consecutive non-trivial trans-
lations of a point will be called basic gesture. A basic
gesture in a finite dimensional affine space can then be
formalized by a ordered couple (~u,~v) of two non-zero free
vectors ~u ∈ Rn and ~v ∈ Rn. A basic gesture (~u,~v) generates
a precise oriented triangle, whose third oriented side is the
free vector −(~u+~v). However, a well precise (possibly non
trivial) triangle, having points A, B and C as distinct vertices
can be generated by six possibly different basic gestures.
If we denote ~a=C−B, ~b=A−C, ~c=B−A, then we have six
basic gestures: (~c,~a), (~a,~b), (~b,~c), (−~a,−~c), (−~c,−~b), and
(−~b,−~a), respectively. In particular, basic gestures in an
affine plane correspond to ordered couples (~u,~v) of two
non-zero free vectors ~u=(u1,u2) ∈ R2 and ~v=(v1,v2) ∈ R2.
There is a one-to-one correspondence between vectors in R2

and complex numbers in C; more precisely, to each free
vector ~x = (x1,x2) ∈ R2 corresponds the complex number

x = x1+ix2 ∈C, and vice versa (i is the imaginary unit such
that i2 =−1). The shape of an ordered triangle, traced by a
basic gesture (~u,~v), can be encoded by the complex number
[15] obtained as the quotient u

v ∈C of the complex numbers
u,v∈C corresponding to vectors~u,~v∈R of the basic gesture
(~u,~v). Every triangle can be characterized by its shape [15].
C. Vector-based Features

Gesture features are traditionally defined based on Carte-
sian coordinates. A transformation can convert them into
any other system of coordinates, like polar, or spherical.
Conversely, when a gesture is captured by a non-Cartesian
device, a transformation into Cartesian coordinates should
be applied before computing classical features, such as
Rubine’s features [17]. Instead, our vector-based definition
re-expresses these features in terms of vectors that are inde-
pendent of any system coordinates. We vectorized Rubine’s
features [17] into a red formula as follows:

Notations: ∀(xp,yp) =~up with 0≤ p≤ P−1
∆xp = xp+1− xp,∆yp = yp+1− yp

(∆xp,∆yp) = ∆~up =~up+1−~up and ∆tp = tp+1− tp

θp = arctan
∆xp∆yp−1−∆xp−1∆yp

∆xp∆xp−1 +∆yp∆yp−1

= arctan
(∆~up∧∆~up−1) · (~e1∧~e2)

∆~up ·∆~up−1

(1)

Let {~e1,~e2} be an orthonormal basis in the two-dimensional
Euclidean space E2. Then, Rubine’s features become:

f1 = cosα =
x2− x0√

(x2− x0)2 +(y2− y0)2
=

(~u2−~u0) ·~e1

|~u2−~u0|

f2 = sinα =
y2− y0√

(x2− x0)2 +(y2− y0)2
=

(~u2−~u0) ·~e2

|~u2−~u0|

f5 =
√
(xP−1− x0)2 +(yP−1− y0)2 = |~uP−1−~u0|

f6 = cosβ =
xP−1− x0√

(xP−1− x0)2 +(yP−1− y0)2
=

(~uP−1−~u0) ·~e1

|~uP−1−~u0|

f7 = sinβ =
yP−1− x0√

(yP−1− x0)2 +(yP−1− y0)2
=

(~uP−1−~u0) ·~e2

|~uP−1−~u0|

f8 =
P−2

∑
p=0

√
∆x2

p +∆y2
p =

P−2

∑
p=0
|~up+1−~up|=

P−2

∑
p=0
|∆~up|

f9 =
P−2

∑
p=1

θp = arctan
(∆~uP−1∧∆~u1) · (~e1∧~e2)

∆~uP−1 ·∆~u1
= γ

f10 =
P−2

∑
p=1
|θp| and f11 =

P−2

∑
p=1
|θp|2 and f13 = tP−1− t0

f12 =
P−2
max
p=0

∆x2
p +∆y2

p

∆t2
p

=
P−2
max
p=0

|∆~up|2

∆t2
p

=
P−2
max
p=0

∣∣∣∣ 1
∆tp

∆~up

∣∣∣∣2
(2)

D. Similarity Ratio

Quotient u
v ∈ C is defined as the similarity ratio of

the basic gesture (~u,~v). Let us recall the properties and
correspondences between the metrics in R2 and C: the norm
of a free vector ~x ∈R2 and the modulus of its corresponding
complex number x ∈ C coincide

|~x|=
√
~x ·~x =

√
(x1)2 +(x2)2 =

√
x x∗ = |x|C where (3)

• ~x ·~y = (x1y1)+(x2y2) is the scalar product between ~x =
(x1,x2) ∈ R2 and ~y = (y1,y2) ∈ R2,

• x∗ = x1− ix2 ∈ C is the complex conjugate of x = x1 +
ix2 ∈ C.

Thus, also the distance between two vectors ~x,~y ∈ R2

and the distance between the two corresponding complex
numbers x,y ∈C coincide: |~x−~y|= |x−y|C, that is, R2 and
C are isometric.

E. Local Shape Distance between Gestures

We define the dissimilarity between two basic gestures
(~a,~b) and (~u,~v), by the Local Shape distance [22], denoted
by the symbol LSD

(
(~a,~b),(~u,~v)

)
, is defined as the Euclidean

distance between the similarity ratios of the basic gestures
(~a,~b) and (~u,~v), i.e.,

LSD
(
(~a,~b),(~u,~v)

)
=
∣∣∣ab − u

v

∣∣∣
C

= (4)√
|~a|2|~v|2 + |~b|2|~u|2−2

[
(~a ·~b)(~u ·~v)− (~a ·~v)(~b ·~u)+(~a ·~u)(~b ·~v)

]
|~b||~v|

(5)
The Local Shape Distance also exhibits a geometric in-

terpretation: a basic gesture correspond to a triangle whose
two first sides are formed by two vectors and whose last side
correspond to a vector joining its origin to its destination.
The Local Shape distance therefore interprets the comparison
of a candidature gesture to a training gesture by computing
the similarity between the two corresponding triangles. This
process is repeated until the end of points is reached.∣∣∣ab−u

v

∣∣∣2
C
=

∣∣∣∣av−bu
bv

∣∣∣∣2
C
=
|av−bu|2C
|bv|2C

=
(av−bu)(av−bu)∗

|b|2C |v|
2
C

=
(av−bu)(a∗v∗−b∗u∗)

|b|2C |v|
2
C

=
aa∗vv∗+bb∗uu∗−ab∗vu∗−a∗buv∗

|b|2C |v|
2
C

Let us recall that if ~x=(x1,x2) and ~y=(y1,y2) are two free
vectors in R2 and their corresponding complex numbers in
C are x=x1 + ix2 and y=y1 + iy2 respectively, then

~x ·~y = x1y1 + x2y2 = (x1 + ix2)(y1− iy2)(x1− ix2)(y1 + iy2)

= xy∗ = x∗y.
Hence, we write aa∗vv∗+bb∗uu∗= |~a|2 |~v|2+|~b|2 |~u|2 and

ab∗vu∗+a∗buv∗ = 2ab∗vu∗−ab∗vu∗+2a∗buv∗−a∗buv∗

= 2ab∗vu∗+2a∗ubv∗−ab∗u∗v−ab∗vu∗

= 2ab∗vu∗+2a∗ubv∗−2ab∗u∗v
= 2(~a ·~b)(~v ·~u)+2(~a ·~u)(~b ·~v)−2(~a ·~b)(~u ·~v)

Equation (5) shows that LSD can be defined without
considering complex numbers. With respect to the Euclidean
Clifford [8] vector algebra C `(2,0), associated to the Eu-
clidean vector space R2, one can recognize that

LSD
(
(~a,~b),(~u,~v)

)
=
∣∣∣~a(~b)−1−~u(~v)−1

∣∣∣
C `(2,0)

the Euclidean distance in C `(2,0) between two ratios of
vectors, where

~x(~y)−1 =
~x ·~y
|~y|2

+
1
|~y|2
(
~x∧~y

)
∈ C `(2,0)

In general, the two free vectors ~u and ~v of a basic gesture
(~u,~v), can belong to a finite n-dimensional Euclidean space
Rn. Moreover, the LSD defined in (5) makes sense and
corresponds to the distance between the ratio multivectors
in the corresponding Euclidean Clifford algebra C `(n,0), i.e.,

LSD
(
(~a,~b),(~u,~v)

)
=
∣∣∣~a(~b)−1−~u(~v)−1

∣∣∣
C `(n,0)

F. Invariance Properties of the Local Shape Distance

In order to demonstrate the invariance properties of LSD,
let us suppose to use function LSD to compare two basic
gestures (~a,~b) and (~u,~v) laying on a same affine plane.
Stroke-number invariance. LSD is computed on a set of
vectors that are either continuous (a basic gesture) or a series
of continuous ones (a series of basic gestures). If no stroke
exists between the ending point of a gesture stroke and the
starting point of the next stroke, no vector is created and the
LSD remains unaffected. Therefore, both single-stroke and
multi-stroke gestures are supported. The sampling limit can
be pushed to only 8 points [25], but we observe that the
32 points-sampling represents a viable compromise between
recognition rate and execution time.
Sampling invariance. LSD is computed on vectors cre-
ated from one or many series of points, provided that
isoparametrization is ensured. How the points are considered
and thus how vectors are defined for computing the LSD does
not affect LSD. Thus, stroke-order invariance is supported.
Direction invariance. LSD is not symmetric: it can happen
that LSD(~a,~b,~c, ~d) 6= LSD(~b,~a, ~d,~c). An oriented gesture
can be transformed into its unoriented version and redi-
rected into a reference vector in one direction. We want
to avoid edgification. Instead, a simpler and more efficient
approach is preferred: since only the denominator differs
for both LSD(~a,~b,~c,~b) and LSD(~b,~a, ~d,~c), we compute the
symetrized version which is independent of the direction:

LSDsym(~a,~b,~c, ~d) =
LSD(~a,~b,~c, ~d)+LSD(~b,~a, ~d,~c)

2
One can also observe that both LSD and LSDsym depend

on the lengths of vectors ~a, ~b, ~c, and ~d. Such sensitivity to
the length of each basic gesture is valuable when the points
of the corresponding ordered triangle faithfully represents
the isochrone sampling of a real gesture. The sampling
offered by a real-world device is rarely isochrone. Equally
spaced successive sampled points, i.e., isometric points, do
not correspond to equally time-spaced points of the gesture,
i.e., to isochrone points. In order to reduce this potential bias,
we define a LSD independent on the lengths of the vectors
in the basic gestures: ∀(~a,~b),(~c, ~d), the Normalized Local
Shape Distance (NLSD) is defined as follows:

NLSD
(
(~a,~b),(~c, ~d)

)
= LSD

((
~a
|~a|

,
~b

|~b|

)
,

(
~c
|~c|

,
~d

|~d|

))

NLSD is symetric: NLSD
(
(~a,~b),(~c, ~d)

)
=NLSD

(
(~b,~a),(~d,~c)

)
.

Position Invariance. This is ensured by proving that a
translation preserves LSD. The translation performed by a
free vector ~t of a basic gesture (~a,~b) (corresponding to
a oriented triangle of vertices A, B and C) produces a
basic gesture (~a′,~b′) (corresponding to a oriented triangle of
vertices A′=A+~t, B′=B+~t and C′=C+~t). Any translation~t
does not affect the basic gesture, thanks to ~a′=~a and ~b′=~b.
Scale Invariance. This is ensured by proving that a homo-
geneous dilation preserves LSD. ∀λ 6= 0 ∈ R, we have that

LSD
(
(λ~a,λ~b),(~u,~v)

)
=

∣∣∣∣λa
λb
−u

v

∣∣∣∣
C
=
∣∣∣ab−u

v

∣∣∣
C
=LSD

(
(~a,~b),(~u,~v)

)
Rotation Invariance. This is ensured by proving that a
rotation preserves LSD. One can note that

1) Every counter-clockwise rotation Rα in the Euclidean
plane R2 of a Radian angle α ∈ R corresponds to a
counter-clockwise rotation Rα in the isometric com-
plex plane C (of equal angle).

2) Recalling the Euler’s formulas eiα = cosα +
isinα,ei(α+β) = eiα eiβ , the complex number Rα(x)
can be obtained throughout the complex multiplication
Rα(x) = eiα x.

3) The ratio of two complex numbers, both rotated by a
same angle, is equal to their original ratio,

Rα(x)
Rα(y)

=
eiα x
eiα y

=eiα x
(
eiα y

)−1
=eiα xe−iα y−1=ei(α−α)︸ ︷︷ ︸

=1

xy−1=
x
y

Hence, we have that LSD
((

Rα(~a
)
,Rα(~b)

)
,(~u,~v)

)
=

∣∣∣∣Rα(a)
Rα(b)

−u
v

∣∣∣∣
C
=
∣∣∣ab−u

v

∣∣∣
C
= LSD

(
(~a,~b),(~u,~v)

)
One can verify that the general LSD defined in (5) has

the same invariance properties in any finite dimensional non-
degenerate quadratic space. In order to examine how LSD
can also be used for 3D gestures and for the symetrized
version, we introduce the following definitions.

G. Discrete Curves

A continuous curve is a continuous function ~x : I→Rn

from a interval I to the d-dimensional Euclidean space Rd . A
discrete curve is a string (i.e. a sequence) ~X={~x0, ...,~xL−1}
of L ordered points, Where L is called the length of the string
~X , in the d-dimensional Euclidean space Rd laying on some
curve. A plane discrete curve is a discrete curve whose points
lay in the Euclidean plane R2. Using Cartesian coordinates,
a plane discrete curve ~X={~x0, ...,~xL−1} will appear as a
sequence of couples of real numbers:

~X = {~x0, ...,~xL−1}=
{
(x1,0,x2,0), ...,(x1,L−1,x2,L−1)

}
Two discrete curves ~X={~x0, ...,~xL−1}, ~Y={~y0, ...,~yM−1} are
isoparametrized iff their strings have the same length, i.e.
L=M. A plane discrete curve ~X = {~x0, ...,~xL−1} is regular if
~xi+1−~xi 6=~0=(0,0),∀i=0, ...,L−2.
The oriented shape distance between two discrete curves.
Given two regular isoparametrized plane discrete curves ~X =
{~x0, . . . ,~xL−1}, ~Y = {~y0, . . . ,~yL−1}, the function d+

(
~X ,~Y

)
=

∑
0≤i≤L−3

LSD
(
(~xi+1−~xi,~xi+2−~xi+1),(~yi+1−~yi,~yi+2−~yi+1)

)
is called the (positively oriented) Shape Distance between ~X

and ~Y . If ~X and ~Y are both basic gestures laying on a same
plane, then d

(
~X ,~Y

)
=LSD

(
(~x1−~x0,~x2−~x1),(~y1−~y0,~y2−~y1)

)
.

The unoriented shape distance between two discrete
curves. Since LSD is sensible to the orientation of
the basic gestures, d+ is sensible to the orientation of
the discrete curves. We therefore propose a shape dis-
tance that does not depend on the orientation on the
two regular isoparametrized plane discrete curves. Given
two regular isoparametrized plane discrete curves ~X =
{~x0, . . . ,~xL−1}, ~Y = {~y0, . . . ,~yL−1}, the function d−

(
~X ,~Y

)
=

∑0≤i≤L−3 LSD
(
(~xi+1−~xi,~xi+2−~xi+1),

(~yL−(i+2)−~yL−(i+1),~yL−(i+3)−~yL−(i+2))
)

is called the (negatively oriented) Shape Distance between ~X
and ~Y , and d

(
~X ,~Y

)
= min

{
d+
(
~X ,~Y

)
, d−

(
~X ,~Y

)}
is called

the (unoriented) Shape Distance between ~X and ~Y .
The shape distance between two discrete curves (not
necessarily isoparametrized). Two plane gestures, cor-
responding to two regular plane discrete curves ~X and
~Y , ~X = {~x0, ...,~xL−1}, ~Y={~y0, ...,~yM−1} are often not
isoparametrized (L 6=M), especially when coming from differ-
ent gesture sets. Here we propose a “linear” way to compare
them through the above shape distance. If L 6=M, we can con-
sider the points of each discrete curve ~X and~Y as the vertices
of polygonal (continuous) curves ~x and ~y, respectively. We
can fix whatever P ∈N (with P≥ 3), interpolate P points on
each polygonal continuous curve ~x and ~y, and thus produce
two regular isoparametrized plane discrete curve of the same
length P: ~X (P) = {~x(P)0 , . . . ,~x(P)P−1},~Y (P) = {~y(P)0 , . . . ,~y(P)P−1}.
Then we can calculate the distance depending on the new
common length P: dP(~X ,~Y) = d(~X (P),~Y (P)) . There are
different criteria to interpolate points on a continuous curve;
here, we consider the linear criterion.
Definition of string ~X (P) from the given string ~X . Let ~X be
a regular plane discrete curve ~X = {~x0, . . . ,~xL−1} with L≥ 2.
Let P ∈ N (with P≥ 3), we define ∀ j=0, ...,P−1,

~x(P)j =
P− (j+1)

P−1
~xbN−1

P−1 jc+
j

P−1
~xdN−1

P−1 je

where b·c is the floor function, and d·e is the ceiling function.
IV. CONCLUSION AND FUTURE WORK

This paper explained how a Local Shape Distance (LSD
and NLSD) could compute the dissimilarity between gestures
represented as n-dimensional vectors with several properties:
point-number and stroke-number invariance, stroke-order and
stroke-direction invariance, position, scale, and rotation in-
variance. An instantiation of LSD (and NLSD) to n=2 gave
rise to a 2D stroke gesture recognizer. This work will benefit
practitioners by providing a new gesture recognizer satisfying

That is, have both length L = 3, the basic plane gesture corresponding
to the plane discrete curve ~X being (~x1−~x0,~x2−~x1), and the basic plane
gesture associated to plane discrete curve ~Y being (~y1−~y0,~y2−~y1).

Other ways could use non-linear splines to continuously connect the
ordered points of a discrete curve.

the requirements in a comparable way while preserving the
invariance properties. If for any reason a gesture should be-
come for instance scale variant, the constraint can be imposed
on the vectors without any loss of generality and without
complexifying the recognizer with additional computations.

REFERENCES

[1] L. Anthony and J. O. Wobbrock. A lightweight multistroke recognizer
for user interface prototypes. In Proc. of GI ’10, pages 245–252, 2010.

[2] C. Appert and O. Bau. Scale detection for a priori gesture recognition.
In Proc. of CHI ’10, pages 879–882. ACM, 2010.

[3] F. Beuvens and J. Vanderdonckt. Designing graphical user interfaces
integrating gestures. In Proc. of SIGDOC ’12, 2012.

[4] A. Bragdon, R. Zeleznik, B. Williamson, T. Miller, and J. J. LaVi-
ola, Jr. Gesturebar: Improving the approachability of gesture-based
interfaces. In Proc. of CHI ’09, 2009.

[5] S. h.-h. Chang, R. Blagojevic, and B. Plimmer. Rata.gesture: A gesture
recognizer developed using data mining. Artif. Intell. Eng. Des. Anal.
Manuf., 26(3):351–366, Aug. 2012.

[6] M. Cirelli and R. Nakamura. A survey on multi-touch gesture
recognition and multi-touch frameworks. In Proc. of ITS ’14.

[7] A. Coyette, S. Schimke, J. Vanderdonckt, and C. Vielhauer. Trainable
Sketch Recognizer for Graphical User Interface Design.

[8] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer
Science: An Object-Oriented Approach to Geometry. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition, 2007.

[9] V. Fuccella, M. De Rosa, and G. Costagliola. Novice and expert
performance of keyscretch: A gesture-based text entry method for
touch-screens. IEEE Trans. on HMS, 44(4):511–523, Aug 2014.

[10] J. Herold and T. F. Stahovich. The 1¢ recognizer: A fast,
accurate, and easy-to-implement handwritten gesture recognition tech-
nique. In Proc. of SBIM ’12, pages 39–46, 2012.

[11] H. Hse, M. Shilman, and A. R. Newton. Robust sketched symbol
fragmentation using templates. In Proc. of IUI ’04.

[12] K. Kim and H.-I. Choi. Online hand gesture recognition using
enhanced $n recogniser based on a depth camera. Int. J. Comput.
Vision Robot., 6(3):214–222, Jan. 2016.

[13] S. Kratz and M. Rohs. Protractor3d: A closed-form solution to
rotation-invariant 3d gestures. In Proc. of IUI ’11.

[14] L. A. Leiva, D. Martı́n-Albo, and R. Plamondon. Gestures À go go:
Authoring synthetic human-like stroke gestures using the kinematic
theory of rapid movements. ACM TiiS.

[15] J. A. Lester. Triangles i: Shapes. aequationes mathematicae, 52(1):30–
54, Feb 1996.

[16] C. Pittman, E. M. Taranta II, and J. J. LaViola, Jr. A $-family friendly
approach to prototype selection. In Proc. of IUI ’16.

[17] D. Rubine. Specifying gestures by example. In Proc. of SIGGRAPH
’91, pages 329–337, New York, NY, USA, 1991. ACM.

[18] B. Signer, U. Kurmann, and M. Norrie. igesture: A general gesture
recognition framework. In Proc. of ICDAR ’07, pages 954–958, 2007.

[19] E. Taranta and J. LaViola. Penny pincher: a blazing fast, highly
accurate $-family recognizer. In Proc. of GI 2015.

[20] E. M. Taranta, A. N. Vargas, and J. J. LaViola. Streamlined and
accurate gesture recognition with penny pincher. Computers Graphics,
55:130 – 142, 2016.

[21] H. Tu, X. Ren, and S. Zhai. Differences and similarities between
finger and pen stroke gestures on stationary and mobile devices. ACM
Trans. Comput.-Hum. Interact., 22(5):1–39, Aug. 2015.

[22] J. Vanderdonckt, P. Roselli, and J. L. Pérez-Medina. !FTL, an
articulation-invariant stroke gesture recognizer with controllable po-
sition, scale, and rotation invariances. In Proc. of ICMI ’18.

[23] R.-D. Vatavu. The effect of sampling rate on the performance of
template-based gesture recognizers. In Proc. of ICMI ’11.

[24] R.-D. Vatavu, L. Anthony, and J. Wobbrock. $Q: A super-quick,
articulation-invariant stroke-gesture recognizer for low-resource de-
vices. In Proc. of MobileHCI ’18, pages 623–635. ACM, 2018.

[25] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock. Gestures as point
clouds: A $P recognizer for user interface prototypes. In Proc. of
ICMI ’12, pages 273–280, New York, NY, USA, 2012. ACM.

[26] R.-D. Vatavu, G. Casiez, and L. Grisoni. Small, medium, or large?:
Estimating the user-perceived scale of stroke gestures. In Proc. of CHI
’13, pages 277–280, New York, NY, USA, 2013. ACM.

[27] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries,
toolkits or training: A $1 recognizer for user interface prototypes. In
Proc. of UIST ’07, pages 159–168, New York, 2007. ACM.

[28] S. Zhai, P. O. Kristensson, C. Appert, T. H. Anderson, and X. Cao.
Foundational issues in touch-surface stroke gesture design an integra-
tive review. Foundations and Trends in HCI, 5(2):97–205, 2012.

