Electrical Engineering and Systems Science > Systems and Control
[Submitted on 11 Oct 2024]
Title:Towards Input-Convex Neural Network Modeling for Battery Optimization in Power Systems
View PDF HTML (experimental)Abstract:Battery energy storage systems (BESS) play an increasingly vital role in integrating renewable generation into power grids due to their ability to dynamically balance supply. Grid-tied batteries typically employ power converters, where part-load efficiencies vary non-linearly. While this non-linearity can be modeled with high accuracy, it poses challenges for optimization, particularly in ensuring computational tractability. In this paper, we consider a non-linear BESS formulation based on the Energy Reservoir Model (ERM). A data-driven approach is introduced with the input-convex neural network (ICNN) to approximate the nonlinear efficiency with a convex function. The epigraph of the convex function is used to engender a convex program for battery ERM optimization. This relaxed ICNN method is applied to two battery optimization use-cases: PV smoothing and revenue maximization, and it is compared with three other ERM formulations (nonlinear, linear, and mixed-integer). Specifically, ICNN-based methods appear to be promising for future battery optimization with desirable feasibility and optimality outcomes across both use-cases.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.