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Abstract

Computer networks are exposed to attacks which have been increasingly more effective. To counter
these emerging threats, researchers and security engineers work relentlessly to keep up with the arms
race and offer improvements to intrusion detection systems as soon as possible. In the recent years,
there has been an increase in the proliferation of systems employing deep learning and machine
learning algorithms to detect suspicious patterns more effectively. To leverage AI effectively in a
real-world scenario of intrusion detection, a scalable stream processing system to feed the detection
algorithms with data samples in a timely and reliable manner has to be established. In this paper,
two use cases of intrusion detection are presented. The first one shows a real-world example of data
collected by one the largest telecom operators - ORANGE. The data was gathered for the SIMARGL
project. The second use case presents the experiments and results of intrusion detection based on
the Netflow scheme. The paper also proposes a scalable streaming architecture based on the Apache
Spark and Apache Kafka technologies. The results of the evaluation of the effectiveness of detecting
malicious behavior in network packets using several machine learning techniques in conjunction with
the stream processing framework are presented.
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1 Introduction

The number and variety of Internet services continue to grow, and so does the number of network related
threats. It is a strenuous task for software engineers and security operatives to provide impeccable secu-
rity. Despite their efforts, data leaks, security breaches, malware attacks, denial of service attacks and
many other are taking place repeatedly and consistently, leading to a whole range of dire consequences
for the companies, the services and the citizens involved. Furthermore, the utilisation of ransomware
by cybercriminals for financial gains is a widespread phenomenon. Critical infrastructure and industries
such as oil and gas, finance, healthcare, food and beverage, and transportation are on the cross-hair [1].
The cybersecurity provider SonicWall reported a record 78.4 million ransomware attacks worldwide in
2021 [2]. One of the more momentous attacks in 2021 targeted a U.S. oil pipeline. The attack dis-
rupted fuel delivery to most of the U.S. East Coast for several days. Another case study comes from
March 2021 - Acer, the Taiwanese multinational hardware and electronics corporation, was attacked by
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the ransomware REvil. The criminals responsible for this attack demanded a ransom of $50 million.
An example of a successful attack from the insurance sector was carried out against the CNA Financial
Corp, a financial corporation based in Chicago. The company reportedly lost about 75,000 records of
its customers’ data. The lost data may have included vital, personal information like the names, health
benefit information, and Social Security numbers of current and former company employees, contract
workers, and their dependents.

In the attack on Kia Motors, a South Korean multinational automobile manufacturer, the so-called
DopplePaymer gang, responsible for the ransomware attack, demanded a ransom of $20 million to de-
crypt company data and not to reveal the stolen company secrets. The victim later disclosed information
about the affected services.

Criminals are increasingly trying to steal the data of ordinary people [3].
These contemporary examples provide an outline of the state of the cyberspace. Cybersecurity is

crucial and the lack of adequate countermeasures can result in disastrous consequences. Every present-
day cyberspace participant, regardless if it is a company, a critical infrastructure or a singular citizen
should be as prepared as possible for the possibility of an attack. This is why it is so important to invent
and improve techniques to prevent such events. The struggle between attackers and defenders is like an
arms race, where cybersecurity experts are inventing new defensive techniques, and cybercriminals are
attempting to circumvent them.

This paper will present an Intrusion Detection System (IDS) which leverages machine learning and
stream processing to detects unwanted patterns in computer networks in real time. The data to train
and verify the defense system was collected from real-world ORANGE traffic for the H2020 SIMARGL
project. The main objective of the project is to counteract cyberthreats and invent effective defense
techniques. This paper is an extended version of the work presented in [4].

The paper is structured as follows: Section two presents related work highlighting similar solutions.
Section number 3 is then devoted to the datasets used in this research paper and a brief presentation of
the use cases. Section 4 introduces the reader to the structure and architecture of our system. Section
5 is then devoted to describing the methodology and the metrics that describe the performance of each
detector. The last two sections refer to the experimental results and the conclusion.

2 Related works

Sophisticated defenses are built for the purpose of stopping security breaches, among those a set of
mechanisms called Intrusion Detection Systems (IDS)[5].

Multiple recent machine-learning-based network intrusion detection propositions can be found in the
literature [6]. A large fragment of those research items is based on supervised learning. An important
factor in the supervised learning pipeline is a proper, annotated dataset that contains a healthy mix of
various examples of correctly labeled attacks.

In [7], the authors proposed a network intrusion detection system (NIDS) utilising a convolutional
neural network (CNN) in a multi-classification model. The model was trained on the KDD-CUP’99 and
NSL-KDD datasets. In the first step, the samples were transformed from a one-dimensional dataset to a
two-dimensional one. Then, an optimized CNN was used. The authors proved in their method that the
multi-classification model benefited the final results, improving accuracy and reducing false positives.

The authors of [8] devoted their attention to the topic of feature selection, noting its significance in
IDS. The authors showed that by using the Krill herd (KH) algorithm in the experimental phase, it was
possible to drastically reduce the number of features (down to seven) in the NSL-KDD dataset, while in
the CICIDS2017 dataset, the number of necessary attributes was reduced to ten. It was also emphasized
that a high detection accuracy was maintained and the time to obtain results was reduced.
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Another example can be found in [9], where the authors used the Apache Spark platform to reduce
the problem of time consumption during detection. They used a deep random forest to detect intrusions
in computer networks. In the first stage, they used a sliding window to split the samples and train a model
on it in the second stage. A multilevel cascaded random forest model was used. Finally, a voting system
was selected to determine the result.

The authors of [10] considered using Flume in conjunction with Kafka for massive data handling.
The traffic was fed to the well-known convolutional neural network architecture - AlexNet [11], the 2012
ImageNet competition winner. The network was trained with the KDD’99 dataset, which is one of the
staples in NIDS research - a dataset available for over twenty years now. The reported detection rate was
94.32%.

In [12], a Distributed Intrusion Detection System (DIDS) has been proposed. The authors attempted
to merge two novel technologies - blockchain and cloud computing - with IDS in an attempt to make it
more robust and reliable. The presented work proved scalability of the platform.

The authors of [13] took an in-depth look into the data-side of network intrusion detection, taking
a survey of the past decade of research. The work dissected some of the recently published datasets,
including LITNET2020, and elaborated upon their pros and cons, including the problems with noisy
data, redundant data, weakly correlated data, insufficient samples of certain attack types, the existence
of the imbalance problem in the distribution of classes, etc. The authors found that one of the major
challenges of the datasets available to researchers in the intrusion detection domain is the lack of real-
world network data.

The authors of [14], provide a thorough analysis of network traffic. They conclude that most of the
cyberthreats present in high-speed, wide-area networks can be identified from packet flows. In contrast,
they identify challenges found in analyzing large amounts of IP packet flows and scalability issues in
IDS solutions. They use network streaming as a form of network traffic delivery and analyze the effects
of such a solution.

In [15], the authors present another Netflow traffic collection technique. They argue that the Netflow
protocol alone does not provide enough information needed to analyze network access behavior. Here,
they propose an alternative version of traffic collection that combines packet capture and flow technique
to accurately identify applications.

In [16], the authors address a topic related to scalable traffic monitoring in a large network. They
highlight the main challenge as efficiently collecting network traffic from hundreds of machines running
in a data center. They point out that in typical networks, the gatherer configuration is centralized and such
a solution is not able to cope with the challenge of large data flow from many machines, the solution may
be to create a cluster of gatherers that would balance the network traffic and be able to accept large
amounts of data. The authors propose a solution which is writing network traffic directly to the scalable
Cassandra database and the collector used is a free open source ntop-ng software. The result of this
research was to confirm the assumptions that the scalable Cassandra database can cope very well with
storing large amounts of network traffic data.

The topic of NetFlow-based attack detection in networks is described in [17]; the authors focus on
DDoS attacks. They emphasize at the beginning of the article the seriousness of DDoS attacks and the
fact that these types of attacks are evolving both in terms of employed techniques and traffic volume.
They also present how to detect DDoS attacks using NetFlow feature selection and machine learning.
The detector built was based on the RandomForest algorithm and after training the model, the authors
get results of 99% accuracy and a false positive of less than 0.5%.

The work presented in [18] highlights the problem of network security and the authors propose a
method called SAWANT, which aims to detect malicious network traffic. The operation of this tech-
nique uses deep learning along with data extraction using the sliding window technique. The extracted
attributes using this technique are transferred to a deep neural network to identify unwanted anoma-
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Figure 1: Structure of Orange network

lies. The authors based their study on the popular CTU-13 dataset and show that they have achieved an
accuracy of 99% using a small amount of data.

In [19], the authors conduct a study related to identifying the effect of features on the detection of
particular types of attacks. Histograms were used to identify the most important features and histograms
from infected and uninfected samples were compared to each other.

In the research presented by the authors of [20], a set of studies dedicated to the analysis of data in the
form of NetFlow and IPFIX in relation to network traffic monitoring is described. The authors introduce
a comprehensive comparison of the two methods and explain their schemes. The entire research focuses
on presenting an example of an ecosystem for flow monitoring. In addition, a comprehensive comparison
of network traffic collection tools is presented.

Extreme Learning Machines (ELM), Distributed Random Forest, and Distributed Random Boosted-
Trees were used in [21]; the authors focus on botnet attack detection. The system architecture is also
presented which will enable the processing of Big Data. In this use case, network data based on the
NetFlow scheme was used. The authors’ research summary shows promising results against network
anomalies.

In [22] and [23], the authors illustrate an IDS architecture approach designed to analyze network
traffic in real time. To achieve this effect, the authors use data streams, and for this purpose they use
Apache Kafka. Apache Kafka is ideal for scalable environments to transfer large amounts of data. To
process large amounts of data from the stream, Apache Spark software was used along with the Elastic-
search database. The authors group network traffic according to a pattern based on source IP address and
sliding windows.

In [24] a set of guidelines for compliance of IDS with the European legislative framework is provided.
The privacy and data protection issues with regard to modern intrusion detection systems is provided.

3 Datasets

This paper places emphasis on data sets based on the Netflow network schema. This type of data was
introduced by Cisco in 1996. With this functionality, a network administrator is able to analyze traffic
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and determine, among others, the source and destination of the traffic. Three components are needed to
fully monitor flows using Netflow. The first is the exporter, which performs the aggregation of the flow
packets on a given machine and exports them to one or more flow collectors. The second component is
the gatherer, which accepts data from connected Netflow exporters. Data at this stage can be processed
and stored. The final component in the ecosystem is the software that collects traffic from the gatherers
and analyzes the traffic for purposes such as anomaly detection or network traffic profiling. It is worth
mentioning, that the most popular Netflow versions are version 5 and 9, but because of the fact that
version 9 contains much more important information, it is recommended to use this version for IDS
purposes. A major challenge is to effectively analyze large amounts of network traffic in real time. In
a wide area network where there are innumerable participants, the network flow can be of considerable
size. This is why a scalable solution that can sustain exporting large amounts of data and post-processing
it is so critical [16].

This paper will present two case studies. The first use case describes building a detector that can
detect suspicious network traffic in data coming from real-world network traffic provided by ORANGE.
In a description of the infrastructure and the process of collecting this data will be provided. The second
scenario showcases the results obtained by the proposed solution on public benchmark network security
datasets.

3.1 Overview of the ORANGE infrastructure and dataset

The TPNET (AS5617) is the Orange Poland backbone network. It consists of numerous routers and
has several entry points (upstream links). As can be seen in Figure 1, two upstream service providers
are providing connectivity with other autonomous systems. Total aggregated capacity of those uplinks
is measured in the Tbps (terabit) scale. Although some Indicators of attack (IOA) - mostly originating
from badly configured subscribers’ equipment - can be seen inside of the network, we believe that the
majority of threats is coming through inter-AS uplinks. This is the data source for analysis in this
work. Currently, there are seven routers that are providing connectivity with the upstream. To allow
acquisition, IPFIX/jFlow [25] data was generated from the production ingress traffic directly. The router
was operating JunOS platform with a sample 1:2000 ratio on each interface. This data is fed to Apache
Kafka. The structure of the network data collected with the collector is presented in Table 1. The table
contains the names of thirteen fields that represent the network data along with their descriptions. The
data allows for efficient network intrusion detection. Since the dataset was collected from live network
traffic, the ratio of normal to anomalous traffic was 122:1. Data balancing techniques were used to
counter the data imbalance problem, as described in Section 5.

3.2 Overview of the NIDS dataset

The work showcased in this paper utilises the NetFlow scheme.
As highlighted in the ”Related Works” section, flow-like features allow to build effective Network

Intrusion Detection methods. A comprehensive description of the Netflow V9 protocol can be found in
[26].

In part of this research, the NF-UNSW-NB15 dataset will be used. The set is based on the well-
known UNSW-NB15 dataset. The authors of NF-UNSW-NB15 present a comprehensive paper in which
they convert several popular datasets into NetFlow format datasets [27]. These have been extended with
additional features that are found in the NetFlow schema. In addition, the data is tagged with appropriate
attack categories. The total dataset contains 2,390,275 flows, including 95,053 infected flows. Attacks
included in this collection can be classified into 9 categories.
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Table 1: The schema of a network sample
# Field Name Description
1 IN BYTE Incoming flow bytes
2 OUT BYTE Outgoing flow bytes
3 IN PKT Incoming flow packets
4 OUT PKT Outgoing flow packets
5 SRC IP ADDR IPv4 source address
6 DST IP ADDR IPv4 destination address
7 SRC PORT IPv4 source port
8 DST PORT IPv4 destination port
9 PROTO Protocol
10 BYTES Sum of bytes
11 FLOWS Sum of flows
12 PACKETS Sum of packets
13 DURATION Flow duration

The second benchmark dataset used in this study is the ToN-IoT converted to the NetFlow form. Its
origin is the IOT network; the total number of frames available in this set is exactly 16 940 496. 63.99%
of this traffic is infected, which translates into 10 841 027 flows, and the remaining 36.01% is normal
traffic which corresponds to 6 099 469 flows.

The third dataset used in this work is the NF-BoT-IoT dataset. Its structure is based on the NF-ToN-
IoT dataset, although the authors generated more malicious traffic. Its size is 37,763,497 network frames,
divided in the ratio 99.64% of network attacks to only 0.36% of the normal traffic.

The last public benchmark dataset used in this paper is the popular CSE-CIC-IDS2018 collection,
which was converted from PCAP files to the Netflow schema. The total size of this set is 18,893,708
flows. The set contains 88.05% of normal traffic (16,635,567 flows), the rest are 2,258,141 attacks
(11.95%).

A detailed description of the conversion process from PCAP files to the Netflow protocol and the
creation of the aforementioned datasets is described in [27].

4 Practical IDS system deployment

As explained in the previous section, the data gathered by Orange comes from a production node. The
data was used to formulate a model that is at the basis of the proposed IDS system. The IDS is based
on a modular architecture and each module performs a separate task. The software leverages the Apache
Kafka [28] platform for data streaming, which is optimal for transporting large amounts of data through
the stream. This solution ensures stability and guarantees delivery of the sent data. It also guarantees
high performance and ability to operate in a distributed environment. Apache Kafka was field-proven
for message distribution by tech giants such as LinkedIn, Netflix or Spotify. In 2019, the total number of
messages handled by Apache Kafka in LinkedIn exceeded 7 trillion per day [29]. This proves software
stability and performance in big-data conditions.

Network frames that have passed through the proposed IDS and been classified are saved and stored
in the Elasticsearch Database [30]. This solution was also chosen for its high search/indexing perfor-
mance and seamless scalability, which increases the capabilities of the database and reduces threats such
as service unavailability. Additionally, the database engine itself provides a REST API, thanks to which
it is possible to retrieve data via HTTP queries. Additionally, the database can be equipped with a visual-
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isation tool to increase situational awareness by serving customisable reports filled with actionable intel
of choice. The module is called Kibana [31].

The software developed to protect against potential network attacks, code-named the ”Big Data En-
gine (BDE)”, uses the capabilities and extends the Apache Spark framework [32]. The use of this plat-
form is ideal for processing large amounts of data and the dispersion of tasks to different servers. The
proposed solution provides several modules that are able to run directly on the Apache Spark platform.
For this purpose, languages such as Scala or Python were used.

The first module is a component which accepts data from a source; it can be a file, data stream or a
database. On this data, all necessary processes are performed - cleaning, scaling or feature selection.

The process of checking and cleaning the data contained in a single frame involves discarding frames
that are incomplete. Due to the fact that using network data collector ensures complete data extraction
without any loss of information, this stage is only triggered to ensure 100% complete data in prediction
or machine learning stage.

Some ML algorithms are sensitive to feature scale, so as part of the data preprocessing step fea-
ture scaling mechanisms are employed. The flows were subjected to the StandardScaler method, which
performs feature standardisation removing the mean and scaling to unit variance.

Having completed the preprocessing steps, feature selection was performed.
Irrelevant or noisy feature values in the data can reduce the accuracy of ML models. The use of

the feature selection process aims to reduce the computational time of the model and increase the met-
rics achieved by anomaly detection. The feature selection method used in this study is the chi square
method [33]. It is based on calculating the chi square between each feature and the target value.

chi2 = ∑
et∈{0,1}

∑
ec∈{0,1}

(Net ec−Eet ec)
2

Eet ec

(1)

In Equation (1) N is the observed value of w, and E the expected value. et takes the value of 1 if
the sample contains the term t, and 0 otherwise. ec takes the value 1 if the sample belongs to class c,
and 0 otherwise.

Then, the pre-processed data is saved or goes back to the stream, where it can be forwarded to the
ML-based classifier module. The classifier module can be trained on the obtained data, or it can perform
the classification task on the basis of a defined model.

The module that performs the function of training a particular classifier is always run when one needs
to train a new model or retrain the existing one. This task is performed in the offline mode, and annotated
data must be provided from a file or the stream [34].

The module that performs the task of classification of a given frame reads the provided model (e.g.,
artificial neural network) and on its basis, it assigns a specific label. Typically, the result and a particular
sample are saved to the database, or returned again to the stream. This design provides the possibility of
formulating and using infinitely many different models and processes. The entire solution is shown with
all the components in Figure 2.

5 Methods

Detecting anomalies in the network traffic is a challenging endeavour, as more and more threats reach
modern networks every day [35]. To counter novel abuses, software is being developed that effectively
detects the transgressions and allows the security operators to thwart the attacks. Thanks to the data
provided by Orange, research could be accomplished on detecting anomalies in real-world network traf-
fic. Using the presented platform, several stages of testing were performed with the goal of providing
domain-standard measures of the effectiveness of the trained classifiers.
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Figure 2: Big data engine - Architecture

The first stage was to load the provided network traffic frames from CSV files. At this stage of
research, the individual samples that did not contain complete data were removed - in future work impu-
tation methods will also be tested on this data. The next step was to use a feature selection technique, by
which the final shape of the input field schema was established.

There are many ways of approaching netflow-based feature extraction and dimesionality reduc-
tion [?], [?]. In this work, a set of IPFIX fields was exported. The SelectKBest algorithm from the
scikit-learn [36] package was then used to choose the features which contribute to the result. The method
selects features according to the k highest scores. By changing the parameter ’score func’, we can apply
the method to both classification and regression data, making it suitable for all types of datasets. Using
this feature in machine learning eliminates the less relevant part of the data and reduces the training time.

In addition, multidimensionality was reduced using principal component analysis (PCA). After the
data preparation was completed, the last step before training the model was to tackle the problem of
unbalanced distribution of classes in the dataset. Data imbalance may lead to the deterioration of the
model effectiveness metrics. For this purpose, the number of samples belonging to minority classes was
increased using the Synthetic Minority Oversampling Technique (SMOTE) [37] algorithm.

In this research work, a range of classifiers has been used to build anomalous network traffic detec-
tors. In the first use case, the following models were used: Random Forest, Xboost, AdaBoost and ANN.
In the second use case, the LightGBM algorithm was also added.
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5.1 Description of used machine learning models

The choice of the particular ML methods and their implementations is based on the effectiveness achieved
in our previous works [22], [23] and [4], and initial experiments.

The first classifier included in this study is the Random Forest algorithm. This method belongs to the
group based on the ensemble learning technique. The benefit of using this classifier is the simplicity of
application. The algorithm does not require extensive hyperparameter tuning, fits to the data relatively
quickly and achieves satisfactory metrics on NIDS data. The working principle of this algorithm is
based on creating multiple decision trees at the training stage and using majority voting to determine
the classification. By using the majority voting method, the problem of overfitting the training data is
reduced. Additionally, in the training stage, the model uses bagging. This technique involves repeatedly
selecting a random sample from the training set, and matching trees to these samples.

The main advantage of the LightGBM [38] classifier is its high performance and distributability.
Working principle of the algorithm is based on boosted decision trees. The difference that sets it apart
from other boosting algorithms is its partitioning method, as it grows the trees leaf-wise with starting with
the tree having the most impact on the decrease of the gradient, while other boosted trees algorithms grow
the trees level by level.

The Adaptive Boosting classifier (AdaBoost) [39] is a boosted decision trees variation with the main
advantage of being less prone to overfitting, as the input parameters are not optimized together. However,
when using this classifier, one needs to use a good quality set and avoid noisy and outlier data. The tech-
nique involves adding an element of boosting and adaptively adjusting the weights on misclassification.
This results in weak weights being converted to strong weights.

Artificial neural network (ANN) - The working principle of the artificial neural network is is based
on layers of computational nodes called neurons connected by weights adjustable by backpropagation
of error. In this research paper, the network construction starts with a hidden layer having 64 neurons,
and a second layer of 32 neurons. In both cases, the activation fucntion is set for Rectified Linear Unit
(RELu). The final layer has the exact number of neurons as the number of classes in the researched
dataset (number of anomaly types). The neural network loss function in the classification case was ”cat-
egorical crossentropy” , while the selected optimization algorithm was Adaptive Momentum (ADAM).

The employment of neural networks in this work is was carried out due to multiple advantages ANNs
offer in comparison to traditional machine learning techniques. First and foremost, with large volumes
of data ANNs can continue to learn when traditional ML techniques saturate. Another benefit is the
ability to freeze parts of the network and retrain the remaining part, which is useful from the perspective
of adapting the network to new, but similar data, for example in the occurance of concept drift - which
is out of scope of this paper, but is part of the general research direction in the real-world deployment of
ML-based IDS.

XGBoost algorithm, otherwise known as Extreme Gradient Boosting is considered a classifier be-
longing to the family of boosting algorithms. Its operation is based on the use of gradient boosting
(GBM); however, instead of using gradient descent in the function space, XGBoost relies on Newton-
Raphson with the use of a second order taylor’s approximation. The boosting technique operates on the
principle of ensemble, combining a set of weak learners and providing better prediction accuracy.

5.2 Metrics for model evaluation

To be able to compare the performance of ML algorithms, a number of metrics is calculated. The
evaluation metrics are computed on the basis of the the confusion matrix.

In the confusion matrix for IDS, four main values are presented - the first value describes cases in
which a sample was correctly classified as an attack. This value is referred to a true positive (TP). The
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second type of metric refers to the correct classification that the sample is benign. This metric is referred
to as true negatives (TN). The next two metrics relate to misclassification. The first, referred to as false
positives (FP), represents the fact that the algorithm classified the occurrence of an event where in fact it
did not occur. The last value is the number of false negatives (FN), which aggregates the instances where
the algorithm classifies that an event did not occur where, according to the data it did, in fact. All the
variables presented above are then used to calculate a set of informative metrics.

In this paper, the following measures are used to evaluate the algorithms: Accuracy (ACC - equation:
2), Precision (Pr - equation: 3), Recall (Re - equation: 4), F1-Score (equation: 5), Balanced accuracy
(BCC - equation: 6) and Matthews correlation coefficient (MCC - equation: 7).

Accuracy =
T P+T N

T P+FP+FN +T N
(2)

Precision =
T P

T P+FP
(3)

Recall =
T P

T P+FN
(4)

F1 = 2∗ Recall ∗Precision
Recall +Precision

(5)

BCC =
T P

T P+FN + T N
T N+FP

2
(6)

MCC =
T N ∗T P−FN ∗FP√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(7)

6 Experiments and Results

This section is divided into two use cases. The first scenario is the real-world example of network
intrusion detection on the traffic coming from the ORANGE network. The second scenario presents the
results of intrusion detection using the public NetFlow benchmark datasets.

6.1 Usecase - Orange

In the previous section, the proposed methodology was presented. The results of the research based on the
data provided by Orange will be described in this section. The feature contribution to the classification
was estimated using the SelectKBest algorithm. The result of this procedure is presented in Figure 3.

After data pre-processing, the performance of four algorithms in terms of their ability to correctly
distinguish anomalous network traffic from the normal one was tested. The notion of proper hyperparam-
eter setup can influence the final results in ML [40]. The first classifier is Random Forest. The number of
estimators was configured to be 100, the maximum tree depth was set to 10, and the remaining variables
were left as defaults. The results for this classifier are presented in Table 2.

Gradient Boosted Trees is the second algorithm tested for detection of intrusions in the provided
network traffic. The obtained results can be found in Table 3.

Another tested algorithm is LightGBM. It complements and extends the research that was conducted
in the original paper. The results obtained can be found in the table 4.
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Figure 3: Result of feature importance

Table 2: Summary of the results for the Random Forest Classifier
# Accuracy(AVG) Precision (AVG) Recall (AVG) F1 (AVG) BACC MCC

1 0.91 0.91 0.91 0.91 0.9135 0.8272
2 0.91 0.91 0.92 0.91 0.9140 0.8280
3 0.91 0.91 0.91 0.91 0.9240 0.8210
4 0.91 0.91 0.91 0.91 0.9139 0.8279
5 0.92 0.92 0.92 0.92 0.9155 0.8311
6 0.91 0.91 0.91 0.91 0.9148 0.8298
7 0.91 0.91 0.91 0.92 0.9137 0.8275
8 0.92 0.92 0.92 0.92 0.9154 0.8310
9 0.91 0.91 0.91 0.91 0.9147 0.8295
10 0.91 0.91 0.91 0.91 0.9147 0.8296

The penultimate tested classifier is AdaBoost and its results can be found in Table 5. When building
this classifier, the main estimator was set to DecisionTreeClassifier, initializing it with a depth of one.
The maximum number of estimators after which learning is terminated was 150.

The weight applied to each classifier in each boosting iteration was 1.
The final model to conclude the study was an artificial neural network. The network structure is

as follows: The used activation function was the Rectified Linear Unit (ReLU), the ANN had just one
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Table 3: Summary of the results for the Gradient Boosted Trees
# Accuracy(AVG) Precision(AVG) Recall(AVG) F1(AVG) BACC MCC

1 0.88 0.88 0.88 0.88 0.8757 0.7515
2 0.88 0.88 0.88 0.88 0.8760 0.7529
3 0.88 0.88 0.88 0.88 0.8761 0.7532
4 0.88 0.88 0.88 0.88 0.8772 0.7546
5 0.88 0.88 0.88 0.88 0.8772 0.7555
6 0.88 0.88 0.88 0.88 0.8770 0.7541
7 0.88 0.88 0.88 0.88 0.8768 0.7537
8 0.88 0.88 0.88 0.88 0.8767 0.7536
9 0.88 0.88 0.88 0.88 0.8775 0.7561
10 0.88 0.88 0.88 0.88 0.8772 0.7556

Table 4: Summary of the results for the LightGBM
# Accuracy(AVG) Precision(AVG) Recall(AVG) F1(AVG) BACC MCC

1 0.89 0.89 0.89 0.89 0.8757 0.7515
2 0.90 0.90 0.90 0.90 0.8760 0.7529
3 0.88 0.88 0.88 0.88 0.8761 0.7532
4 0.89 0.89 0.89 0.89 0.8772 0.7546
5 0.90 0.90 0.90 0.90 0.8772 0.7555
6 0.89 0.89 0.89 0.89 0.8770 0.7541
7 0.90 0.90 0.90 0.90 0.8768 0.7537
8 0.89 0.89 0.89 0.89 0.8767 0.7536
9 0.88 0.88 0.88 0.88 0.8775 0.7561
10 0.89 0.89 0.88 0.88 0.8772 0.7556

Table 5: Summary of the results for the AdaBoost Classifier
# Accuracy(AVG) Precision(AVG) Recall(AVG) F1(AVG) BACC MCC

1 0.86 0.86 0.86 0.86 0.8556 0.7132
2 0.85 0.86 0.85 0.85 0.8535 0.7087
3 0.85 0.86 0.85 0.85 0.8549 0.7119
4 0.86 0.86 0.86 0.86 0.8560 0.7142
5 0.86 0.86 0.86 0.86 0.8553 0.7127
6 0.86 0.86 0.86 0.86 0.8560 0.7141
7 0.86 0.86 0.86 0.86 0.8557 0.7133
8 0.85 0.86 0.85 0.85 0.8519 0.7101
9 0.85 0.86 0.85 0.85 0.8549 0.7119
10 0.86 0.86 0.86 0.86 0.8558 0.7138
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Table 6: Summary of the results for the deep neural network
# Accuracy(AVG) Precision(AVG) Recall(AVG) F1(AVG) BACC MCC

1 0.88 0.88 0.88 0.88 0.8792 0.7591
2 0.88 0.88 0.88 0.88 0.8791 0.7595
3 0.88 0.88 0.88 0.88 0.8762 0.7537
4 0.88 0.88 0.88 0.88 0.8755 0.7531
5 0.87 0.87 0.87 0.87 0.8719 0.7450
6 0.86 0.86 0.86 0.86 0.8569 0.7143
7 0.86 0.86 0.86 0.86 0.8571 0.7144
8 0.87 0.87 0.87 0.87 0.8746 0.7493
9 0.88 0.88 0.88 0.88 0.8770 0.7550
10 0.88 0.88 0.88 0.88 0.8787 0.7586

Figure 4: The flow-based real-time machine learning network intrusion detection data processing
pipeline

hidden layer to ensure fast processing.
The results generated by this approach can be found in Table 6

6.2 Usecase - NIDS

The following paragraphs showcase the experiments and the results of NIDS based on NetFlow protocol.
With the use of machine learning algorithms: Random Forest, LightGBM, XBoost and ANN, network
intrusion detection algorithms were built with the following datasets: NF-UNSW-NB15, NF-BoT-IoT,
NF-CSE-CIC-IDS2018, and NF-ToN-IoT.

The data preparation process was constant for each dataset. The datasets have a unified feature vector
rooted in the Netflow schema. The full process can be seen in Fig. 4.

Tuning and finding the appropriate parameters for each of the classifiers used involved applying a
process of finding the ideal model architecture called hyperparameter tuning. The ”Grid Search” method
was used to find the most optimal parameters. The method works by building models for each possible
combination of all provided values of hyperparameters and then evaluating the results that these com-
binations bring in order to choose the architecture that provides the best metrics. In Table 7, the final
hyperparameter configuration for each classifier is shown. The structure of the table includes the name
of the algorithm, the name of the hyperparameter and the value used in this research.

The results of the study are presented in the summary in Table 8. A number of metrics were used to
determine the performance of individual detectors. The higher the value in a particular metric, the better
the indicated effectiveness of the particular classification algorithm is.

All the used classifiers achieved an accuracy above 99%, with high metrics across the board.
Comparing the two case studies with results displayed in Tables 2, 4, 3, 5, 6, and 8 shows that in

both cases the effectiveness of using machine learning is more than 91% with respect to detecting attack
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Table 7: The final result of tuning hyperparameters by using the GridSearch technique.
Model Parameter Value

Random
Forest n estimators 200

max features auto
max depth 10
criterion entropy

LightGBM max depth 2
feature fraction 0.5

XBoost var smoothing 1e-9
ANN epochs 16

batch size 20
loss function categorical crossentropy

Table 8: A table summarizing the results of all tests for the four datasets and the Random Forest, XBoost,
LightGBM, AdaBoost and ANN algorithms

NF-UNSW-NB15
Classificator Accuracy Precision Recall F1 Bcc Mcc
Random Forest 1 0.99 0.99 0.99 0.97 0.96
XBoost 1 0.99 0.97 0.98 0.97 0.95
LightGBM 1 0.99 0.97 0.98 0.95 0.95
AdaBoost 1 0.99 0.97 0.98 0.95 0.95
ANN 1 0.98 0.97 0.99 0.96 0.97

NF-BoT-IoT
Classificator Accuracy Precision Recall F1 Bcc Mcc
Random Forest 1 1 0.98 0.99 0.98 0.98
XBoost 1 1 0.99 0.99 0.98 0.98
LightGBM 1 1 0.98 0.98 0.97 0.98
AdaBoost 1 1 0.98 0.98 0.97 0.98
ANN 1 0.98 0.97 0.97 0.94 0.95

NF-ToN-IoT
Classificator Accuracy Precision Recall F1 Bcc Mcc
Random Forest 1 1 0.99 0.99 0.98 0.98
XBoost 1 1 0.98 0.98 0.96 0.98
LightGBM 1 1 0.99 0.98 0.98 0.98
AdaBoost 1 1 0.98 0.98 0.97 0.98
ANN 0.99 0.97 0.99 0.99 0.99 0.96

NF-CSE-CIC-IDS2018
Classificator Accuracy Precision Recall F1 Bcc Mcc
Random Forest 1 0.98 1 0.99 0.99 0.97
XBoost 1 0.95 1 0.97 0.98 0.97
LightGBM 1 0.98 1 0.99 0.99 0.97
AdaBoost 1 1 0.98 0.98 0.97 0.98
ANN 0.99 0.97 0.99 0.99 0.99 0.96
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pattern behaviour in network traffic based on NetFlow data. Of the tested algorithms the highest results
in the first case study was achieved using the Random Forest algorithm, which achieved accuracy of 91%
on data coming from the real network as provided by Orange. When tested on netflow NIDS benchmark
datasets datasets, the lowest metric was detection results were comparable on all algorithms used, with
Random Forest having a slight lead on three out of four benchmarks.

Tables 2-6 contain the results of the first use case for each of the employed algorithms. The Tables
report results of the 10 folds of Cross-Validation. Each case reports six validation metrics (Accuracy,
Precision, Recall, F1, Balanced Accuracy - BACC and Matthiews Correlation Coefficient - MCC). The
way the metrics are calculated is presented in Section 5.2. As can be observed from those Tables, the 10
folds of Cross-Validation present stable results each of the tested algorithms.

The results summarizing the experiments constituting the second use case are included in Table 8.

The algorithm that gets the highest metrics is Random Forest, closely followed by other tree-based
algorithms - Xboost and LightGBM. In both use cases it can be concluded that the use of ML results in
high detection of anomalies in the network.

7 Conclusion

The research presented in this paper is an extension of the work we have presented in [4], which com-
pletely describes the use case related to detection of anomalous traffic in the real-world ORANGE net-
work. The extension of the research provided in this paper presents intrusion detection based on the
NetFlow schema. To validate the effectiveness of the proposed solution, which allows for using algo-
rithms such RandomForest, XBoost, ANN or LightGBM, four NIDS datasets were used.

In comparison to our original paper [4], the work showcased in this paper extends the research of
detection of attacks on a dataset collected from a real-world computer network managed by Orange. The
extension presents the use of the detection pipeline presented in the original paper on novel datasets and
with more algorithms. Thus, the added value comes from increased reproducibility due to four large
NIDS Netflow open benchmark datasets form. The research has also increased the number of covered
machine learning algorithms with the following: LightGBM and Xboost. Within this paper the issue of
scalable architecture of the solution which is able to process real network traffic was also presented.

The research in this paper carried out under the H2020 SIMARGL project and serves the creation
and real-world deployment of a machine-learning-based network intrusion detection solution. Some of
the AI solutions used in this work were also researched in the H2020 SPARTA project. As of the time
of writing this paper, the ML-based NIDS is a fully-fledged engine, which enables the utilisation of the
entire ML pipeline with the use of industry-standard libraries like sci-kit and TensorFlow. The prepared
models can be employed to perform real-time classification by ingesting data from the Kafka stream.
The engine, its principles, testing and how it pushes the envelope for ML-based NIDS was the subject
of a series of scientific publications [41], [42], [43], [44]. The solution is being continuously developed
and integrated, with the problems found in deployment giving inspiration for new research directions and
scientific work.

In the long term, the research concerning the NIDS is to be extended to include elements related to
the domains of life-long learning, concept drift detection and transfer learning / domain adaptation. In
addition, future work is devoted to further improvements towards integrating more machine learning con-
cepts and algorithms, spearheading further scientific developments in the utilisation of ML for network
intrusion detection.
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