As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The optical disc in the human retina can reveal important information about a person’s health and well-being. We propose a deep learning-based approach to automatically identify the region in human retinal images that corresponds to the optical disc. We formulated the task as an image segmentation problem that leverages multiple public-domain datasets of human retinal fundus images. Using an attention-based residual U-Net, we showed that the optical disc in a human retina image can be detected with more than 99% pixel-level accuracy and around 95% in Matthew’s Correlation Coefficient. A comparison with variants of UNet with different encoder CNN architectures ascertains the superiority of the proposed approach across multiple metrics.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.