Mathematics > Numerical Analysis
[Submitted on 2 Jul 2022]
Title:Generalized Korn's Inequalities for Piecewise $H^2$ Vector Fields
View PDFAbstract:The purpose of this paper is to construct a new class of discrete generalized Korn's inequalities for piecewise H2 vector fields in three-dimensional space. The resulting Korn's inequalities are different from the standard Korn's inequalities, as they involve the trace-free symmetric gradient operator, in place of the usual symmetric gradient operator. It is anticipated that the new generalized Korn's inequalities will be useful for the analysis of a broad range of finite element methods, including mixed finite element methods and discontinuous Galerkin methods.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.