Computer Science > Cryptography and Security
[Submitted on 17 Feb 2024]
Title:On the Role of Similarity in Detecting Masquerading Files
View PDFAbstract:Similarity has been applied to a wide range of security applications, typically used in machine learning models. We examine the problem posed by masquerading samples; that is samples crafted by bad actors to be similar or near identical to legitimate samples. We find that these samples potentially create significant problems for machine learning solutions. The primary problem being that bad actors can circumvent machine learning solutions by using masquerading samples.
We then examine the interplay between digital signatures and machine learning solutions. In particular, we focus on executable files and code signing. We offer a taxonomy for masquerading files. We use a combination of similarity and clustering to find masquerading files. We use the insights gathered in this process to offer improvements to similarity based and machine learning security solutions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.