As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This study employs machine learning techniques to identify factors that influence extended Emergency Department (ED) length of stay (LOS) and derives transparent decision rules to complement the results. Leveraging a comprehensive dataset, Gradient Boosting exhibited marginally superior predictive performance compared to Random Forest for LOS classification. Notably, variables like triage acuity and the Elixhauser Comorbidity Index (ECI) emerged as robust predictors. The extracted rules optimize LOS stratification and resource allocation, demonstrating the critical role of data-driven methodologies in improving ED workflow efficiency and patient care delivery.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.