

Detecting Security Vulnerabilities using

Clone Detection and Community Knowledge

Fabien Patrick Viertel1, Wasja Brunotte1, Daniel Strüber2, Kurt Schneider1
1 Software Engineering Group, Leibniz University Hannover, Hannover, Germany

2 Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg, Sweden
{fabien.viertel, wasja.brunotte, kurt.schneider}@inf.uni-hannover.de, danstru@chalmers.se

Abstract— Faced with the severe financial and reputation

implications associated with data breaches, enterprises now

recognize security as a top concern for software analysis

tools. While software engineers are typically not equipped

with the required expertise to identify vulnerabilities in

code, community knowledge in the form of publicly

available vulnerability databases could come to their rescue.

For example, the Common Vulnerabilities and Exposures

Database (CVE) contains data about already reported

weaknesses. However, the support with available examples

in these databases is scarce. CVE entries usually do not

contain example code for a vulnerability, its exploit or

patch. They just link to reports or repositories that provide

this information. Manually searching these sources for

relevant information is time-consuming and error-prone.

In this paper, we propose a vulnerability detection

approach based on community knowledge and clone

detection. The key idea is to harness available example

source code of software weaknesses, from a large-scale

vulnerability database, which are matched to code

fragments using clone detection. We leverage a clone

detection technique from the literature, which we adapted

to make it applicable to vulnerability databases. In an

evaluation based on 20 reports and affected projects, our

approach showed good precision and recall.

Security; Code Clones; Information Systems

I. INTRODUCTION

In today's interconnected world, security is one of the most
important challenges for companies and institutions [16].
Vulnerabilities in a software system allow hackers to intrude and
maliciously alter its behavior. The impact can range from minor,
such as bypassing the copyright of a movie, to major, such as the
malicious intrusion into a control system of a nuclear reactor [4].
An example for the latter case is the Stuxnet worm, which used
a weakness in a vendor driver library to infect 100.000 systems
worldwide and inflict physical damage. Consequently,
organizations begin assigning a higher priority to security as a
quality attribute in software development.

A key challenge is to check the complete source code for

DOI reference number: 10.18293/SEKE2019-183

vulnerabilities to avoid the associated exploits. Since software
developers are not equipped with the required security expertise,
ideally, security experts should review the whole source code of
a project. However, in the face of realistic projects that often
include hundreds of thousands of lines of code, a manual check
of the project by security experts is infeasible. To the rescue may
come available community knowledge from vulnerability
databases, such as the Common Vulnerabilities and Exposures
(CVE) [18]. The CVE provides detailed knowledge about a large
number of reported security flaws, including their impact.
Developers may want to leverage this knowledge by detecting
instances of the flaws in their projects. Unfortunately, the
associated manual process is time-consuming and error-prone:
Developers have to use a search engine in order to find relevant
entries based on the names of the used libraries. Then they must
manually scan the source code to uncover problematic uses of
the affected libraries. Even worse, support with available
examples in these databases is scarce. CVE entries usually do
not contain an example exploit or patch, but just a link to a report
or to a repository that provides additional information on proof
of concepts, patches, and exploits.

In this paper, we address the following research question:
How can we harness available community knowledge to
facilitate the detection of security vulnerabilities in software
code? We present an approach that uses code clone detection to
detect instances of known vulnerabilities in source code. Clone
detection aims to locate exact or similar code snippets, called
clones, in or between software systems [21].

Our approach, illustrated in Fig.1, involves on a security
code repository that contains security-relevant code snippets.
Each snippet instantiates a known vulnerability.

Figure 1. Approach Overview

The security code repository is created in a semi-automated
process using automated searches over the CVE database and a
large-scale code repository such as GitHub [6], and manual

refinement by developers. We detect duplicates of entries by
using clone detection. To this end we have adopted an existing
technique called SourcererCC [19], which fulfills two main
prerequisites of our approach: It is efficient, as it scales to huge
code bases with 100K LoC, and language-independent, as it
supports arbitrary programming languages.

Our contributions are as follows:

 A vulnerability detection technique that uses and
adapts an existing clone detection technique in
order to detect security vulnerabilities, based on
the given security code repository (Sec. III).

 A process for creating a security code repository
with code snippets that instantiate known
vulnerabilities, together with an initial version of
such a repository (Sec. IV).

 An evaluation, in which our approach was able to
detect the considered vulnerabilities with high
precision and recall (Sec. V).

Clone detection has been used during vulnerability detection
before. However, previous approaches were mostly limited to a
particular programming language and suffered from scalability
issues. We discuss related work in Sec. VI.

II. BACKGROUND

We recall a common taxonomy of code clones and its
implications for security.

Clone types. The common taxonomy of code clones [9]
distinguishes four clone types, based on the degree of similarity:
Type-1 clones are code fragments that are accurate copies of
each other, excluding whitespaces, blank lines, and comments.
Type-2 clones are structurally identical code fragments that may
differ in the names of variables, literals and functions. Type-3 or
near-miss clones are syntactically similar code fragments that,
opposed to Type-1 and Type-2 clones, may include changes like
added or removed statements. Type-4 clones are code fragments
with a different syntax, but similar semantics. The example in
Fig. 2 shows a code fragment CF0 together with each clone type.

Security considerations. The clone types have different
implications for security vulnerabilities. A vulnerability in a
code fragment most likely also affects Type-1 clones of that
fragment, since in most programming languages white spaces,
blank lines and comments do not change the behavior. Neither
does the change of variable names in Type-2 clones. However,
the change of literal and method names can have an impact: a
vulnerability may only occur when a specific method is called or
when specific literals are used. Type-3 are particularly
challenging for our approach, since an added line may render an
insecure fragment secure, and vice versa. For example, consider
the infamous buffer overflow weakness, where the problem is
that the buffer size is not checked before writing or reading of it.
A range check before accessing the buffer would fix this error,
but the resulting code fragment is still a Type 3 clone. Type-4
clones regard the semantics of code snippets. The security
impact of these clones depends on the chosen semantic
representation. The typical means for checking semantic
equivalence (such as pre- and post-conditions) are orthogonal to

contained security vulnerabilities. Therefore, we do not consider
Type 4 clones in our approach.

Figure 2. Clone-Types 1 to Type 4

III. VULNERABILITY DETECTION

Our vulnerability detection approach involves four steps:
Pre-Processing, Code Processing, Clone Detection and Results.
The Pre- and Code Processing consists of the substeps Parsing
& Tokenizing and Indexing. Only the Pre-Processing also
contains the step of the CVE Data linking to enrich the code
snippets with meta-information out of the CVE.

The input for the Pre-Processing step are the vulnerable code
snippets of the security code repository including their assigned
CVE metadata. During parsing, we identify contained methods
and constructors of each source file. Within the tokenization, we
create for each found method and constructor a separate token
file containing the occurred tokens. Furthermore, for each of
these files a file with bookkeeping information, in particular the
CVE id to later query concrete CVE details, will be created.
They also consist of links to code fragments which represent an
example patch and their exploit to give developers a better
understanding of the weaknesses for patching them afterward.
The resulting tokens will be indexed and are the outcome for the
preprocessing as well as the bookkeeping CVE information. It
has to be applied once each time if the content of the code
repository changes.

The Code Processing takes place every time if the source
code has been changed. Thereby, the same Parse & Tokenizing
and indexing like in the pre-processing will be applied but
without adding CVE data to the bookkeeping information. The
output of this step are the indexed tokens of source code files.

During the clone detection phase for each code fragment of
the security repository and for each method as well as
constructor inside of source files will be analyzed whether there
are code clones. In detail, the tokens of methods and constructors
will be compared. If a match is found, then the checked source
code is a code clone of an insecure code fragment, which implies
that it potentially also contains a security flaw. These code
clones will be interleaved with the CVE data out of the
bookkeeping information, which are the results of the
vulnerability detection. Thus, should help developers to receive

more knowledge to patch insecure source code fragments. The
described approach is visualized in Fig. 3. Later in this chapter,
the clone detection will be described in detail.

The effectiveness of this approach relies among others on the
data of the reference repository. Therefore, it is inevitable to
ensure the adaption and enrichment of knowledge by developers
or a repository maintainer. They are able to add new vulnerable,
patch and exploit code and modify already stored data.

A big problem for the code clone detection is the time
complexity to compute the pairwise similarity for each code
fragment combination. Execution time majorly scales with the
size of the input precisely of the number of lines of code (LOC)
that are processed and searched. For code clone detectors it is
prohibited as a time complexity of scalability - O(n²). If the
granularity of the code clone detector is method based, the
similarity comparisons increase quadratically with the number
of methods. For the SourcererCC various heuristics for reducing
the number of similarity computations are described by Sajnani
et al. [19]. In comparison of their approach to other state-of-the-
art code clone detectors like CCFinderX [8], Deckard [29],
iClones [30] and NiCad [31] they reach almost the same time
complexity of inputs less than one million LOC. For all bigger
input sizes, the SourcererCC has the best execution time.
Furthermore, the SourcererCC is the only clone detector of the
competing tools that scale to large input sizes of 100 million
LOC and is able to consider type 1 to 3 clones.

Figure 3. Vulnerability Detection Process

SourcererCC. As a basis for clone detection, we have
adopted a state-of-the-art code clone detector named
SourcererCC [19]. The detector supports Type 1 to 3 clones and
scales to large-scale project repositories while providing high
precision and recall. To quantitatively infer if two code snippets
are clones a similarity function is applied which returns the non-
negative degree of similarity between two code snippets. The
higher the value of similarity, the bigger is the likeness between
them. This function includes a threshold value ϑ that identifies
the lower-bound of the similarity value from which two code
fragments count as code clones. In other words, it is a percentage
value that represents how many tokens at least should be shared
by two code fragments to be identified as code clones. This
similarity value is the output of the clone detection process. In
the following, the similarity measurement is described formally:

Given two projects Px and Py, f as similarity-function and ϑ
as threshold, the aim is to find all code block pairs Px,B and Py,B
such that f(|Px,B|, |Py,B|) ≥ [ϑ * max(| Px,B|, |Py,B|)].

Adaptation of SourcererCC. We performed two main
adaptations of SourcererCC for our approach:

First of all, we adapted the format of the token files to our
needs and implemented a suitable tokenizer; thus its resulting

token files will be interleaved with related information out of the
CVE Database. Secondly, we adopted the code clone detector
itself to consider only inter-project clones, as discussed later in
this section. The main reason for this is that we plan to find
clones between an external code repository and a project and not
within a single project, like the clone detection is often used for.

Tokenizer. SourcererCC comes with a tokenizer for Java, C
and C#. However, for our approach, we needed a method to
interleave tokens with CVE meta-information such that clone
detection results could provide further security information.
Therefore, a custom token format was designed that combines
the token information with the additional bookkeeping details,
including the CVE id and the metadata of vulnerabilities. This
information allows us to trace back from code fragments to the
underlying weakness.

To apply the tokenizer a parsing of the source files is needed,
such that the tokenizer gets software artifacts of source files like
method names and constructors. For exemplary apply and
evaluate our approach, we focus on java source code such a java
parser is used for parsing code. For each method or constructor,
a new list of tokens is created. Whitespaces, operators and
comments are ignored. During this procedure, the tokenizer
loads the needed metadata out of the security repository. The
output of our tokenizer are two files, one including the tokens of
a code fragment and the other with the described bookkeeping
information enriched with security knowledge.

For further illustration, we present an example method
before the preprocessing was applied in Fig. 4.

Figure 4. Example: Java Input Source Code for Tokenizer

Figure 5 presents the output of the tokenization of Fig.4.

Figure 5. Created tokens of Fig. 4

To complete the tokenization, we count the number of
appearances of each token and add them to the output. Hence, a
token-file consist of every occurred method name, variable name
and its datatypes as well as return values that are named and
counted. Regarded to the design constraint for the Java and C#
languages, all executable code must be contained inside of
method bodies. Therefore, the granularity level for the
implemented tokenizer is set to method-based tokenization. This
means that only method respective constructors will be
processed inside of a class. Imports and class names will be
ignored. For other languages like C and C++ it is necessary to

adapt the tokenizer to a class-based tokenization through the
absence of this design constraint.

Inter-project clones. Clones can be either intra- or inter-
project clones, meaning that the instances of a clone may come
either from the same project or from different ones. In our
approach, we are only interested in inter-project clones, since we
aim to find matches between a given project source code and our
security code repository. More formally, let A be the set of
source files from the input project and B the set of snippets from
the security code repository. Furthermore, let (a0, …, an) and (b0,

…, bn) with n,m∈ℕ code fragments, for which ai∈A and bj∈
B with i,j∈ℕ. We are interested in pairs of code fragments (ai,

bj) being code clones.

SourcererCC finds both intra- and inter-project clones, and
by default it does not provide a configuration option to
deactivate the detection of intra-project clones. Therefore, the
Pre-Processing phase was added and the inputs for the clone
detection was adapted to ignore intra-project clones. Figure 3
presents the modified behavior of the clone detector.

IV. SECURITY CODE REPOSITORY

In our approach, a prerequisite for vulnerability detection is
a reference code repository called security code repository. This
repository contains source code snippets that instantiate already
reported weaknesses. Each snippet consists of example code for
a vulnerability, its exploit and a patch. We now describe the
procedure for creating a security code repository, which we used
to test and evaluate our technique. Our process relies on a large-
scale repository in which such snippets can be found. To this
end, we used GitHub, a suitable repository that is freely
accessible to the public. Our process, shown in Fig. 6, contains
the four steps Extract, Search& Filter, Export, and Proof.

Extract. To find security-related code snippets on Github,
adequate terms for the search are needed. We extract them from
the CVE database. A possible way to identify a concrete
vulnerability is its unique CVE identifier [18]. Therefore, we
extract these CVE-ids for the search to find security issues.

Search and Filter. For searching vulnerabilities on Github,
the pre-extracted CVE-ids will be used. If a file or a commit
within a project matches these identifiers, they will be
considered for further processing. To adjust the results of the
search to specific programming languages, we defined a file type
filter. For example, to restrict the search to Java files, the file
endings will be checked for the tag .java. Not every content of
the found files is security-related. Therefore, a manual prove is
necessary to ensure that resulted files contain only security-
related code. This procedure is described later in this section.

Figure 6. Repository Creation for Reference Code Fragments

Classification. Furthermore, we defined terms to distinguish
between the three classes of security-related files;
vulnerabilities, exploits and patches. For this classification, we
use a simple check whether terms are substrings of texts inside
of commits or project descriptions. Examples terms for the class
patches are fix, solve, update, patch for vulnerabilities the term
vulnerability and for exploits, the substrings are proof of concept
(POC) and exploit. We retrieved these terms by the manual
unsystematic analyze of founds of the CVE id search received
from GitHub. The founds will be automatically classified by
these terms into the three mentioned classes.

Export. The classified founds are stored into a code
repository with a SQLite database inside of its root. For all
matches its related and stored meta-information inside of the
CVE will be extracted into the SQLite database. This meta-
information are for example the concrete CVE description, the
CVE-id and a scoring which represents their characteristics,
impact and severity. The vulnerability scoring is based on the
Common Vulnerability Scoring System (CVSS) [28].

Proof. As post-processing the repository content has to be
manually reviewed to exclude file parts that do not contribute to
a vulnerability. If a file with a vulnerability in it is found, often
only a part of the file represents a vulnerable code snippet. A
security expert has to delete the unaffected methods in these files
such that only the critical code remains.

For the creation of a code repository, 20 different
weaknesses out of the CVE database were selected. Our
previous explained semi-automated tool-based approach found
source code examples of exploits, vulnerabilities and its patches
assigned to CVE-ids. Thus, security-related code fragments are
extracted out of Github. We have reviewed a subset of 102
reported security flaws to check their suitability for representing
a vulnerability code snippet that is usable for the approach
described within this work. For example, not eligible
vulnerabilities can be patched by only importing a newer library
version or loading them dynamically by a string literal.
Furthermore, code fragments for which weaknesses are spread
over multiple methods were partially also ignored. The reason
for this is that in the most cases code changes were too small to
match the three different types of code clones meaningfully.
Table 1 shows the selected vulnerabilities with their associated
CVE, their scoring and the affected product, as it is stored into
the CVE Database. The created security code clone repository
including the SQLite database is uploaded to Github [24].

V. EVALUATION

We evaluated the suitability of the described approach to
address our initial research question: How can we harness
available knowledge to facilitate the detection of security
vulnerabilities in software code? To this end, we consider the
following evaluation research questions:

RQ1: How many of the vulnerabilities inside of the CVE
are attributed to source code?

Not for every vulnerability the reason is a weakness in source
code. This question should identify how valuable the focus on
source code vulnerabilities is and how many of them could be

TABLE I. CODE REPOSITORY WITH SECURITY-RELATED CONTENT

found through using the knowledge of source code of entries
stored inside of the CVE by applying the described approach.

RQ2: How accurate is our approach at detecting previously
reported vulnerabilities?

We want to check whether it is possible to identify source
code reasoned weaknesses through a subset of the reported
vulnerabilities stored inside of publicly accessible databases like
the CVE.

RQ3: How well does our approach distinguish between
vulnerable and patched code fragments?

Sometimes only the change of a few lines of code is
necessary to remove a security flaw inside of a code snippet. We
investigate on which granularity we can distinguish between
patched and insecure code fragments through clone detection.

A. RQ1: How many of the vulnerabilities inside of the CVE

are attributed to source code?

First, we investigate how feasible it is to use the information
of known and documented vulnerabilities reported in databases
like the CVE. For this proof, we check the ratio of entries that
could be retrieved through errors within source code to them
which do have other origins. The more weaknesses based on
source code, the better is the concentration on detecting security
flaws within code artefacts. Through this survey the capability
of using the content of the publicly accessible database CVE to
recognize security issues invoked through source code will be
validated. To apply this investigation, the non-code content of
the CVE was manually screened. We recognized that in August
2018 only for 62 % of the 103745 CVE entries, a Common
Weakness Enumeration (CWE) identifier is assigned.

The CWE compresses different types of weaknesses, which
are all identified through a unique CWE-id and categorize
different manifestations of vulnerabilities. An example of these
types is CWE-306: Missing Authentication for Critical
Function. All to this type associated CVE entries are

vulnerabilities because of the absence of authentication for
critical functions. Therefore, CWE-ids are a well-suited attribute
found with our approach. A problem is that there is no identifier
for a type that implies all security issues appear within source
code. For every set CWE type, it was systematically proved
whether it is possible to retrieve out of its description the origin
they belong to; induced by source code or others like
configurations. A further problem is the absence of assigned
CWE-ids for 38 % of the entries of the CVE. The besides
without any type information were investigated with the use of
their description. Manual checks show that it is possible to find
CVEs based on source code via checking their descriptions for
the occurrence of substrings. The used substrings were divided
into five groups: File Name Endings, Attack Strategies,
Configurations, Rejects and Unclassified.

The group File Name Endings contains substrings that
represents the data types of programming language source files.
The hypothesis is that if a concrete file is addressed within the
description of a CVE than their occurrence is provable within
source code. Examples of file endings are .java, .cpp, etc.

As attack strategy count for example Cross-Site Scripting
(XSS), Buffer Overflow etc. The idea is to check for the names of
attack strategies that maliciously uses a vulnerability occurred in
source code like the buffer overflow example, which could be
prevented to buffer length checks.

Configuration related vulnerabilities are identified through
the occurrence of terms like config, cfg etc. We assume that for
CVE descriptions that mention at least one of these terms, their
belonging weakness is not detectable via source code analysis.

Rejects are the vulnerabilities that are still remain in the CVE
database but were rejected after review. They are marked with
the term Rejected. This are entries, which could be duplicates or
not representing a vulnerability at all.

The left CVE entries that not belong to one of the mentioned
groups were assigned to the group Unclassified CVE entries.
They will be not considered to answer this research question.
The partition of the CVE is summarized in a pie chart in Fig. 5.

Figure 7. Classification of CVE Database Content

To conclude the results, it is shown that 69 % of the public
available vulnerabilities are induced to source code issues. This
is composed through the 31% of entries with CWEs that
describes security flaws detectable within source code artefacts,
the 28 % with a description containing file endings of source
code files and the 20 % of CVEs that contain in their description
terms of attack strategies uses security flaws within source code.
To respond RQ1.1, it is a well-suited strategy to focus on source
code for identifying known and reported weaknesses.

B. RQ2: How accurate is our approach at detecting

previously reported vulnerabilities?

Experimental Setup

As vulnerability selection for our evaluation, we use the code
repository described into Sec. IV. To ensure that not only Type-
1 clones are detected but also Type-2 and Type-3 clones we
modified each vulnerable code fragment to match the
corresponding clone types. For example, all variable names were
renamed for Type-2 clones. To obtain Type-3 clones, we
removed or added some void statements to Type-1 and Type-2
clones. Our evaluation based on metrics of the information
retrieval like Recall, Precision and F1-measure as described by
Manning et al. [15]. We measured the recall based on the chosen
vulnerabilities considering the three different types of clones. In
this case, we know exactly the number of weaknesses so that the
recall can be measured precisely. The precision was measured
by a manual validation of the found and highlighted security
code clones. To combine precision and recall, we used F1-
measure.

The underlying clone detector uses a similarity function
inside its clone detection process. This function can be
configured by the threshold value ϑ. Three different ϑ values
were used for the evaluation in combination with the three
different types of clones. That means that for every clone type
exists three iterations with different thresholds. Beforehand we
examined distinct thresholds by hand. On the one hand, lowering
the threshold could harm precision. On the other hand, a too high
threshold could harm recall. Therefore 3.0, 5.5 and 8.0 were
selected as values for ϑ.

Results and Discussion

Each iteration passes every vulnerability with the given
configuration values. The Security Code Clone Detector has
flagged all Type-1 clones for the three different ϑ values. That
means that precision, recall, and F1 are 100 % for Type-1 clones.
The detection rate of Type-2 clones revealed that only eight
security flaws out of 20 were detected with a ϑ of 8.0. The reason
is that through the high ϑ value two code fragments must be too
similar to be recognized as code clones. Due to this the higher
the value of ϑ is the bigger the number of similar tokens inside
of two code snippets have to be. Thus lead to the low recall for
Types-3 clones cause the clones are too different to be code
clones of each other.

In contrast, the precision always is 100 %. This could be
attributed to the fact that we only focus on finding the three
different types of security code clones. The set of data only
consist of the given vulnerabilities and not of any secure code
fragments. Table 2 summarizes the clone detection results for
the security flaws and patches.

TABLE II. EVALUATION RESULTS

In the result table TP stands for true positives, R means
recall, P means precision and F1 stands for F1-measure. The high
recall values for all code clone types and ϑ modifications show
that we are able to recognize known and reported weaknesses
via our approach. The results for the recall are interleaved with
the size of the ϑ threshold. For small ϑ values every vulnerability
inside of the reference repository is detected, but this leads to a
lower precision. Therefore, the answer for RQ2 is that the
vulnerability detection for the described approach performs very
well with a leak of precision for Type-3 clones.

C. RQ3: How well does our approach distinguish between

vulnerable and patched code fragments?

Experimental Setup

In the next step, we have focused on checking precision.
Thereto the patched code fragments for the given vulnerabilities
were used to examine which security flaws will be detected as
vulnerable code clones falsely. In this case, we did not modify
the patched code fragments to match each of the three different
types of clones but used the code fixes directly as input for the
detection process. Patched code fragments distinguish to their
vulnerable complement with some changes that removes the
weak parts of that fragment. These changes differ in complexity.
Some have an extent of multiple lines but other distinguish only
by a single line to their vulnerable counterparts. The ϑ
configuration setup for every iteration was the same we
mentioned in RQ2.

Result and Discussion

As described in Sec. III, Type-3 clones are hard to detect.
The low precision values summarized in Tab. II can be ascribed
to the few code modifications inside the patches. Fundamentally,
the patches represent Type-3 clones. If a patch has enough code
modifications regarding its vulnerability, we can identify it as
secure code correctly. If the code changes are too small, it may
be flagged as weakness falsely. Relating to RQ3, it is possible to
distinguish between vulnerable and patched code fragments as
far as enough code modifications are present. On the one hand,
the capability to detect code clones of Type-3 increases the
amount of secure code, which is falsely identified as insecure.
This reduces the precision of the described approach. On the
other hand, through code clones of Type-3, the possibility exists
to find more code clones of vulnerable code fragments, which
increases the recall. Hence our goal is a high recall during
detection. Therefore, we accept the false positives within the
patch detection.

D. Threats to Validity

For the validity check of our evaluation, we consider the
types of threats to validity for empirical software engineering
research defined by Wohlin et. al. [26].

Conclusion: Maybe the selection criteria for building the test
set influence the results in terms of recall, precision, and F1-
measure. To be more precise, it is possible that the size of
selected code fragments influence the capability to distinguish
between patched and weak code fragments. We have not
considered the size of needed patches to close security flaws.

Internal: The used Java Runtime Environment version and
the library version of used source code are not considered. Some
code fragments are only insecure with specific Java versions or
library versions and are secure within other versions. This could
result in false positives for the classification of source code
fragments as vulnerable that are secure with the used versions.
Furthermore, it is imaginable that there are other code clone
detection approaches, which tackles the problem of vulnerability
detection inside of code fragments better than the chosen one.

Construct: The configuration and the ϑ adjustment of the
code clone detection approach affect the effectiveness of the
described procedure. Furthermore, the workflow and the
granularity level of the tokenizer influences the results of the
code clone detection approach.

VI. RELATED WORK

Vulnerability detection using clone detection. The clone
detector ReDeBug [7] is language agnostic and uses a syntax-
based pattern matching approach. It can detect some Type-3
clones but cannot detect Type-2 clones respectively clones with
slight code modifications. Furthermore one of the design goals
was a low false positive rate which harms recall. VulPecker [12]
is a system for automatically detecting if a piece of software
contains a vulnerability. It consists of a learning phase and a
selection algorithm to identify vulnerabilities. This approach can
detect Type-1, Type-2 and some Type-3 clones [13] in C/C++
code. CLORIFI [11] combines static and dynamic analysis to
detect code clone vulnerabilities. It identifies the security code
clones of known vulnerabilities with an n-token algorithm. With
the help of concolic testing, CLORIFI tries to reduce false
positives by verifying the security flaws. Our work is mostly
complementary to the presented ones, as we focus on
establishing a right balance between precision and recall, and use
a state-of-the-art back-end clone detector that allows us to
address scalability and language-independence simultaneously.

Static analysis for security. Our approach can be
considered as a static analysis technique that can uncover
vulnerabilities without executing the application at hand. Such
techniques have been used successfully to uncover
vulnerabilities, in some cases better than dynamic techniques
such as penetration testing [20]. Most previous techniques are
geared to detect specific vulnerabilities based on hard-coded
solutions, such as SQL injections [14] and buffer overflows [27].
Fischer et al. [5] have used static analysis to study how severely
Android apps are affected by vulnerabilities resulting from
copying code snippets from StackOverflow examples. In our
previous work [25] we present a tool-based approach that scans
imported Java dependencies for known vulnerabilities. It checks
the CVE if an entry for the corresponding library exists.
Furthermore, we present an approach [3] for maintaining a
knowledge base of security knowledge that is used to keep co-
evolve the system design after changes in the availability
knowledge (e.g., an encryption algorithm previously deemed as
secure is broken). However, this work was focused on the design
model level rather than on code-level vulnerabilities.

Code clone detection. Different code clone detection
approaches with distinct capabilities exist. In their survey,
Sheneamer et al. [21] distinguish the following main classes of

approaches. Text-based techniques (e.g. [1]) compares the
similarity of code fragments based on terms of textual content.
While focusing mostly on Type-1 clones without preprocessing,
they are language-independent and easy to implement. Lexical
techniques (e.g. [8,19]) divide the input code into a sequence of
tokens that are converted into token sequence lines, which are
then matched to another. Such techniques can detect various
code clone types with higher recall and precision than text
passing techniques. Syntactic techniques are either metric-based
or tree-based. Tree-based (e.g., [2]) and graph-based techniques
(e.g., [22]) parse the code into abstract syntax trees and find
cloned code parts using tree-matching algorithms. Metric-based
ones (e.g. [17]) compare source code snippet based on metric
vectors created for each code snippet. This technique is able to
detect Type-1 and Type-2 clones with high time complexity. It
reduces the complexity of text-based approaches. Semantic
techniques (e.g., [10]) detect two fragments of code that perform
the same computation but have differently structured code,
which was already named as Type-4 clone.

VII. CONCLUSION

The use of a single vulnerable code snippet can make a whole
system insecure [23]. We introduce an approach to prove code
fragments of reported vulnerabilities automatically. We detect
insecure parts of source code via code clone detection by using
code fragments that contain known vulnerabilities. As a result, a
developer can be supported in the writing of secure code right
from the beginning. With the aid of a database, it is possible to
show information about reported security flaws. This
information can be used to understand a weakness and, if
necessary, provide a patch. The results of the evaluation show
that detecting insecure code fragments work very well. We show
that there are difficulties in distinguishing between patched and
vulnerable source code fragments that are too similar to each
other. The capability to detect small differences between them
depends on the configuration and the distinction of line
circumference from the vulnerable and patched fragments. Our
work provides an Eclipse plug-in for supporting Java software
developers [24]. Furthermore, we investigated the feasibility to
distinguish between patched and vulnerable code snippets for
our approach. We analyzed the CVE database content to
underpin leveraging knowledge of reported vulnerabilities for
the detection of security flaws within the source code.

Our future research is striving to compare artificial
intelligence approaches in the form of neural networks with the
static code clone detection approach described in this work. To
solve the problem of our internal validity, we want to enhance
the described approach such that the JRE Version of software
projects and the recognition of library versions will be
considered. Furthermore, a user study about the perception and
effectiveness of helping developers and security experts to
classify source code fragments is planned. The capability of the
code clone detectors in the described approach relies on the data
included in the reference code repository. Therefore, we expect
to investigate further techniques to enhance the security-related
source code within the code repository via leveraging
community knowledge. Furthermore, we plan to improve the
semi-automatically classification into exploit, vulnerable and
patch code fragments.

VIII. ACKNOWLEDGMENT

This work was supported by the German Research Foundation

(DFG) under SecVolution (2016 – 2019).

REFERENCES

[1] Baker, B.S.: On finding duplication and near-duplication in large software

systems. In: Reverse Engineering, 1995., Proceedings of 2ndWorking

Conference on. pp. 86{95. IEEE (1995)
[2] Baxter, I.D., Yahin, A., Moura, L., Sant'Anna, M., Bier, L.: Clone

detection using abstract syntax trees. In: Software Maintenance, 1998.

Proceedings., International Conference on. pp. 368{377. IEEE (1998)
[3] Bürger, J., Strüber, D., Gärtner, S., Ruhroth, T., Jürjens, J., Schneider, K.:

A framework for semi-automated co-evolution of security knowledge and

system models. In: Journal of Systems and Software 139, pp. 142{160 (2019)
[4] Devanbu, P.T., Stubblebine, S.: Software engineering for security. In:

Finkelstein, A. (ed.) Proceedings of the Conference on The Future of Software

Engineering. pp. 227{239. ACM, New York, NY (2000)
[5] Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M.,

Fahl, S.: Stack overow considered harmful? the impact of copy&paste on

android application security. In: Security and Privacy (SP), 2017 IEEE

Symposium on. pp. 121{136. IEEE (2017)

[6] Inc., E.: Github (2008), https://github.com/

[7]. Jang, J., Agrawal, A., Brumley, D.: Redebug: finding unpatched code
clones in entire os distributions. In: Security and Privacy (SP), 2012 IEEE

Symposium on. pp. 48{62. IEEE (2012)
[8] Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic token-

based code clone detection system for large scale source code. IEEE

Transactions on Software Engineering 28(7), 654{670 (2002)
[9] Koschke, R.: Survey of research on software clones. In: Dagstuhl Seminar

Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2007)

[10] Krinke, J.: Identifying similar code with program dependence graphs. In:
Reverse Engineering, 2001. Proceedings. EighthWorking Conference on. pp.

301{309. IEEE (2001)

[11] Li, H., Kwon, H., Kwon, J., Lee, H.: Clorifi: software vulnerability
discovery usingcode clone verification. Concurrency and Computation:

Practice and Experience 28(6), 1900{1917 (2016)

[12] Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J.: Vulpecker: an automated
vulnerability detection system based on code similarity analysis. In:

Proceedings of the 32nd Annual Conference on Computer Security

Applications. pp. 201{213. ACM (2016)
[13] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H.,Wang, S., Deng, Z., Zhong, Y.:

Vuldeepecker: A deep learning-based system for vulnerability detection

(2018)
[14] Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java

applications with static analysis. In: USENIX Security Symposium. vol. 14,

pp. 18{18 (2005)
[15] Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information

Retrieval. Cambridge University Press, Cambridge, United Kingdom (2009)

[16] Mayer, C.P.: Security and privacy challenges in the internet of things:
158 kb / electronic communications of the easst, volume 17: Kommunikation

in verteilten Systemen 2009 (2009)

[17] Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic
detection of function clones in a software system using metrics. In: icsm. vol.

96, p. 244 (1996)

[18] Mitre: Common vulnerability and exposures (1999), https://cve.mitre.org/
[19] Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V.:

SourcererCC: Scaling Code Clone Detection to Big-Code. In: 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE).
pp. 1157{1168 (May 2016)

[20] Scandariato, R., Walden, J., Joosen, W.: Static analysis versus

penetration testing: A controlled experiment. In: Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on. pp.

451{460. IEEE (2013)

[21] Sheneamer, A., Kalita, J.: A Survey of Software Clone Detection
Techniques. International Journal of Computer Applications 137(10), 1{21

(2016)

[22] Strüber, D., Acreţoaie, V., Plöger, J.: Model clone detection for rule-
based model transformation languages. Software & Systems Modeling 18(2),

pp. 995{1016 (2019)

[23] US-Cert: United states computer emergency readiness team (2003),
https://goo.gl/ZCuCc8

[24] Viertel, F.P., Brunotte, W., Strüber, D., Schneider, K.: Security Code

Repository and Code Clone Detection Eclipse Plug-In (2018),
https://github.com/dev-se/sccd

[25] Viertel, F.P., Kortum, F., Wagner, L., Schneider, K.: Are third-party

libraries secure? a software library checker for java. In: The 13th International
Conference on Risks and Security of Internet and Systems, CRISIS (2018)

[26] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,
A.: Experimentation in software engineering. Springer Science & Business

Media (2012)

[27] Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using
exploitable buffer overflows from open source code. In: ACM SIGSOFT

Software Engineering Notes. vol. 29, pp. 97{106. ACM (2004)

[28] NIST: Common Vulnerability Scoring System (2005),
https://nvd.nist.gov/vuln-metrics/cvss

[29] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.

Deckard: Scalable and accurate tree-based detection of
code clones. In Software Engineering, 2007. ICSE

2007. 29th International Conference on, pages 96{105,

May 2007.
[30] N. Gode and R. Koschke. Incremental clone detection.

In Software Maintenance and Reengineering, 2009.

CSMR '09. 13th European Conference on, pages
219{228, March 2009.

[31] J. R. Cordy and C. K. Roy. The nicad clone detector.

In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension, ICPC '11,

pages 219{220, Washington, DC, USA, 2011. IEEE

Computer Society.

