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Abstract

The 2D Discrete Helmholtz Hodge Decomposition
(DHHD) is a candidate for decomposition of cardiac mo-
tion vector field (MVFs)from modalities such as echocar-
diography, allowing analyses of rotational, radial and har-
monic MVFs separately and the tracking of centers of flow
phenomena. However, the literature contains differing
opinions about how boundary conditions (BCs) should be
applied. In the proposed study, we investigate two sets of
BCs, found in the literature, using synthetic motion vec-
tor fields: (i) zero BCs for all nodes along the domain
boundary; (ii) a single zero BC for the first node. We
found that (i) produces a decomposition with Normalised
Root Mean Square Error (NRMSE) below 1%, while (ii)
produces NRMSE greater than 200% when the input field
contains a harmonic component. Further, we demonstrate
the decomposition of a synthetic motion field from the Ex-
tended Cardiac Torso Phantom v2 into radial, rotational
and harmonic components.

1. Introduction

Quantification of the left ventricular (LV) motion field
from a sequence of images along the cardiac cycle can pro-
vide valuable information about health and assist in diag-
nosis of diseases. Buckberg (2004), according to Notomi
et al. [1], notes that research in clinical cardiac mechanics
has moved towards three-dimensional ventricular defor-
mation studies, which include investigations of LV torsion.
We have previously applied the Discrete Helmholtz Hodge
Decomposition (DHHD) to 3D cardiac motion fields, cal-
culated from in-vivo 4D image sequences using optical
flow techniques ([2]), and show that the DHHD algorithm
presents the following possibilities for analysis: (i) an au-
tomated method for decomposing the motion field into
components, such as LV torsion, which can then be stud-
ied independently and in a simpler manner; (ii) a method
for tracking the centres of flow phenomena from frame to
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frame.

Polthier and Preuss [3] introduce the DHHD, showing
how a smooth 2D vector field, f_: can be written in terms of
the sum of a curl-free (CF) scalar potential, D, the curl of
a divergence-free (DF) vector potential, ﬁ, and a harmonic
remainder, F;{ , which is both CF and DF, and represents
the linear flow (Equation 1).

E=VD+V xR+ Fy (1)

The DHHD requires the application of boundary condi-
tions (BCs) to achieve a unique solution, and the consis-
tency of BCs influences the orthogonality and uniqueness
of the decomposition [4]. Guo et al. [5] apply BCs (here-
after referred to as Guo BCs) to their 2D decomposition
by constraining the first components of D and R to zero,
claiming that setting potentials to zero at only one node is
sufficient for a unique decomposition. While no claims are
made about the orthogonality of the decomposition, a re-
cursive decomposition of the harmonic component is pro-
posed to provide increased accuracy. Further, the need for
this recursive solution is unclear, since the application of
consistent BCs should result in a unique solution up to nu-
merical precision [4]. Tong et al. [6], in their 3D decompo-
sition, apply zero BCs along the entire boundary (hereafter
referred to as Tong BCs), such that the irrotational compo-
nent is normal and the incompressible component parallel
to the boundary. Appendix A illustrates the difference be-
tween these BC schemes using a 9 value CF potential. In
light of these differences, we devised a study to investigate
the effect that different BCs have on the decomposition of
2D MVFs with the aim of obtaining a robust and efficient
methodology, and a reliable algorithm for application to
2D+time cardiac motion fields. The objectives of this work
are: (i) investigate the effect of imposing different sets of
BCs, comparing Guo and Tong BCs; and (ii) apply the de-
composition to 2D synthetic cardiac MVFs to demonstrate
automated extraction of rotational, radial and linear flow.
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2. Materials

Three MVFs were created:
1. 5_1', formed by superposing a pure rotational (counter-
clockwise) and radial (sink) field, in turn created by apply-
ing differential operators to Gaussian potential fields;
2. 52, a superposition of 51 and a linear flow component
of (V, V) = (0, 1) pixel per frame;
3. E_g:, a 2D short axis basal slice through a synthetic car-
diac left ventricular MVF produced by the 4D Extended
Cardiac-Torso (XCAT) Phantom Version 2.0 [7] using a
procedure outlined elsewhere [8].

The 2D scalar Gaussian potentials used to create 51 and
&, were defined by ¢ = e~ (1/209)[(@=z)*+(y=v:)’] ang
formed on a 60 x 60 pixel grid. In this equation, o is the
Gaussian potential standard deviation and x. and . are the
maximum or minimum points of the potential, correspond-
ing to the centre of the radial or rotational component. The
centers of the components were set to (29,31) and (31,29)
respectively for the radial (sink) and rotational (counter-
clockwise) fields. Six MVF variations were produced from
potential fields with varying smoothness and extent, with
0 =2.0,5.0,7.0,9.0,12.0,16.0.

Image processing software and DHHD were written us-
ing Matlab 9.2 (Natwick, Math Works Inc., 2017).

3. Methodology

Experiment 1: investigation of boundary condi-
tions. Two versions of the 2D DHHD were implemented,
DHHD(i) using Tong BCs and DHHD(ii) using Guo BCs.
Experiments were then performed to test the effective-
ness of the DHHD algorithms by comparing the rotational,
radial and linear motion field components of the input
fields f_i and 5; with the respective estimated DF, CF and
harmonic components resulting from the decomposition.
In every case, the input and estimated MVF components
were compared using Normalised Root Mean Square Error
(NRMSE). The methodology is similar to that described in
Sims et al.[8] but with 2D fields.

First the value of o was found which produced the low-
est decomposition error using DHHD(i). The field gen-
erated using 0 = 9.0 provided the lowest NRMSE er-
ror (0.92%), since the field is as smooth as possible while
maintaining very small values at the boundary. This value
of o was used to generate radial and rotational MVFs for
the remainder of Experiment 1.

The difference between rotational, radial and linear mo-
tion field components and their estimated components was
investigated (CF, DF and harmonic) when different BCs
were applied. Sub-experiments were defined as follows
(see Table 1): Experiments 2a and 2b used input fields
«E—{ and 5; respectively, being decomposed using algorithm

Table 1: Percent NRMSE for experiments 2a-d.

Algo- % NRMSE % NRMSE for
rithm for & &
DHHD() 0.92 % 0.92%
(Exp.2a) (Exp.2b)
DHHD(ii) 0.88% 227.79%
(Exp.2¢c) (Exp.2d)

DHHDC() (Tong BCs); Experiments 2c and 2d used input
fields 51 and 52 respectively, being decomposed with al-
gorithm DHHD(i) (Guo BCs) In all cases, the estimated
harmonic (linear) flow, FH est was found by calculatlng
the harmonic remainder, FH est = 5 Fc Foest —
as described elsewhere [9].

Experiment 2: decomposition of f;.

DHHD(i) was applied to the short axis slice through the
XCAT MVF and the resulting CF and DF fields presented.

FDF ests

4. Results

Experiment 1

Table 1 shows the results of NRMSE for the sub-
experiments 2a-d. 2a, b and ¢ provide very similar results,
with error just under 1%, while sub-experiment 2d, mo-
tion field decomposed by DHHD(ii), produced an error of
more than 200%. This shows that DHHD() and (ii) per-
form similarly in the absence of a harmonic component.
When this component is present, DHHD(i) continues to
perform well but DHHD(ii) produces very large errors.

An analysis of the harmonic components in the input
and output fields are shown in Table 2. Input harmonic
components in 52 were (V;, V) = (0,1). Mean velocity
vector components for the estimated harmonic component
in experiment 2b were (0.0003, 1.0000), close to the input
values, while experiment 2d produced (0.0002, -1.0000),
with the value of V), in the opposite direction to that ex-
pected.

Table 2: Estimated harmonic component from decompo-
sition of 52, containing x and y components of velocity,
Vz = 0 and V,, = 1. The estimated fields are mean har-
monic components from the output of experiments 2b and
2d.

Va Vy
Input linear component in 52: 0 1
Estimated linear components:
DHHD() (exp. 2b) 0.0003  1.0000
DHHDi) (exp. 2d) 0.0002 -1.0000

Figure 1 provides a comparison of the resulting motion
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Figure 1: Estimated MVF components resulting from decomposition of 53 ( sink, counter-clockwise rotation and linear
fields superposed). Upper and lower rows result from using the DHHD(i) and DHHD(ii) algorithms respectively (experi-
ments 2b and 2d). (a) and (d) are curl-free, ﬁc Fest ; (b),(e) divergence-free fD Fest 5 (€),(f) harmonic ﬁH_est. DHHD(i)
seems not to have separated ﬁc Fest and ﬁD F.est from the harmonic input component

field components resulting from the decomposition of 52
using DHHD(i) and DHHD(ii). Subfigures (a), (b), (c)
show CF, DF and hamonic components resulting from ap-
plication of DHHD(i), while (d),(e),(f) result from applica-
tion of DHHD(ii). DHHD(i) produces the expected result
in which the estimated CF field, o est, is radial, Fp st
is rotational and the estimated harmonic field, ﬁH‘est uni-
form in a positive y direction. However, DHHD(ii) pro-
duces MVFs in which ﬁc Fest and ﬁp F.est are superpo-
sitions of radial and harmonic input fields, and rotational
and harmonic input fields, respectively. The harmonic field
points unexpectedly in a negative vertical direction.

Experiment 2

Figure 2 shows CF and DF fields for the decomposed
XCAT motion field in systole, (frame 4 of a 16 frame
sequence), providing clear separation into a CF compo-
nent, perpendicular to the LV midmyocardial line, and a
DF component, largely parallel to this line.

5. Discussion

Experiment 1
As previously mentioned, Figure 1 suggests that

 Lospin

Figure 2: Decomposition of single basal XCAT MVF SAX
2D slice in systole using DHHD(ii). (a) input field, &3; (b)
CF field; (c) DF field.

DHHD(i) produced CF and DF fields with the harmonic
component superposed on the radial or rotational field,
suchthat Fopest = Fop+Fygand Fppest = Fpr+Fy.
In this case, the estimated harmonic field was found to
be (Vi,Vy) = (0.0002, —1.0000). Since Fp oo is de-

—

fined as 52 - Forest — FDF.ost, in this case we have a
net field of & — Fopess — Fir — Fppest — Fr. Since
{é = ﬁcp + ﬁCF + fH, the result is —ﬁH plus some
small errors between the real and estimated CF and DF
fields. This is visualized as the harmonic field pointing in
the opposite direction to that expected.
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In finite element methods, the BCs define the problem to
be addressed. It seems that Guo BCs produce reliable re-
sults in the absence of harmonic flow, whereas Tong BCs
produce robust results both with and without harmonic
flow. While Guo et al. [9] claim that setting potentials to
zero at only one vertex is sufficient for a unique decompo-
sition, they do not claim orthogonality [4]. Further, while
they propose that better accuracy in the results can be ob-
tained from further decompositon of the harmonic field,
our experiments suggest that inaccuracies are due to the
harmonic field being included in CF and DF fields rather
than CF and DF fields appearing in the harmonic field.

The application of BCs to a single node makes values
on the boundary behave in a spontaneous manner, but does
not provide sufficient information for the problem.

Experiment 2:

Applying DHHD(i) to the XCAT MVEF, 53 a clear sep-
aration of radial and rotational fields was obtained. This
MVF has a very low harmonic component, so similar re-
sults would be obtained when applying DHHD(ii). In car-
diac motion fields obtained from modalities such as 2D
speckle tracking, we expect the harmonic component to be
small in the short axis plane.

A qualitative assessment of the CF and DF fields were
found to contain components perpendicular and parallel to
the midmyocardial line, respectively. The circumferential
component would seem to be useful for automated quan-
tification of LV rotation, from which LV twist can be de-
termined.

6. Conclusion

Applying zero BCs to all nodes on the boundary [6]
achieves the required decomposition, while applying a
zero BC to a single node [9] leads to large errors when
a harmonic component is present in the input field. When
the DHHD was applied to a 2D synthetic MVF, Fpr was
seen to isolate the rotational component. The DHHD is a
possible candidate for estimating the rotational component
of a cardiac MVFE.

7. Appendix A

D, D, D
For the curl-free field, [D] = | Dy D5 Dg
D3 Dg Dy
Guo and Tong BCs, d_é;, d} (D vectorized) are:
- T
dg = [0 Dy D3 Dy Ds Dg D7 Dg Dg]

dr=1[0 0 0 0 Ds 0 0 0 0
The linear system of equations to find [D] is [S]d = Ib

}T

Write Tong BCs (for example):

S11 S12 ... S15 ... Si9 9 10 ...0 ...0 b_l
S21 S22 ... 825 529 : 61 .. 0 ...0 :

: 0 oo o] [ba
S51 S52 ... Ss5 ... Sso [())5 “loo ... 1 ...0 Z;
S91 S92 895 ... S99 0 00 ... 0 ... 1 b‘g

S is a sparse matrix, dependent on the domain triangula-
tion, and b depends on MVF and triangulation. For further
details, see Sims [10], Guo et al. [9] and Tong et al. [6].
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