Computer Science > Information Retrieval
[Submitted on 14 Oct 2022]
Title:MV-HAN: A Hybrid Attentive Networks based Multi-View Learning Model for Large-scale Contents Recommendation
View PDFAbstract:Industrial recommender systems usually employ multi-source data to improve the recommendation quality, while effectively sharing information between different data sources remain a challenge. In this paper, we introduce a novel Multi-View Approach with Hybrid Attentive Networks (MV-HAN) for contents retrieval at the matching stage of recommender systems. The proposed model enables high-order feature interaction from various input features while effectively transferring knowledge between different types. By employing a well-placed parameters sharing strategy, the MV-HAN substantially improves the retrieval performance in sparse types. The designed MV-HAN inherits the efficiency advantages in the online service from the two-tower model, by mapping users and contents of different types into the same features space. This enables fast retrieval of similar contents with an approximate nearest neighbor algorithm. We conduct offline experiments on several industrial datasets, demonstrating that the proposed MV-HAN significantly outperforms baselines on the content retrieval tasks. Importantly, the MV-HAN is deployed in a real-world matching system. Online A/B test results show that the proposed method can significantly improve the quality of recommendations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.