Computer Science > Computation and Language
[Submitted on 5 May 2024]
Title:Enabling Patient-side Disease Prediction via the Integration of Patient Narratives
View PDF HTML (experimental)Abstract:Disease prediction holds considerable significance in modern healthcare, because of its crucial role in facilitating early intervention and implementing effective prevention measures. However, most recent disease prediction approaches heavily rely on laboratory test outcomes (e.g., blood tests and medical imaging from X-rays). Gaining access to such data for precise disease prediction is often a complex task from the standpoint of a patient and is always only available post-patient consultation. To make disease prediction available from patient-side, we propose Personalized Medical Disease Prediction (PoMP), which predicts diseases using patient health narratives including textual descriptions and demographic information. By applying PoMP, patients can gain a clearer comprehension of their conditions, empowering them to directly seek appropriate medical specialists and thereby reducing the time spent navigating healthcare communication to locate suitable doctors. We conducted extensive experiments using real-world data from Haodf to showcase the effectiveness of PoMP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.