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Abstract— Faced with the severe financial and reputation 

implications associated with data breaches, enterprises now 

recognize security as a top concern for software analysis 

tools.  While software engineers are typically not equipped 

with the required expertise to identify vulnerabilities in 

code, community knowledge in the form of publicly 

available vulnerability databases could come to their rescue. 

For example, the Common Vulnerabilities and Exposures 

Database (CVE) contains data about already reported 

weaknesses. However, the support with available examples 

in these databases is scarce. CVE entries usually do not 

contain example code for a vulnerability, its exploit or 

patch. They just link to reports or repositories that provide 

this information. Manually searching these sources for 

relevant information is time-consuming and error-prone.  

In this paper, we propose a vulnerability detection 

approach based on community knowledge and clone 

detection. The key idea is to harness available example 

source code of software weaknesses, from a large-scale 

vulnerability database, which are matched to code 

fragments using clone detection. We leverage a clone 

detection technique from the literature, which we adapted 

to make it applicable to vulnerability databases. In an 

evaluation based on 20 reports and affected projects, our 

approach showed good precision and recall. 

Security; Code Clones; Information Systems 

I.  INTRODUCTION  

In today's interconnected world, security is one of the most 
important challenges for companies and institutions [16]. 
Vulnerabilities in a software system allow hackers to intrude and 
maliciously alter its behavior. The impact can range from minor, 
such as bypassing the copyright of a movie, to major, such as the 
malicious intrusion into a control system of a nuclear reactor [4]. 
An example for the latter case is the Stuxnet worm, which used 
a weakness in a vendor driver library to infect 100.000 systems 
worldwide and inflict physical damage. Consequently, 
organizations begin assigning a higher priority to security as a 
quality attribute in software development. 

A key challenge is to check the complete source code for 
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vulnerabilities to avoid the associated exploits. Since software 
developers are not equipped with the required security expertise, 
ideally, security experts should review the whole source code of 
a project. However, in the face of realistic projects that often 
include hundreds of thousands of lines of code, a manual check 
of the project by security experts is infeasible. To the rescue may 
come available community knowledge from vulnerability 
databases, such as the Common Vulnerabilities and Exposures 
(CVE) [18]. The CVE provides detailed knowledge about a large 
number of reported security flaws, including their impact. 
Developers may want to leverage this knowledge by detecting 
instances of the flaws in their projects. Unfortunately, the 
associated manual process is time-consuming and error-prone: 
Developers have to use a search engine in order to find relevant 
entries based on the names of the used libraries. Then they must 
manually scan the source code to uncover problematic uses of 
the affected libraries. Even worse, support with available 
examples in these databases is scarce. CVE entries usually do 
not contain an example exploit or patch, but just a link to a report 
or to a repository that provides additional information on proof 
of concepts, patches, and exploits.  

In this paper, we address the following research question: 
How can we harness available community knowledge to 
facilitate the detection of security vulnerabilities in software 
code? We present an approach that uses code clone detection to 
detect instances of known vulnerabilities in source code. Clone 
detection aims to locate exact or similar code snippets, called 
clones, in or between software systems [21]. 

Our approach, illustrated in Fig.1, involves on a security 
code repository that contains security-relevant code snippets. 
Each snippet instantiates a known vulnerability.  

 

 

Figure 1.  Approach Overview 

The security code repository is created in a semi-automated 
process using automated searches over the CVE database and a 
large-scale code repository such as GitHub [6], and manual 



 

 

refinement by developers.  We detect duplicates of entries by 
using clone detection. To this end we have adopted an existing 
technique called SourcererCC [19], which fulfills two main 
prerequisites of our approach: It is efficient, as it scales to huge 
code bases with 100K LoC, and language-independent, as it 
supports arbitrary programming languages. 

Our contributions are as follows: 

 A vulnerability detection technique that uses and 
adapts an existing clone detection technique in 
order to detect security vulnerabilities, based on 
the given security code repository (Sec. III). 

 A process for creating a security code repository 
with code snippets that instantiate known 
vulnerabilities, together with an initial version of 
such a repository (Sec. IV). 

 An evaluation, in which our approach was able to 
detect the considered vulnerabilities with high 
precision and recall (Sec. V). 

Clone detection has been used during vulnerability detection 
before. However, previous approaches were mostly limited to a 
particular programming language and suffered from scalability 
issues. We discuss related work in Sec. VI.  

II. BACKGROUND 

We recall a common taxonomy of code clones and its 
implications for security.  

Clone types. The common taxonomy of code clones [9] 
distinguishes four clone types, based on the degree of similarity: 
Type-1 clones are code fragments that are accurate copies of 
each other, excluding whitespaces, blank lines, and comments. 
Type-2 clones are structurally identical code fragments that may 
differ in the names of variables, literals and functions. Type-3 or 
near-miss clones are syntactically similar code fragments that, 
opposed to Type-1 and Type-2 clones, may include changes like 
added or removed statements. Type-4 clones are code fragments 
with a different syntax, but similar semantics. The example in 
Fig. 2 shows a code fragment CF0 together with each clone type.  

Security considerations. The clone types have different 
implications for security vulnerabilities. A vulnerability in a 
code fragment most likely also affects Type-1 clones of that 
fragment, since in most programming languages white spaces, 
blank lines and comments do not change the behavior. Neither 
does the change of variable names in Type-2 clones. However, 
the change of literal and method names can have an impact: a 
vulnerability may only occur when a specific method is called or 
when specific literals are used. Type-3 are particularly 
challenging for our approach, since an added line may render an 
insecure fragment secure, and vice versa. For example, consider 
the infamous buffer overflow weakness, where the problem is 
that the buffer size is not checked before writing or reading of it. 
A range check before accessing the buffer would fix this error, 
but the resulting code fragment is still a Type 3 clone. Type-4 
clones regard the semantics of code snippets. The security 
impact of these clones depends on the chosen semantic 
representation. The typical means for checking semantic 
equivalence (such as pre- and post-conditions) are orthogonal to 

contained security vulnerabilities. Therefore, we do not consider 
Type 4 clones in our approach. 

 

 

Figure 2.  Clone-Types 1 to Type 4 

III. VULNERABILITY DETECTION 

Our vulnerability detection approach involves four steps: 
Pre-Processing, Code Processing, Clone Detection and Results. 
The Pre- and Code Processing consists of the substeps Parsing 
& Tokenizing and Indexing. Only the Pre-Processing also 
contains the step of the CVE Data linking to enrich the code 
snippets with meta-information out of the CVE.  

The input for the Pre-Processing step are the vulnerable code 
snippets of the security code repository including their assigned 
CVE metadata. During parsing, we identify contained methods 
and constructors of each source file. Within the tokenization, we 
create for each found method and constructor a separate token 
file containing the occurred tokens. Furthermore, for each of 
these files a file with bookkeeping information, in particular the 
CVE id to later query concrete CVE details, will be created. 
They also consist of links to code fragments which represent an 
example patch and their exploit to give developers a better 
understanding of the weaknesses for patching them afterward. 
The resulting tokens will be indexed and are the outcome for the 
preprocessing as well as the bookkeeping CVE information. It 
has to be applied once each time if the content of the code 
repository changes. 

The Code Processing takes place every time if the source 
code has been changed. Thereby, the same Parse & Tokenizing 
and indexing like in the pre-processing will be applied but 
without adding CVE data to the bookkeeping information. The 
output of this step are the indexed tokens of source code files. 

During the clone detection phase for each code fragment of 
the security repository and for each method as well as 
constructor inside of source files will be analyzed whether there 
are code clones. In detail, the tokens of methods and constructors 
will be compared. If a match is found, then the checked source 
code is a code clone of an insecure code fragment, which implies 
that it potentially also contains a security flaw. These code 
clones will be interleaved with the CVE data out of the 
bookkeeping information, which are the results of the 
vulnerability detection. Thus, should help developers to receive 



 

 

more knowledge to patch insecure source code fragments. The 
described approach is visualized in Fig. 3. Later in this chapter, 
the clone detection will be described in detail. 

The effectiveness of this approach relies among others on the 
data of the reference repository. Therefore, it is inevitable to 
ensure the adaption and enrichment of knowledge by developers 
or a repository maintainer. They are able to add new vulnerable, 
patch and exploit code and modify already stored data. 

A big problem for the code clone detection is the time 
complexity to compute the pairwise similarity for each code 
fragment combination. Execution time majorly scales with the 
size of the input precisely of the number of lines of code (LOC) 
that are processed and searched. For code clone detectors it is 
prohibited as a time complexity of scalability - O(n²). If the 
granularity of the code clone detector is method based, the 
similarity comparisons increase quadratically with the number 
of methods. For the SourcererCC various heuristics for reducing 
the number of similarity computations are described by Sajnani 
et al. [19]. In comparison of their approach to other state-of-the-
art code clone detectors like CCFinderX [8], Deckard [29], 
iClones [30] and NiCad [31] they reach almost the same time 
complexity of inputs less than one million LOC. For all bigger 
input sizes, the SourcererCC has the best execution time. 
Furthermore, the SourcererCC is the only clone detector of the 
competing tools that scale to large input sizes of 100 million 
LOC and is able to consider type 1 to 3 clones. 

 

 

Figure 3.  Vulnerability Detection Process 

SourcererCC. As a basis for clone detection, we have 
adopted a state-of-the-art code clone detector named 
SourcererCC [19]. The detector supports Type 1 to 3 clones and 
scales to large-scale project repositories while providing high 
precision and recall. To quantitatively infer if two code snippets 
are clones a similarity function is applied which returns the non-
negative degree of similarity between two code snippets. The 
higher the value of similarity, the bigger is the likeness between 
them. This function includes a threshold value ϑ that identifies 
the lower-bound of the similarity value from which two code 
fragments count as code clones. In other words, it is a percentage 
value that represents how many tokens at least should be shared 
by two code fragments to be identified as code clones. This 
similarity value is the output of the clone detection process. In 
the following, the similarity measurement is described formally:   

Given two projects Px and Py, f as similarity-function and ϑ 
as threshold, the aim is to find all code block pairs Px,B and Py,B 
such that f(|Px,B|, |Py,B|) ≥   [ϑ * max(| Px,B|, |Py,B|) ]. 

Adaptation of SourcererCC. We performed two main 
adaptations of SourcererCC for our approach:  

First of all, we adapted the format of the token files to our 
needs and implemented a suitable tokenizer; thus its resulting 

token files will be interleaved with related information out of the 
CVE Database. Secondly, we adopted the code clone detector 
itself to consider only inter-project clones, as discussed later in 
this section. The main reason for this is that we plan to find 
clones between an external code repository and a project and not 
within a single project, like the clone detection is often used for. 

Tokenizer. SourcererCC comes with a tokenizer for Java, C 
and C#. However, for our approach, we needed a method to 
interleave tokens with CVE meta-information such that clone 
detection results could provide further security information. 
Therefore, a custom token format was designed that combines 
the token information with the additional bookkeeping details, 
including the CVE id and the metadata of vulnerabilities. This 
information allows us to trace back from code fragments to the 
underlying weakness. 

To apply the tokenizer a parsing of the source files is needed, 
such that the tokenizer gets software artifacts of source files like 
method names and constructors. For exemplary apply and 
evaluate our approach, we focus on java source code such a java 
parser is used for parsing code. For each method or constructor, 
a new list of tokens is created. Whitespaces, operators and 
comments are ignored. During this procedure, the tokenizer 
loads the needed metadata out of the security repository. The 
output of our tokenizer are two files, one including the tokens of 
a code fragment and the other with the described bookkeeping 
information enriched with security knowledge. 

For further illustration, we present an example method 
before the preprocessing was applied in Fig. 4. 

 

 

Figure 4.  Example: Java Input Source Code for Tokenizer 

Figure 5 presents the output of the tokenization of Fig.4.  
 

 

Figure 5.  Created tokens of Fig. 4 

To complete the tokenization, we count the number of 
appearances of each token and add them to the output. Hence, a 
token-file consist of every occurred method name, variable name 
and its datatypes as well as return values that are named and 
counted. Regarded to the design constraint for the Java and C# 
languages, all executable code must be contained inside of 
method bodies. Therefore, the granularity level for the 
implemented tokenizer is set to method-based tokenization. This 
means that only method respective constructors will be 
processed inside of a class. Imports and class names will be 
ignored. For other languages like C and C++ it is necessary to 



 

 

adapt the tokenizer to a class-based tokenization through the 
absence of this design constraint. 

Inter-project clones. Clones can be either intra- or inter-
project clones, meaning that the instances of a clone may come 
either from the same project or from different ones. In our 
approach, we are only interested in inter-project clones, since we 
aim to find matches between a given project source code and our 
security code repository. More formally, let A be the set of 
source files from the input project and B the set of snippets from 
the security code repository. Furthermore, let (a0, …, an) and (b0, 

…, bn) with n,m∈ℕ code fragments, for which ai∈A and bj∈
B with i,j∈ℕ. We are interested in pairs of code fragments (ai, 

bj) being code clones. 

SourcererCC finds both intra- and inter-project clones, and 
by default it does not provide a configuration option to 
deactivate the detection of intra-project clones. Therefore, the 
Pre-Processing phase was added and the inputs for the clone 
detection was adapted to ignore intra-project clones. Figure 3 
presents the modified behavior of the clone detector. 

IV. SECURITY CODE REPOSITORY 

In our approach, a prerequisite for vulnerability detection is 
a reference code repository called security code repository. This 
repository contains source code snippets that instantiate already 
reported weaknesses. Each snippet consists of example code for 
a vulnerability, its exploit and a patch. We now describe the 
procedure for creating a security code repository, which we used 
to test and evaluate our technique. Our process relies on a large-
scale repository in which such snippets can be found. To this 
end, we used GitHub, a suitable repository that is freely 
accessible to the public. Our process, shown in Fig. 6, contains 
the four steps Extract, Search& Filter, Export, and Proof. 

Extract. To find security-related code snippets on Github, 
adequate terms for the search are needed. We extract them from 
the CVE database. A possible way to identify a concrete 
vulnerability is its unique CVE identifier [18]. Therefore, we 
extract these CVE-ids for the search to find security issues. 

Search and Filter. For searching vulnerabilities on Github, 
the pre-extracted CVE-ids will be used. If a file or a commit 
within a project matches these identifiers, they will be 
considered for further processing. To adjust the results of the 
search to specific programming languages, we defined a file type 
filter. For example, to restrict the search to Java files, the file 
endings will be checked for the tag .java. Not every content of 
the found files is security-related. Therefore, a manual prove is 
necessary to ensure that resulted files contain only security- 
related code. This procedure is described later in this section. 

 

 

Figure 6.  Repository Creation for Reference Code Fragments 

Classification. Furthermore, we defined terms to distinguish 
between the three classes of security-related files;  
vulnerabilities, exploits and patches. For this classification, we 
use a simple check whether terms are substrings of texts inside 
of commits or project descriptions. Examples terms for the class 
patches are fix, solve, update, patch for vulnerabilities the term 
vulnerability and for exploits, the substrings are proof of concept 
(POC) and exploit. We retrieved these terms by the manual 
unsystematic analyze of founds of the CVE id search received 
from GitHub. The founds will be automatically classified by 
these terms into the three mentioned classes. 

Export. The classified founds are stored into a code 
repository with a SQLite database inside of its root. For all 
matches its related and stored meta-information inside of the 
CVE will be extracted into the SQLite database. This meta-
information are for example the concrete CVE description, the 
CVE-id and a scoring which represents their characteristics, 
impact and severity. The vulnerability scoring is based on the 
Common Vulnerability Scoring System (CVSS) [28]. 

Proof. As post-processing the repository content has to be 
manually reviewed to exclude file parts that do not contribute to 
a vulnerability. If a file with a vulnerability in it is found, often 
only a part of the file represents a vulnerable code snippet. A 
security expert has to delete the unaffected methods in these files 
such that only the critical code remains.  

For the creation of a code repository, 20 different 
weaknesses out of the CVE database were selected. Our 
previous explained semi-automated tool-based approach found 
source code examples of exploits, vulnerabilities and its patches 
assigned to CVE-ids. Thus, security-related code fragments are 
extracted out of Github. We have reviewed a subset of 102 
reported security flaws to check their suitability for representing 
a vulnerability code snippet that is usable for the approach 
described within this work. For example, not eligible 
vulnerabilities can be patched by only importing a newer library 
version or loading them dynamically by a string literal. 
Furthermore, code fragments for which weaknesses are spread 
over multiple methods were partially also ignored. The reason 
for this is that in the most cases code changes were too small to 
match the three different types of code clones meaningfully. 
Table 1 shows the selected vulnerabilities with their associated 
CVE, their scoring and the affected product, as it is stored into 
the CVE Database. The created security code clone repository 
including the SQLite database is uploaded to Github [24]. 

V. EVALUATION 

We evaluated the suitability of the described approach to 
address our initial research question: How can we harness 
available knowledge to facilitate the detection of security 
vulnerabilities in software code? To this end, we consider the 
following evaluation research questions: 

RQ1: How many of the vulnerabilities inside of the CVE 
are attributed to source code? 

Not for every vulnerability the reason is a weakness in source 
code. This question should identify how valuable the focus on 
source code vulnerabilities is and how many of them could be  



 

 

TABLE I.  CODE REPOSITORY WITH SECURITY-RELATED CONTENT 

 

found through using the knowledge of source code of entries 
stored inside of the CVE by applying the described approach. 

RQ2: How accurate is our approach at detecting previously 
reported vulnerabilities? 

We want to check whether it is possible to identify source 
code reasoned weaknesses through a subset of the reported 
vulnerabilities stored inside of publicly accessible databases like 
the CVE. 

RQ3: How well does our approach distinguish between 
vulnerable and patched code fragments? 

Sometimes only the change of a few lines of code is 
necessary to remove a security flaw inside of a code snippet. We 
investigate on which granularity we can distinguish between 
patched and insecure code fragments through clone detection. 

A. RQ1: How many of the vulnerabilities inside of the CVE 

are attributed to source code? 

First, we investigate how feasible it is to use the information 
of known and documented vulnerabilities reported in databases 
like the CVE. For this proof, we check the ratio of entries that 
could be retrieved through errors within source code to them 
which do have other origins. The more weaknesses based on 
source code, the better is the concentration on detecting security 
flaws within code artefacts.  Through this survey the capability 
of using the content of the publicly accessible database CVE to 
recognize security issues invoked through source code will be 
validated. To apply this investigation, the non-code content of 
the CVE was manually screened. We recognized that in August 
2018 only for 62 % of the 103745 CVE entries, a Common 
Weakness Enumeration (CWE) identifier is assigned. 

The CWE compresses different types of weaknesses, which 
are all identified through a unique CWE-id and categorize 
different manifestations of vulnerabilities. An example of these 
types is CWE-306: Missing Authentication for Critical 
Function. All to this type associated CVE entries are 

vulnerabilities because of the absence of authentication for 
critical functions. Therefore, CWE-ids are a well-suited attribute 
found with our approach.  A problem is that there is no identifier 
for a type that implies all security issues appear within source 
code. For every set CWE type, it was systematically proved 
whether it is possible to retrieve out of its description the origin 
they belong to; induced by source code or others like 
configurations. A further problem is the absence of assigned 
CWE-ids for 38 % of the entries of the CVE. The besides 
without any type information were investigated with the use of 
their description. Manual checks show that it is possible to find 
CVEs based on source code via checking their descriptions for 
the occurrence of substrings. The used substrings were divided 
into five groups: File Name Endings, Attack Strategies, 
Configurations, Rejects and Unclassified. 

The group File Name Endings contains substrings that 
represents the data types of programming language source files. 
The hypothesis is that if a concrete file is addressed within the 
description of a CVE than their occurrence is provable within 
source code. Examples of file endings are .java, .cpp, etc. 

As attack strategy count for example Cross-Site Scripting 
(XSS), Buffer Overflow etc. The idea is to check for the names of 
attack strategies that maliciously uses a vulnerability occurred in 
source code like the buffer overflow example, which could be 
prevented to buffer length checks. 

Configuration related vulnerabilities are identified through 
the occurrence of terms like config, cfg etc. We assume that for 
CVE descriptions that mention at least one of these terms, their 
belonging weakness is not detectable via source code analysis. 

Rejects are the vulnerabilities that are still remain in the CVE 
database but were rejected after review. They are marked with 
the term Rejected. This are entries, which could be duplicates or 
not representing a vulnerability at all. 

The left CVE entries that not belong to one of the mentioned 
groups were assigned to the group Unclassified CVE entries. 
They will be not considered to answer this research question. 
The partition of the CVE is summarized in a pie chart in Fig. 5. 

 

Figure 7.  Classification of CVE Database Content 

To conclude the results, it is shown that 69 % of the public 
available vulnerabilities are induced to source code issues. This 
is composed through the 31% of entries with CWEs that 
describes security flaws detectable within source code artefacts, 
the 28 % with a description containing file endings of source 
code files and the 20 % of CVEs that contain in their description 
terms of attack strategies uses security flaws within source code. 
To respond RQ1.1, it is a well-suited strategy to focus on source 
code for identifying known and reported weaknesses. 



 

 

B. RQ2: How accurate is our approach at detecting 

previously reported vulnerabilities? 

Experimental Setup 

As vulnerability selection for our evaluation, we use the code 
repository described into Sec. IV. To ensure that not only Type-
1 clones are detected but also Type-2 and Type-3 clones we 
modified each vulnerable code fragment to match the 
corresponding clone types. For example, all variable names were 
renamed for Type-2 clones. To obtain Type-3 clones, we 
removed or added some void statements to Type-1 and Type-2 
clones. Our evaluation based on metrics of the information 
retrieval like Recall, Precision and F1-measure as described by 
Manning et al. [15]. We measured the recall based on the chosen 
vulnerabilities considering the three different types of clones. In 
this case, we know exactly the number of weaknesses so that the 
recall can be measured precisely. The precision was measured 
by a manual validation of the found and highlighted security 
code clones. To combine precision and recall, we used F1-
measure. 

The underlying clone detector uses a similarity function 
inside its clone detection process. This function can be 
configured by the threshold value ϑ. Three different ϑ values 
were used for the evaluation in combination with the three 
different types of clones. That means that for every clone type 
exists three iterations with different thresholds. Beforehand we 
examined distinct thresholds by hand. On the one hand, lowering 
the threshold could harm precision. On the other hand, a too high 
threshold could harm recall. Therefore 3.0, 5.5 and 8.0 were 
selected as values for ϑ. 

Results and Discussion 

Each iteration passes every vulnerability with the given 
configuration values. The Security Code Clone Detector has 
flagged all Type-1 clones for the three different ϑ values. That 
means that precision, recall, and F1 are 100 % for Type-1 clones. 
The detection rate of Type-2 clones revealed that only eight 
security flaws out of 20 were detected with a ϑ of 8.0. The reason 
is that through the high ϑ value two code fragments must be too 
similar to be recognized as code clones. Due to this the higher 
the value of ϑ is the bigger the number of similar tokens inside 
of two code snippets have to be. Thus lead to the low recall for 
Types-3 clones cause the clones are too different to be code 
clones of each other. 

In contrast, the precision always is 100 %. This could be 
attributed to the fact that we only focus on finding the three 
different types of security code clones. The set of data only 
consist of the given vulnerabilities and not of any secure code 
fragments. Table 2 summarizes the clone detection results for 
the security flaws and patches. 

TABLE II.  EVALUATION RESULTS 

  

In the result table TP stands for true positives, R means 
recall, P means precision and F1 stands for F1-measure. The high 
recall values for all code clone types and ϑ modifications show 
that we are able to recognize known and reported weaknesses 
via our approach. The results for the recall are interleaved with 
the size of the ϑ threshold. For small ϑ values every vulnerability 
inside of the reference repository is detected, but this leads to a 
lower precision.  Therefore, the answer for RQ2 is that the 
vulnerability detection for the described approach performs very 
well with a leak of precision for Type-3 clones. 

C. RQ3: How well does our approach distinguish between 

vulnerable and patched code fragments? 

Experimental Setup 

In the next step, we have focused on checking precision. 
Thereto the patched code fragments for the given vulnerabilities 
were used to examine which security flaws will be detected as 
vulnerable code clones falsely. In this case, we did not modify 
the patched code fragments to match each of the three different 
types of clones but used the code fixes directly as input for the 
detection process. Patched code fragments distinguish to their 
vulnerable complement with some changes that removes the 
weak parts of that fragment. These changes differ in complexity. 
Some have an extent of multiple lines but other distinguish only 
by a single line to their vulnerable counterparts. The ϑ 
configuration setup for every iteration was the same we 
mentioned in RQ2. 

Result and Discussion 

As described in Sec. III, Type-3 clones are hard to detect. 
The low precision values summarized in Tab. II can be ascribed 
to the few code modifications inside the patches. Fundamentally, 
the patches represent Type-3 clones.  If a patch has enough code 
modifications regarding its vulnerability, we can identify it as 
secure code correctly. If the code changes are too small, it may 
be flagged as weakness falsely. Relating to RQ3, it is possible to 
distinguish between vulnerable and patched code fragments as 
far as enough code modifications are present.  On the one hand, 
the capability to detect code clones of Type-3 increases the 
amount of secure code, which is falsely identified as insecure. 
This reduces the precision of the described approach. On the 
other hand, through code clones of Type-3, the possibility exists 
to find more code clones of vulnerable code fragments, which 
increases the recall. Hence our goal is a high recall during 
detection. Therefore, we accept the false positives within the 
patch detection. 

D. Threats to Validity 

For the validity check of our evaluation, we consider the 
types of threats to validity for empirical software engineering 
research defined by Wohlin et. al. [26]. 

Conclusion: Maybe the selection criteria for building the test 
set influence the results in terms of recall, precision, and F1-
measure. To be more precise, it is possible that the size of 
selected code fragments influence the capability to distinguish 
between patched and weak code fragments. We have not 
considered the size of needed patches to close security flaws. 



 

 

Internal: The used Java Runtime Environment version and 
the library version of used source code are not considered. Some 
code fragments are only insecure with specific Java versions or 
library versions and are secure within other versions. This could 
result in false positives for the classification of source code 
fragments as vulnerable that are secure with the used versions. 
Furthermore, it is imaginable that there are other code clone 
detection approaches, which tackles the problem of vulnerability 
detection inside of code fragments better than the chosen one. 

Construct: The configuration and the ϑ adjustment of the 
code clone detection approach affect the effectiveness of the 
described procedure. Furthermore, the workflow and the 
granularity level of the tokenizer influences the results of the 
code clone detection approach. 

VI. RELATED WORK 

Vulnerability detection using clone detection. The clone 
detector ReDeBug [7] is language agnostic and uses a syntax-
based pattern matching approach. It can detect some Type-3 
clones but cannot detect Type-2 clones respectively clones with 
slight code modifications. Furthermore one of the design goals 
was a low false positive rate which harms recall. VulPecker [12] 
is a system for automatically detecting if a piece of software 
contains a vulnerability. It consists of a learning phase and a 
selection algorithm to identify vulnerabilities. This approach can 
detect Type-1, Type-2 and some Type-3 clones [13] in C/C++ 
code. CLORIFI [11] combines static and dynamic analysis to 
detect code clone vulnerabilities. It identifies the security code 
clones of known vulnerabilities with an n-token algorithm. With 
the help of concolic testing, CLORIFI tries to reduce false 
positives by verifying the security flaws. Our work is mostly 
complementary to the presented ones, as we focus on 
establishing a right balance between precision and recall, and use 
a state-of-the-art back-end clone detector that allows us to 
address scalability and language-independence simultaneously. 

Static analysis for security. Our approach can be 
considered as a static analysis technique that can uncover 
vulnerabilities without executing the application at hand. Such 
techniques have been used successfully to uncover 
vulnerabilities, in some cases better than dynamic techniques 
such as penetration testing [20]. Most previous techniques are 
geared to detect specific vulnerabilities based on hard-coded 
solutions, such as SQL injections [14] and buffer overflows [27]. 
Fischer et al. [5] have used static analysis to study how severely 
Android apps are affected by vulnerabilities resulting from 
copying code snippets from StackOverflow examples. In our 
previous work [25] we present a tool-based approach that scans 
imported Java dependencies for known vulnerabilities. It checks 
the CVE if an entry for the corresponding library exists. 
Furthermore, we present an approach [3] for maintaining a 
knowledge base of security knowledge that is used to keep co-
evolve the system design after changes in the availability 
knowledge (e.g., an encryption algorithm previously deemed as 
secure is broken). However, this work was focused on the design 
model level rather than on code-level vulnerabilities. 

Code clone detection. Different code clone detection 
approaches with distinct capabilities exist. In their survey, 
Sheneamer et al. [21] distinguish the following main classes of 

approaches. Text-based techniques (e.g. [1]) compares the 
similarity of code fragments based on terms of textual content. 
While focusing mostly on Type-1 clones without preprocessing, 
they are language-independent and easy to implement. Lexical 
techniques (e.g. [8,19]) divide the input code into a sequence of 
tokens that are converted into token sequence lines, which are 
then matched to another. Such techniques can detect various 
code clone types with higher recall and precision than text 
passing techniques. Syntactic techniques are either metric-based 
or tree-based. Tree-based (e.g., [2]) and graph-based techniques 
(e.g., [22]) parse the code into abstract syntax trees and find 
cloned code parts using tree-matching algorithms. Metric-based 
ones (e.g. [17]) compare source code snippet based on metric 
vectors created for each code snippet. This technique is able to 
detect Type-1 and Type-2 clones with high time complexity. It 
reduces the complexity of text-based approaches. Semantic 
techniques (e.g., [10]) detect two fragments of code that perform 
the same computation but have differently structured code, 
which was already named as Type-4 clone. 

VII. CONCLUSION 

The use of a single vulnerable code snippet can make a whole 
system insecure [23]. We introduce an approach to prove code 
fragments of reported vulnerabilities automatically. We detect 
insecure parts of source code via code clone detection by using 
code fragments that contain known vulnerabilities. As a result, a 
developer can be supported in the writing of secure code right 
from the beginning. With the aid of a database, it is possible to 
show information about reported security flaws. This 
information can be used to understand a weakness and, if 
necessary, provide a patch. The results of the evaluation show 
that detecting insecure code fragments work very well. We show 
that there are difficulties in distinguishing between patched and 
vulnerable source code fragments that are too similar to each 
other. The capability to detect small differences between them 
depends on the configuration and the distinction of line 
circumference from the vulnerable and patched fragments. Our 
work provides an Eclipse plug-in for supporting Java software 
developers [24]. Furthermore, we investigated the feasibility to 
distinguish between patched and vulnerable code snippets for 
our approach. We analyzed the CVE database content to 
underpin leveraging knowledge of reported vulnerabilities for 
the detection of security flaws within the source code. 

Our future research is striving to compare artificial 
intelligence approaches in the form of neural networks with the 
static code clone detection approach described in this work. To 
solve the problem of our internal validity, we want to enhance 
the described approach such that the JRE Version of software 
projects and the recognition of library versions will be 
considered. Furthermore, a user study about the perception and 
effectiveness of helping developers and security experts to 
classify source code fragments is planned. The capability of the 
code clone detectors in the described approach relies on the data 
included in the reference code repository. Therefore, we expect 
to investigate further techniques to enhance the security-related 
source code within the code repository via leveraging 
community knowledge. Furthermore, we plan to improve the 
semi-automatically classification into exploit, vulnerable and 
patch code fragments. 
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