Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Oct 2023 (v1), last revised 14 Mar 2024 (this version, v2)]
Title:Does CLIP's Generalization Performance Mainly Stem from High Train-Test Similarity?
View PDF HTML (experimental)Abstract:Foundation models like CLIP are trained on hundreds of millions of samples and effortlessly generalize to new tasks and inputs. Out of the box, CLIP shows stellar zero-shot and few-shot capabilities on a wide range of out-of-distribution (OOD) benchmarks, which prior works attribute mainly to today's large and comprehensive training dataset (like LAION). However, it is questionable how meaningful terms like out-of-distribution generalization are for CLIP as it seems likely that web-scale datasets like LAION simply contain many samples that are similar to common OOD benchmarks originally designed for ImageNet. To test this hypothesis, we retrain CLIP on pruned LAION splits that replicate ImageNet's train-test similarity with respect to common OOD benchmarks. While we observe a performance drop on some benchmarks, surprisingly, CLIP's overall performance remains high. This shows that high train-test similarity is insufficient to explain CLIP's OOD performance, and other properties of the training data must drive CLIP to learn more generalizable representations. Additionally, by pruning data points that are dissimilar to the OOD benchmarks, we uncover a 100M split of LAION ($\frac{1}{4}$th of its original size) on which CLIP can be trained to match its original OOD performance.
Submission history
From: Prasanna Mayilvahanan [view email][v1] Sat, 14 Oct 2023 11:24:28 UTC (9,133 KB)
[v2] Thu, 14 Mar 2024 18:18:49 UTC (12,686 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.