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Abstract 

A real-life validation of a system for simultaneous 
acquisition of capacitively-coupled ECG (ccECG) and 
capacitively-coupled bioimpedance (ccBioz) is presented. 
The heart rate (HR) and respiration rate (RR) estimation 
performance was evaluated using polysomnography (PSG) 
signals as ground-truth, in recordings from 28 patients 
with suspected obstructive sleep apnea (OSA). A ccECG 
beat detection sensitivity of 98.4% and an R-R interval 
mean absolute error (MAE) of 17.1 ms were achieved when 
applying quality-based algorithms. RR MAE values of 3.48 
and 6.37 breaths per minute were also achieved when 
using two different RR extraction methods. High similarity 
between unobtrusive signals and PSG ground-truth was 
observed, with a correlation between ccECG and psgECG 
of 91.5% and a correlation between ccBioz and PSG 
thoracic belt (TB) of 89.5%. Even in episodes containing 
OSA events, the characteristic respiration behavior of TB 
signals was also observed in the ccBioz signals. This shows 
the potential of ccECG and ccBioz for use in long-term 
monitoring without adding discomfort to the patient or 
user. Sleep-related applications as well as more generic 
cardiorespiratory monitoring in (patient) beds are obvious 
applications, but also other daily life monitoring can be 
done using a similar approach (e.g. in seats). 

  
 

1. Introduction 

Unobtrusive measurement of vital signs has been a topic 
of high interest in recent research [1]. The use of 
capacitively-coupled ECG (ccECG), for instance, has been 
proposed as a solution that allows long-term monitoring 
and can achieve results similar to medical grade ECG [2]. 
Similarly, capacitively-coupled bioimpedance (ccBioz) for 

impedance pneumography (IPG) can, when combined with 
ccECG, enable extended cardiorespiratory monitoring in 
daily life for preventive screening and patient follow-up. 

One of the main challenges in the use of these 
technologies is the presence of motion artefacts (MA) [2]. 
To partially overcome this, researchers have proposed 
multiple solutions, with the use of signal quality indicators 
(SQIs) [3], [4] being more suitable for real-life scenarios. 

Validation of ccECG in real-life scenarios in literature 
include its use for monitoring from a car seat [5], [6], from 
a bed [7], [8], among others. In the case of sleep 
monitoring, some of the evaluations include simultaneous 
polysomnography (PSG) measurements [7] from healthy 
subjects, but not from a population with sleep related 
disorders such as obstructive sleep apnea (OSA). 

In the case of ccBioz, most results have been limited to 
experiments under controlled conditions [9] or in dummy 
models [10]. A real-life respiration monitoring evaluation 
from car drivers was presented by the authors in [6]. 

In [11], the authors presented a system with a ccECG 
array for SQI-based real-time electrode selection and 
simultaneous ccBioz monitoring, together with an initial 
sleep monitoring validation in healthy volunteers.  

In this work, the ccECG & ccBioz system from [11] is 
further validated in the clinic by monitoring 28 patients 
with suspected OSA, while simultaneously acquiring PSG 
signals. This, with two main goals: evaluating the heart rate 
(HR) and respiration rate (RR) estimation performance 
using PSG signals as ground-truth, as well as identifying 
the potential use of the ccECG and ccBioz unobtrusive 
signals in respiratory and cardiac applications.  

 
2. Methods 

2.1. Data collection & signal preprocessing 

The system for ccECG and ccBioz presented in [11] was 

Computing in Cardiology 2020; Vol 47 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2020.191



 

 

installed in the sleep laboratory of the University Hospitals 
Leuven, Leuven, Belgium, as shown in Fig. 1. ccECG and 
ccBioz signals were acquired through a bed cover and 
through the patient’s clothing simultaneously with 
standard PSG recordings, after signed informed consent. 
During the recordings, an algorithm for SQI-based 
electrode selection [3], [11] continuously selected the best 
set of electrodes to obtain 4 simultaneous ccECG traces. 

The simultaneous PSG, ccECG and ccBIOZ signals 
were collected from 28 patients with suspected OSA 
during one night. From these, ccBioz signals were only 
available for the first 11 cases due to data loss in the 
remaining ones. A total of 295.2 hours of ccECG data and 
116.1 hours of ccBioz data were acquired. 

Signal pre-processing was applied as follows: ccECG 
and psgECG signals were filtered in the [0.67-40] Hz band, 
according to ambulatory ECG standards (IEC 60601-2-
47). ccBioz and PSG respiratory signals from a thoracic 
belt (TB) were low pass filtered at 1 Hz. To allow 
comparison between unobtrusive and PSG signals, the 
signals were aligned by means of the R-R interval series 
from ccECG and psgECG. 

 
2.2. Performance evaluation  

With the purpose of evaluating the performance of 
ccECG and ccBioz signals, the PSG signals (psgECG and 
psgTB) were used as ground-truth. All signals were 
divided into non-overlapping 60-second segments, for 
which apneic event annotations were available. 

For each (ccECG & psgECG) segment, ECG beat 
detection was performed using a Wavelet-based method 
and beat-to-beat intervals were extracted, as well as 
average heart rate (HR) per window. For each window, the 
respiration rate (RR) values were obtained from ccBioz 
and TB signals by two different methods: 1) a frequency-
based method detecting the maximum power spectral 

density (PSD) value in the [6-44] breaths per minute range, 
and 2) a time-domain method that detects the respiration 
peaks and obtains the averaged window RR from the 
breath-to-breath individual intervals. 

The performance of the ccECG signals was evaluated 
for each patient by calculating, for each window, the beat 
detection sensitivity (i.e. match range of ±75 ms), positive 
predictive value (PPV), the R-R interval mean absolute 
error (MAE) and the tachogram correlation. The averaged 
metrics across windows were obtained per patient, as well 
as the MAE of the windowed HR values. These metrics 
were calculated when applying a SQI-based 
postprocessing approach that discards data subsegments 
with low quality in a 4-step approach [6], as well as when 
no SQI-based processing was applied. psgECG segments 
with low quality were not included in the analysis. 

The ccBioz signals were evaluated by comparing the 
extracted RR by both the frequency-domain and time-
domain methods described above and computing the MAE 
with respect to the equivalent extraction in the TB signals. 
No SQI-based processing or manual signal discarding was 
applied in this case. In addition to the RR evaluation, the 
correlation between the unobtrusive and ground-truth 
signals in segments with good signal quality was obtained, 
and a visual inspection of some of the segments labelled as 
containing apneic episodes was done, to identify the 
potential of using these signals for automatic identification 
of OSA epochs. 

 
3. Results and discussion 

The overall results when comparing ccECG to psgECG 
signals are shown in Table 1, both when applying and 
when not applying the SQI-based signal processing. The 
results of the ccBioz comparison against the TB for 
extraction of RR are shown in Table 2. 

R-R interval root mean squared error (RMSE) from 

Table 1. Overall averaged performance metrics of 
ccECG compared against psgECG. Evaluation done in 
60-second non-overlapping windows. 

Data 
Sens. 
(%) 

PPV 
(%) 

R-R 
MAE 
(ms) 

TC 
(%) 

Window 
HR MAE 
(bpm) 

Used 
data 
(%) 

ccECG
(No 
SQI) 

64.9 63.8 319.21 87.1 19.8 100 

ccECG 
(with 
SQI) 

98.4 98.0 17.12 99.6 1.5 
[19.3 

– 
73.2]3 

TC: Tachogram Correlation; Sens: Sensitivity;  
PPV: Positive Predictive Value; MAE: Mean Absolute Error 
1 RMSE:  19.8ms; 2 RMSE: 1.5ms 
3Range of per-night data used. Median of 37.1; Mean 38.5 

  
Figure 1. Mattress with ccECG and ccBioz sensors 
installed at the sleep laboratory. Cover partially removed 
for the picture (bed fully covered when collecting data). 
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ccECG after applying SQI-based processing is 1.5ms 
(MAE= 17.1ms), which is only slightly higher than the 
RMSE of 1.36ms reported in literature for healthy subjects 
[7]. The obtained R peak sensitivity of 98.4% is similar to 
the 98.0% presented in the same study. Nevertheless, there 
is a lower amount of used data due to the MAs caused by 
motion or low electrode coupling.  

It is clear from the ccECG results in Table 1 that the 
SQI-based signal processing is crucial to obtain R-R 
intervals and HR values in agreement with the psgECG, at 
the expense of using a subset of the recorded ccECG data. 
This, because the ccECG signals present parts of lower 
quality that can be caused by movement, position change 
and PSG bands (3 in total) overlapping with the electrodes.  

The per-night subset of high-quality ccECG data for 
these experiments after SQI-based signal processing was 
in the range of [19.3-73.2]%. This shows important 
differences in the amount of high-quality data between 
patients/nights, which may be related to the amount of 
motion during a specific night. This can be caused in some 
cases by the awakening after an apnea period. To verify the 
latter, the percentage of segments labelled with an OSA 
event per night were plotted against the percentage of high-
quality data as shown in Fig. 2.  

From this figure it can be seen that although a subset of 
patients show an inversely proportional relation between 

segments containing apneic events and used data, there are 
cases in which a relatively high percentage of apneic 
events did not result in a low amount of used data, and 
others in which a low amount of used data correspond to 
nights with low percentage of OSA segments. This points 
out why the apnea-related movements are only partially 
causing low-quality signals. The presence of PSG belts and 
night-specific increased movement (possibly due to a 
different sleeping scenario) is therefore another important 
part of the cause.  

Consequently, the amount of high-quality ccECG data 
in a home environment is expected to be higher than what 
was obtained in this study. This was initially verified with 
10 overnight measurements of home monitoring from a 
healthy volunteer, which resulted in an average coverage 
of ~60% and a range of [44.6-80.1]%.  

These results suggest that a combination of the 
increased motion (by both the altered sleep setting and 
some of the OSA-related awakenings) and the presence of 
the OSA belts can cause lower coverage of this technology 
than when used in a home setting without a PSG system. 

A similar effect of movement and PSG bands is present 
in the ccBioz signals. In this case, RR MAE values 
obtained were 3.48 bpm and 6.37 bpm. These are 

Table 2. Overall averaged performance metrics of 
respiration rate from ccBioz compared against 
respiration rate from TB signals  

Data 

Window 
RR MAE 

-Freq. 
based- 
(bpm) 

Window 
RR MAE 

-Time 
based- 
(bpm) 

Used 
data 
(%) 

ccBIOZ 3.48 6.37 100 
 

 
                        (a)                                                  (b) 
Figure 3. Comparison between morphology of ccECG and 
psgECG signals (a) -91.5% correlation- and between the 
ccBioz and psgTB signals (b) -89.5% correlation-. Both 
signals present high similarity in segments with good signal 
quality. 

  
Figure 2. Comparison across the recorded nights between 
percentage of high-quality ccECG data used after 
applying SQI algorithms and the percentage of segments 
labelled with an OSA event per night.  

 
Figure 4. Comparison between the respiratory signals based on 
ccBioz (Top) and TB from PSG (bottom) in a ~5.5 minute 
segment with multiple apneic episodes. 
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promising results that show the potential of the signals for 
RR extraction, but are still relatively high, considering a 
‘normal’ physiological range of [6-44] bpm.  

In the future, ccBioz SQI algorithms as well as an array 
of ccBioz electrodes, together with modifications in the 
Bioz circuitry to further optimize it for the non-contact 
case, have the potential to improve the respiration results. 
This, not only with the purpose of RR extraction, but also 
with the aim of identifying specific respiratory conditions 
or events such as OSA epochs. 

When making a comparison of the morphology of the 
signals, it was identified that segments with high quality 
data showed high similarity with the PSG ground-truth 
signals, as can be seen in Fig. 3. A correlation of 91.5% 
was obtained between the ccECG segment and the 
psgECG reference shown in the figure. Similarly, a 
comparison between ccBioz-based and psgTB-based 
respiratory activity signals shown, resulted in a correlation 
of 89.5%. This agrees with previous proof-of-concept 
experiments where the ccECG waveform achieved up to 
98% correlation when compared to medical-grade contact 
ECG and ccBioz signals followed respiration patterns. 

In the case of segments with OSA events, it was seen 
that the characteristic respiratory behaviour of TB signals 
is also reflected in ccBioz signals. This is seen in Fig. 4, 
where the periodic respirations followed by apneic periods 
are clearly visible in the ccBioz measurement. 

 
4. Conclusions 

This work presented a real-life validation of a system 
for the unobtrusive acquisition of ccECG and ccBioz-
based respiratory activity on OSA patients when compared 
to PSG signals as ground-truth.  

High performance of ccECG signals was achieved in 
terms of beat detection sensitivity, R-R interval error and 
signal correlation to ground-truth. This was achieved by 
applying SQI-based algorithms, found to be necessary to 
automatically identify high-quality data and significantly 
lower errors in extracted metrics.  

ccBioz signals also achieved a high correlation with 
ground-truth reference in segments of good quality and 
promising results in terms of RR MAE. Additional work 
related to the Bioz acquisition system and SQI algorithms 
for ccBioz are necessary and part of future work. 

Further exploration of ccECG and ccBioz signals for 
application-specific purposes such as the automatic 
detection of OSA epochs is necessary, including the 
evaluation of related features. Furthermore, the high 
similarity between the unobtrusive ccECG and ccBioz to 
ground-truth PSG signals demonstrates the feasibility of 
the use of these technologies for long-term monitoring in 
multiple scenarios, not only for sleep monitoring, but also 
in different real-life scenarios such as driver monitoring, 

office monitoring, among others. 
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