Mathematics > Numerical Analysis
[Submitted on 18 Sep 2023]
Title:Data fusion for a multi-scale model of a wheat leaf surface: a unifying approach using a radial basis function partition of unity method
View PDFAbstract:Realistic digital models of plant leaves are crucial to fluid dynamics simulations of droplets for optimising agrochemical spray technologies. The presence and nature of small features (on the order of 100$\mathrm{\mu m}$) such as ridges and hairs on the surface have been shown to significantly affect the droplet evaporation, and thus the leaf's potential uptake of active ingredients. We show that these microstructures can be captured by implicit radial basis function partition of unity (RBFPU) surface reconstructions from micro-CT scan datasets. However, scanning a whole leaf ($20\mathrm{cm^2}$) at micron resolutions is infeasible due to both extremely large data storage requirements and scanner time constraints. Instead, we micro-CT scan only a small segment of a wheat leaf ($4\mathrm{mm^2}$). We fit a RBFPU implicit surface to this segment, and an explicit RBFPU surface to a lower resolution laser scan of the whole leaf. Parameterising the leaf using a locally orthogonal coordinate system, we then replicate the now resolved microstructure many times across a larger, coarser, representation of the leaf surface that captures important macroscale features, such as its size, shape, and orientation. The edge of one segment of the microstructure model is blended into its neighbour naturally by the partition of unity method. The result is one implicit surface reconstruction that captures the wheat leaf's features at both the micro- and macro-scales.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.