Statistics > Machine Learning
[Submitted on 7 Nov 2019 (v1), last revised 12 Feb 2021 (this version, v4)]
Title:Confidence Intervals for Policy Evaluation in Adaptive Experiments
View PDFAbstract:Adaptive experiment designs can dramatically improve statistical efficiency in randomized trials, but they also complicate statistical inference. For example, it is now well known that the sample mean is biased in adaptive trials. Inferential challenges are exacerbated when our parameter of interest differs from the parameter the trial was designed to target, such as when we are interested in estimating the value of a sub-optimal treatment after running a trial to determine the optimal treatment using a stochastic bandit design. In this context, typical estimators that use inverse propensity weighting to eliminate sampling bias can be problematic: their distributions become skewed and heavy-tailed as the propensity scores decay to zero. In this paper, we present a class of estimators that overcome these issues. Our approach is to adaptively reweight the terms of an augmented inverse propensity weighting estimator to control the contribution of each term to the estimator's variance. This adaptive weighting scheme prevents estimates from becoming heavy-tailed, ensuring asymptotically correct coverage. It also reduces variance, allowing us to test hypotheses with greater power - especially hypotheses that were not targeted by the experimental design. We validate the accuracy of the resulting estimates and their confidence intervals in numerical experiments and show our methods compare favorably to existing alternatives in terms of RMSE and coverage.
Submission history
From: Vitor Hadad [view email][v1] Thu, 7 Nov 2019 06:15:52 UTC (164 KB)
[v2] Tue, 7 Jul 2020 17:44:37 UTC (205 KB)
[v3] Fri, 10 Jul 2020 18:09:03 UTC (203 KB)
[v4] Fri, 12 Feb 2021 20:03:50 UTC (725 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.