Computer Science > Computation and Language
[Submitted on 26 Apr 2022]
Title:Disambiguation of morpho-syntactic features of African American English -- the case of habitual be
View PDFAbstract:Recent research has highlighted that natural language processing (NLP) systems exhibit a bias against African American speakers. The bias errors are often caused by poor representation of linguistic features unique to African American English (AAE), due to the relatively low probability of occurrence of many such features in training data. We present a workflow to overcome such bias in the case of habitual "be". Habitual "be" is isomorphic, and therefore ambiguous, with other forms of "be" found in both AAE and other varieties of English. This creates a clear challenge for bias in NLP technologies. To overcome the scarcity, we employ a combination of rule-based filters and data augmentation that generate a corpus balanced between habitual and non-habitual instances. With this balanced corpus, we train unbiased machine learning classifiers, as demonstrated on a corpus of AAE transcribed texts, achieving .65 F$_1$ score disambiguating habitual "be".
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.