Electrical Engineering and Systems Science > Systems and Control
[Submitted on 16 Jul 2024 (v1), last revised 28 Sep 2024 (this version, v2)]
Title:Prescribed-time Cooperative Output Regulation of Linear Heterogeneous Multi-agent Systems
View PDF HTML (experimental)Abstract:A finite-time protocol for a multi-agent systems (MASs) can guarantee the convergence of every agent in a finite time interval in contrast to the asymptotic convergence, but the settling time depends on the initial condition and design parameters and is inconsistent across the agents. In this paper, we study the prescribed-time cooperative output regulation (PTCOR) problem for a class of linear heterogeneous MASs under a directed communication graph, where the settling time of every agent can be specified a priori and thus consistent. As a special case of PTCOR, the necessary and sufficient condition for prescribed-time output regulation of an individual system is first discussed. Then, the PTCOR problem is converted into two cascaded subsystem, where the first one composed of distributed estimate errors and local estimate errors and the second one is for local tracking errors.
The criterion for prescribed-time stabilization of the cascaded system is proposed and is found to be different from that of traditional asymptotic stabilization of a cascaded system. Under the criterion and sufficient condition, the general PTCOR problem is studied in two scenarios including state feedback control and measurement output feedback control. In particular, a distributed prescribed-time observer for each subsystem is explicitly constructed to estimate the exosystem's state. Based on the observer, a distributed controller is proposed to achieve convergence of the regulated output to zero within a prescribed-time.
Submission history
From: Zuo Gewei [view email][v1] Tue, 16 Jul 2024 05:52:08 UTC (1,964 KB)
[v2] Sat, 28 Sep 2024 07:18:20 UTC (2,428 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.