As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Survival prediction is crucial for treatment decision making in hepatocellular carcinoma (HCC). We aimed to build a fully automated artificial intelligence system (FAIS) that mines whole-liver information to predict overall survival of HCC. We included 215 patients with preoperative contrast-enhance CT imaging and received curative resection from a hospital in China. The cohort was randomly split into developing and testing subcohorts. The FAIS was constructed with convolutional layers and full-connected layers. Cox regression loss was used for training. Models based on clinical and/or tumor-based radiomics features were built for comparison. The FAIS achieved C-indices of 0.81 and 0.72 for the developing and testing sets, outperforming all the other three models. In conclusion, our study suggest that more important information could be mined from whole liver instead of only the tumor. Our whole-liver based FAIS provides a non-invasive and efficient overall survival prediction tool for HCC before the surgery.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.