
Deep Clustering for Data Cleaning and Integration
Hafiz Tayyab Rauf

Department of Computer Science,
University of Manchester

Manchester, UK.
hafiztayyab.rauf@manchester.ac.uk

André Freitas
Department of Computer Science,

University of Manchester
Manchester, UK.

IDIAP Research Institute
Martigny, Switzerland.

andre.freitas@manchester.ac.uk

Norman W. Paton
Department of Computer Science,

University of Manchester
Manchester, UK,

norman.paton@manchester.ac.uk

ABSTRACT
Deep Learning (DL) techniques now constitute the state-of-the-
art for important problems in areas such as text and image pro-
cessing, and there have been impactful results that deploy DL
in several data management tasks. Deep Clustering (DC) has
recently emerged as a sub-discipline of DL, in which data rep-
resentations are learned in tandem with clustering, with a view
to automatically identifying the features of the data that lead to
improved clustering results. While DC has been used to good
effect in several domains, particularly in image processing, the
potential of DC for data management tasks remains unexplored.
In this paper, we address this gap by investigating the suitability
of DC for data cleaning and integration tasks, specifically schema
inference, entity resolution and domain discovery, from the per-
spective of tables, rows and columns, respectively. In this setting,
we compare and contrast several DC and non-DC clustering al-
gorithms using standard benchmarks. The results show, among
other things, that the most effective DC algorithms consistently
outperform non-DC clustering algorithms for data integration
tasks. Experiments also show consistently strong performance
compared with state-of-the-art bespoke algorithms for each of
the data integration tasks.

1 INTRODUCTION
Deep Learning (DL) is now a well-established machine learn-
ing paradigm that is effective in domains as diverse as image
processing [35], natural language processing [40], autonomous
systems [39] and robotics [7]. DL is also the subject of extensive
investigation for data management tasks, including those relating
to data cleaning and integration [63].

Deep Clustering (DC) is a sub-domain of DL in which deep
neural networks are used to learn data representations in tan-
dem with a clustering algorithm in an unsupervised manner. DC
jointly optimizes the representation learning and clustering [46].
The importance of deep clustering is increasing due the need to
deliver representation paradigms that can operate over increas-
ingly heterogeneous and high-dimensional datasets [2, 20]. DC
also avoids the need for separate feature extraction, reduction
and clustering [2].

DL has been applied successfully to a variety of data cleaning
and integration problems, and several such problems involve
clustering, so it seems timely to investigate the application of DC
in data preparation. The approach in this paper is to empirically
evaluate three DC algorithms, comparing them to baselines that
use non-deep clustering techniques. For each of several prob-
lems, specifically schema inference, entity resolution and domain

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

discovery, we: (i) define these tasks as clustering problems; (ii)
identify several representations relevant to the tasks consider-
ing the type of data; (iii) compare the performance of three DC
algorithms against three representative non-deep clustering al-
gorithms; (iv) analyze the results in terms of overall quality and
drill down to understand the behavioural properties of different
techniques; and (v) compare the best performing DC algorithm
with state-of-the-art bespoke solutions in each of the identified
problems.

The contributions of this paper are as follows:
(1) The identification of DC as a promising approach for data

cleaning and integration tasks that stand to benefit from
clustering.

(2) The application of DC algorithms to schema inference, en-
tity resolution and domain discovery, using vector repre-
sentations for tables, rows and columns, respectively.

(3) An empirical evaluation using third-party benchmarks
that shows that the most effective DC algorithms consis-
tently outperform both non-DC clustering algorithms and
state-of-the art bespoke algorithms in the areas from (2).

The remainder of this paper is structured as follows. Section 2
outlines the development of work on DC. Section 3 introduces
key concepts in DC and describes the algorithms used in the ex-
periments. Section 4 describes the experimental methods applied
in the paper. Sections 5, 6 and 7 present experiments on different
clustering methods for schema inference, entity resolution and
domain discovery, respectively. Section 8 reflects on these exper-
iments. Section 9 compares DC with bespoke algorithms. Section
10 presents some conclusions and areas for further work.

2 BACKGROUND AND RELATEDWORK
This section briefly reviews related work on DC and discusses the
components of DC, such as representation learning and cluster-
ing. Furthermore, we review how both modules can be optimized
in a single framework when applied to data integration problems.

Standard clustering (SC) methods have achieved significant
success for various applications when the data is low dimensional
and where there is the assumption that vectors in the latent
space are well-shaped and, most of the time, linearly separable.
However, SC methods struggle to effectively perform clustering
without representation learning when the data is unstructured,
high-dimensional, and heterogeneous [77]. DC focuses on the
joint optimization of high dimensional data representation in
the latent space with suitability for clustering [77]. DC enables
interaction between (i) clustering and (ii) representation learning
through joint optimization to improve both of them iteratively.

Several proposals for clustering and representation learning
architectures have been developed [77]. The representation learn-
ing architectures take a raw high dimensional embedding matrix
as input and map it to a low dimensional latent space.

Experiments & Analyses Paper

 

 

Series ISSN: 2367-2005 636 10.48786/edbt.2024.55

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.55


The most widely used representation learning architecture in
deep clustering is Auto-encoder (AE) based unsupervised learn-
ing [31, 61]. The encoder function 𝑓𝑒 encodes the input repre-
sentation 𝑥𝑖 into a low dimensional representation ℎ𝑖 = 𝑓𝑒 (𝑥𝑖 ) =

1
1+𝑒−(𝑊𝑥𝑖+𝑏𝑖 ) , and the decoder function 𝑓𝑑 decodes 𝑓𝑒 (𝑥𝑖 ) into the
reconstructed input 𝑥𝑖= 𝑓𝑑 (ℎ𝑖 ).𝑊 and 𝑏𝑖 are the weights and
bias of neural networks. The optimization function of a sim-
ple AE architecture for 𝑁 samples can be defined as: 𝑓𝑚𝑖𝑛 =

𝑚𝑖𝑛 1
𝑁

∑𝑁
𝑖=1 ∥𝑥𝑖 − 𝑥𝑖 ∥2 . Considering different applications, re-

searchers proposed enhanced versions of AE, including Convolu-
tional AE [21] for image clustering, Variational AE [68] for text
classification, Generative AE [71] for image reconstruction, and
Adversarial AE [53] to detect generative probabilistic novelty.

Feature distribution in the latent space is important; the learn-
ing efficiency depends on the features’ distribution. In this con-
text, subspace representation learning [13, 34, 73, 76] has been
used widely for clustering. In subspace representation learning,
the latent spaces are divided into several subspaces to categorize
instances, and two instances are associated with linear relation-
ships in the same subspace.

Regarding the clustering architecture in DC, it takes the op-
timized low-dimensional latent representation as input and re-
turns the clustering soft assignments. At this stage, the learned
representations are evaluated to determine whether it is more
cluster-friendly, for example, if two contextual instances are close
to each other in latent space. Several clustering techniques have
been used in deep clustering [77]. The basic structure of the clus-
tering component is to feed the 𝑑-dimensional representation
using neural networks in the forward direction and reduce the
dimensions to cluster number 𝐾 . Then, a softmax layer can be
used for the cluster assignment [77].

To bridge the semantic gap between representation learning
and clustering, relation-matching deep clustering techniques
have been used [19, 26], though such proposals are computation-
ally expensive [77]. A further proposal uses graph-based architec-
tures (e.g., [9, 43, 75] ) with multiple distributions generated and
fed to graph neural networks to preserve the hidden relations
between the latent and 𝐾-dimensional target distribution.

3 DEEP CLUSTERING CONCEPTS AND
TECHNIQUES

The fundamental difference between SC and DC is that SC meth-
ods act on a static representation, and DC methods adapt and
learn the representation used for clustering. Most SC methods
follow a hard clustering mechanism that takes a distance ma-
trix as input and returns the 1-dimensional discrete clustering
labels [77]. It is hard to optimize a 1-dimensional discrete vec-
tor for a neural network. Instead, DC methods work on a soft
clustering mechanism that takes a high dimensional embedding
matrix as input, learns the representation in a low dimensional
latent space, and returns a K-dimensional continuous vector in
the label space. The resulting K-dimensional continuous vector
can be optimized for the final clustering 1-dimensional discrete
vector [77].

The basic DC framework consists of three main components,
i.e., (i) learning representation architecture, (ii) reconstruction
loss, and (iii) clustering loss.

Concerning (i), we adopt DC methods that use AE based and
subspace representation learning architectures. A DC framework
with a basic AE architecture is presented in Figure 1. In an AE

Figure 1: DC with basic AE architecture

based architecture, the clustering is based on the lower dimen-
sional representation produced by the encoder, with a loss func-
tion that trades off cluster quality with the ability to reconstruct
the original representation. Through this approach, the latent
space representation of the original input data should preserve
the most suitable features for clustering.

Consider raw data 𝑋𝜖R𝑁×𝑑 , where R𝑁×𝑑 belongs to a 𝑑- di-
mensional embedding matrix R with 𝑁 elements, 𝑥𝑖 is the 𝑖𝑡ℎ
element in 𝑋 . Representation learning in AE initiates with the
encoder part, the purpose of which is to encode 𝑋 into a low di-
mensional latent representation 𝐻 . Let’s suppose the AE consists
of 𝐿 layers where ℓ is layer number, the initial representation
learned from R𝑁×𝑑 in encoder 𝐻 ℓ can be obtained as [9]:

𝐻 ℓ = 𝜙

(
𝑤 ℓ𝑒𝐻

ℓ−1 + 𝑏ℓ𝑒
)
, (1)

where𝐻0𝜖𝑋 and𝜙 denotes the activation function,𝑤 ℓ𝑒 and𝑏ℓ𝑒 rep-
resents the weight and bias of ℓ𝑡ℎ layer. The decoder part decodes
𝐻 into reconstructed input 𝑋 using the following equation [9]:

𝐻 ℓ = 𝜙

(
𝑤 ℓ
𝑑
𝐻 ℓ−1 + 𝑏ℓ

𝑑

)
, (2)

where 𝐻0𝜖𝑋 ,𝑤 ℓ
𝑑
and 𝑏ℓ

𝑑
represents the weight and bias of ℓ𝑡ℎ

layer for decoder. The objective function used in AE architectures
can be defined as:

L = 𝜆L𝑟 + L𝑐 , (3)
where L𝑟 and L𝑐 represent reconstruction and clustering loss,
respectively. L𝑐 is clustering module specific and each deep clus-
tering proposal provides several other module specific losses that
are combined with L𝑐 . The basic version of L𝑟 is:

𝑓𝑚𝑖𝑛 =𝑚𝑖𝑛
1
𝑁

𝑁∑︁
𝑖=1

𝑋 − 𝑋

2 (4)

We adopted three recently proposed DC algorithms, SDCN [9],
EDESC [13] and SHGP [69], to evaluate on data integration tasks.
The selection of the DC algorithms is based on their implemen-
tation suitability and the flexibility of their proposed distance
functions towards data integration tasks; many DC methods
are purely designed for image and text clustering applications
[50, 64, 67] and are not obviously suitable for comparing rows,
columns, and tables in the latent space. Another selection cri-
terion is performance; we describe the top three performers on
data integration tasks. The description of the DC algorithms used
for the experimental evaluation is given below.
SDCN [9] is based on two representation learning modules, a
Graph Convolutional Network (GCN) and an AE, that work in

637



parallel to learn structural and AE specific information. SDCN
starts by constructing a K-Nearest Neighbor (KNN) graph from𝑋

and feeding it to the GCN model to learn the structural informa-
tion. To learnAE-specific representations, SDCNuses a simple AE
architecture. GCN-specific and AE-specific representations are
combined through a delivery operator and dual self-supervised
mechanism to perform soft clustering assignments from multiple
representations.
EDESC [13] is a deep subspace clustering method. Subspace
representation learning involves mapping data points into low
dimensional subspaces to separate each data point, similar to the
early stage of subspace clustering [77]. Unlike SDCN, EDESC
is not graph-based. Deep subspace clustering models are self-
expressive and assume a linear combination between one data
point and its other data points from the same subspace. The
simplest self-expressiveness property can be denoted as 𝑋 = 𝑋𝐶 ,
where 𝑋 represents the data matrix, and 𝐶 represents the self-
expression coefficient matrix. The objective function for self-
expression-based representation learning can be defined as [77]:

min
𝐶

∥𝐶 ∥𝑝 + 𝜆
2
∥𝐻 − 𝐻𝐶 ∥2𝐹 𝑠 .𝑡 . 𝑑𝑖𝑎𝑔 (𝐶) = 0 (5)

where ∥.∥𝑝 shows matrix norm and 𝜆 is weight controlling factor.
𝐻 is the representation learned by the network. EDESC takes a
deep representation and learns the subspace bases in an itera-
tive refining manner. The latent space representation is learned
through the refined subspace bases outside the self-expressive
framework. EDESC initializes a subspace D using K-means [13].
SHGP [69] employs self-supervised learning on Heterogeneous
InformationNetworks (HINs) and uses a combination of attention-
aggregation schemes using two modules, Att-LPA and Att-HGNN,
that improve each other to construct and learn object embed-
dings. The Att-LPA module generates pseudo-labels, serving as
a self-supervised signal to guide the learning process. Att-LPA
uses a structural clustering method (LPA), which assigns and
iteratively refines the labels to objects. These pseudo-labels are
then utilized as a guide to enhance the learning of object em-
beddings and attention coefficients in the Att-HGNN module.
Att-HGNN, directed by the pseudo-labels, uses object features
and attention coefficients to combine information from neigh-
boring features and learns the embeddings effectively. For the
clustering task, SHGP uses K-means on the embeddings produced
by both modules.

SDCN and EDESC build on a pre-trained AE that learns a
compressed representation of the optimized input embedding
for reconstruction while ignoring the clustering task. AE can
help reduce the input embedding’s dimensionality, remove noise
and redundancy, and capture relevant patterns and structure.
Then, the learned representation passes to the original training
part combined with clustering loss for further fine-tuning. It is
helpful to evaluate the impact of learned representation on non-
DC algorithms. In this context, we used a different AE version that
employs the Birch and K-means algorithms to perform clustering
not directly on the embedding but on the representation learned
by AE. This can be interpreted as performing Birch and K-means
on 𝐻 in Figure 1.

4 EXPERIMENTAL SETUP
The hypothesis is that DC is expected to outperform SC as it
builds on a latent space representation that can better integrate

schema-level and instance-level representations. To evaluate the
hypothesis, we included the following SC methods.
K-means [29] initializes with a set of data points; in the context
of the data integration problem, it initializes with distance vec-
tors of either schema or instance-level data points in the vector
space and assigns the data points to the clusters with the nearest
centroid. It repeatedly iterates to optimize the cluster centers.
K-means minimizes the clustering loss with a squared Euclidean
distance function. K-means requires the value of 𝐾 in advance to
predict the clusters.
Birch [74] is a hierarchical clustering algorithm designed for tack-
ling large databases, especially involving noise and outliers. Birch
is supervised in terms of number of clusters 𝐾 . Birch provides a
hierarchical clustering structure, which can help understand the
data structure and provide more interpretable results.
DBSCAN [24] is a density-based spatial clustering algorithm
primarily designed for large databases with noise. DBSCAN iden-
tifies clusters based on the density of the data; it has two main
parameters: the radius 𝜀, which defines the area in the neighbor-
ing points, and MinPts, which represents a minimum number of
points required to declare the area dense enough to form a cluster.
Unlike K-means and Birch, DBSCAN is suitable for identifying
clusters with irregular shapes and does not require specifying
the number of clusters 𝐾 in advance. DBSCAN is sensitive to its
parameters 𝜀 and MinPts and tends to provide poor clustering
without optimizing its parameters. In our experiments, we used
a commonly used heuristic method called the elbow method [58]
to identify 𝜀. In the elbow method, the distances of data points to
their nearest neighbors are calculated and plotted on a graph, and
the "elbow" point is the best 𝜀-value where the curve intersects.
The MinPts are set to the total number of clusters 𝐾 when the
rule of thumb (MinPts = 2×dim, where dim= the data dimensions)
does not work.

Setting the number of clusters𝐾 in advance gives the SC meth-
ods an (in a sense unfair) advantage as they are given the (un-
known) Ground Truth (GT) value for 𝐾 . In contrast, DC methods
only take𝐾 to initialize the centers of the clusters for pre-training.
Subsequently, the DC methods work out 𝐾 without taking a GT
value in training, and in practice, it may not be possible to es-
tablish the correct 𝐾 . As such, the DC methods are more flexible
in their ability to automatically estimate the number of clusters
without the need for prior knowledge of 𝐾 .

We used the scikit-learn implementations [51] of the SC al-
gorithms. A detailed overview of the experimental framework
is presented in Figure 2, which consists of three main phases
from left to right. Firstly, the raw data is preprocessed to remove
high-level syntactic errors. In the second phase, the preprocessed
data is fed to the embedding module to generate dense represen-
tations. Lastly, dense representations are further enhanced in the
clustering module and final clustering assignments are produced.

4.1 Evaluation Metrics
We employ two widely used standard clustering evaluation met-
rics, Accuracy (ACC) [70] and Adjusted Rand Score (ARI) [66].

ARI can be defined as [66]: Assume we are given a set 𝑆 of 𝑛
elements and two clustering sets of these elements consists of
𝑟 and 𝑠 groups represented as 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑟 } and {𝑌 =

𝑌1, 𝑌2, . . . , 𝑌𝑠 } in a contingency Table
[
𝑡𝑖 𝑗

]
of overlaps between𝑋

and 𝑌 . Each element in [𝑡𝑖 𝑗 ] shows the count of common objects
between 𝑋𝑖 and 𝑌𝑗 . ARI can be defined from [𝑡𝑖 𝑗 ]:

638



Figure 2: Overview of the experimental framework. (a) represents raw data cleaning phase, for example, handling missing
or infinite values in tables, (b) is for getting the embedding matrix from tables, rows, or columns, (c) represents the DC
module, where the input will be an embedding matrix from (b) for each data integration problem.

[
𝑡𝑖 𝑗

]
can be represented as:

[𝑡𝑖 𝑗 ] =

𝑋 \𝑌 𝑌1 𝑌2 . . . 𝑌𝑠 𝑆𝑢𝑚𝑠

𝑋1 𝑡11 𝑡12 . . . 𝑡1𝑠 𝑎1
𝑋2 𝑡21 𝑡22 . . . 𝑡2𝑠 𝑎2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

𝑋𝑟 𝑡𝑟1 𝑡𝑟2 . . . 𝑡𝑟𝑠 𝑎𝑟

𝑆𝑢𝑚𝑠 𝑏1 𝑏2 . . . 𝑏𝑠

𝐴𝑅𝐼 =

∑
𝑖 𝑗

(
𝑡𝑖 𝑗

2

)
−
[∑

𝑖

(
𝑎𝑖

2

) ∑
𝑗

(
𝑏𝑖

2

)]
/
(
𝑛

2

)
1
2

[∑
𝑖

(
𝑎𝑖

2

)
+∑

𝑗

(
𝑏𝑖

2

)]
−
[∑

𝑖

(
𝑎𝑖

2

) ∑
𝑗

(
𝑏𝑖

2

)]
/
(
𝑛

2

)
(6)

ARI determines the similarity between two clustering results;
usually, one is GT labels, and the second corresponds to the labels
returned by the clustering algorithm. Generally, the value of ARI
lies between 0 and 1. An ARI value closer to 1 represents a strong
match between predicted and GT clusters.

The clustering ACC for 𝑁 samples, with cluster id R ∈ 𝑐𝑖 and
GT id 𝑇 ∈ 𝑔𝑡𝑖 can be defined as:

𝐴𝐶𝐶 (𝑅,𝑇 ) =
∑𝑁
𝑖=1 𝛿 (𝑔𝑡𝑖 , 𝑚𝑎𝑝 (𝑐𝑖 ))

𝑁
(7)

𝛿
(
𝑔𝑡𝑖 , 𝑚𝑎𝑝 (𝑐𝑖 )

)
=

{
1, 𝑖 𝑓 𝑔𝑡𝑖 =𝑚𝑎𝑝 (𝑐𝑖 )
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

Function𝑚𝑎𝑝 () gives the best permutation mapping between
predicted and GT labels through the Hungarian Algorithm [12].
ACC maps the predicted labels into ground labels since cluster
ids in the prediction are randomly generated and dissimilar to
those assigned to GT labels.

4.2 Hyper-parameter setting
Network learning benefits from hyper-parameters optimized for
the particular task. Since deep clustering algorithms are heavily
used for image processing tasks, optimizing hyper-parameters
for data integration tasks is necessary. In this context, we have
four basic parameters of SDCN, EDESC and SHGP:

The number of layers are important because they determine
the network’s ability to learn unsupervised feature represen-
tations. Since we have pre-defined embeddings as AE inputs,
rows, columns or tables with similar meanings are positioned
closer together. An AE with fewer layers can efficiently compress
and reconstruct this underlying structure. We fixed number of
layers = 2 in all experiments of SDCN and EDESC after experi-
menting with different values. However, SHGP uses Att-LPA and
Att-HGNN with several layers from graph neural networks, so
we used the default number of layers based on the SHGP paper,
i.e., two Att-HGNN encoder layers and several hidden layers in
the set 64, 128, 256, 512.
Layer size (refers to the number of neurons in each layer) pro-
vides the capacity and ability of AE to learn complex patterns in
the data. In order to maintain a high-dimensional hidden repre-
sentation, we fixed layer size = 1000 for all experiments of DC
methods after experimenting with different values. This suggests
that the complexity of row, column, or table embeddings requires
a larger hidden layer size to retain more semantic information.
Latent space size 𝑧: Originally, SDCN and EDESC used 𝑧 = 10,
but it is too small in data integration tasks to capture the complex-
ity of the row, column or table embeddings, leading to significant
information loss. Considering this, after systematically experi-
menting with different values, we fixed z=100 for SDCN and AE,
and 𝑧 = 𝑎 for EDESC where the shape of 𝑎 = (𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 × 𝑑),
and 𝑑 represents the dimension of the subspace. For SHGP, the
size of the learned representation depended on the size of label
space and appeared optimal after experimental evaluation as
𝑧 = 𝑠 where s = size of label space.
Training Epochs: We used the silhouette coefficient [56] on the
learned representation with predicted clusters to choose where
to stop training. We pre-train SDCN and EDESC for 30 epochs
except for entity resolution (100 epochs), which requires more
pre-training due to the large numbers of clusters. We decide the
number of training epochs based on the best silhouette score.
Since SHGP uses K-means for clustering the learned embedding,
the embeddings obtained on 50 and above epochs do not signifi-
cantly impact K-means clustering. We used fixed 50 epochs for
representation learning by Att-LPA and Att-HGNN.

639



It is evident from the related work [69] that AE (or similar
DC architectures) applied with an SC algorithm produces good
results. Further examples of combining SC methods with AE
include H-DC [69] and DeepCluster [15]. We use AE (described
in Section 3) with Birch for the entity resolution and domain
discovery experiment instead of SDCN. The learned features
without clustering loss from the AE step were more effective at
capturing the underlying structure of the data than fine-tuning
features along with clustering loss. Regarding the decision as to
which clustering to choose in this setting, we used the silhouette
score as an unsupervised way of evaluating cluster quality. If the
silhouette score converges during training with SDCN, we use
SDCN; otherwise, we retain AE and perform clustering using
Birch. The hyperparameter settings for the experiments, along
with the source code, are available1.

5 SCHEMA INFERENCE
Schema inference proposes a schema that makes recurring struc-
tural features in data explicit. Schema inference may be applied to
extensional data (e.g., inferring a JSON schema from several JSON
documents [5]) or to intensional data (e.g., inferring a schema
that summarises a complex relational database [72]). Schema
inference has been a topic of ongoing investigation for different
data models, and several surveys have been produced [16, 36, 38].
It is common for schema inference to build on clustering, to
identify candidate types/classes in the data, so clustering is an
important enabling technology for schema inference. We con-
sider schema inference as a clustering problem, where the task is:
for a given set of datasets 𝐷 = {𝑑1, 𝑑2, 𝑑3 . . . 𝑑𝑛} identify every
subset 𝐷𝑠 ⊆ 𝐷 that can share a common schema using clustering.

Pre-trained embeddings have been used widely for data inte-
gration tasks [22]. They fall into two specific categories: sentence-
based and word based. Sentence-based embeddings directly map
a sequence of tokens into a single dense vector. In contrast,
word-based embeddings encode each token separately, and then
perform an aggregation function to derive a single vector. Pre-
trained embeddings are trained on large corpora and tend to have
broader vocabulary coverage. Considering this, we choose two
pre-trained embeddings (one word-based, FastText [28], and one
sentence-based, SBERT [54]) to perform schema inference with
schema-level evidence. When carrying out schema inference, the
schema-level information includes only table headers; each ta-
ble is represented by a string (combination of attribute names).
Nevertheless, pre-trained embeddings have disadvantages when
tackling large databases, especially with instance level data, e.g.,
where there is specialised vocabulary, or numerical data distribu-
tions [14]. To produce embeddings with Schema+instance-level
data, tabular transformers have been a mainstream option in the
deep learning community [6]. Several tabular transformers are
proposed in the literature to handle noisy and incomplete data
(e.g., [4, 27, 32, 60]).

For evaluation, we use the T2D Entity-Level Gold standard
(T2D) [55] web table dataset and the Table Union Search (TUS)
benchmark [47] that identifies tables that are unionable. In T2D,
we rejected all tables that included languages other than English.
We also excluded all DBpedia Thing tables to avoid significant
data imbalance, as it is mapped to more than 50% of data ta-
bles. In the TUS benchmark, we aim to determine which tables
from a set can be unioned together, and we set the criteria that
two tables are unionable if at least 40% of their corresponding

1https://github.com/hafizrauf/dc_data-integration

attributes are unionable. We cluster the tables using the Lou-
vain community detection algorithm [8]. Each detected commu-
nity, representing a group of unionable tables, and is assigned
a unique GT label. We excluded all single-table communities.
Further properties of the web tables data and TUS benchmark
are given in Table 1. The criteria for choosing a tabular trans-
former are based on the nature of the datasets. Web tables are
noisy; for example, a table with attribute: symbol and values ’aa’,
’axp’ is problematic for pre-trained embeddings as ’aa’, ’axp’ are
not present in the pre-trained vocabulary, and most of the cases
will be treated as unknown tokens. However, training on a local
vocabulary can overcome this issue. Another significant issue is
incomplete columns or rows. To handle these issues, we evaluated
several transformers, including Tabnet [4], TabTransformer [32],
SAINT [60], FT-Transformer [27], TabFastFormer [37], TabPer-
ceiver [33] and EmbDi [14], on web tables and TUS. We retained
the two best performers, Tabnet and TabTransformer for com-
parison. TabTransformer [32] has been found to be robust with
missing table values and noisy data. TabTransformer is based on
Transformers [65] with several multi-head attention layers to
contextually embed categorical columns. Tabnet [4] is based on
row-wise feature selection and is more suitable for raw data with-
out pre-processing. Tabnet uses sequential attention to choose
categorical and numerical features at each decision step.

5.1 Data dimensionality for tabular
transformers

To produce an embedding matrix (𝑋𝑖 ), tabular transformers give
each table a different dimension size 𝑑 . In our experiments, we
use the standard values of 𝑑 for FastText and SBERT as 300 and
768, respectively. Tabnet and TabTransformer process each input
feature individually, whether row or column and apply a series of
transformations. Each table’s categorical and continuous features
have different cardinalities affecting the size of output embedding
𝑑 for each table in Tabnet and TabTransformer. To normalize 𝑑
for instance-level data, we selected the maximum feature size
occurrence and performed linear interpolation to fill the empty
values. However, for TabTransformer, the last column of the em-
bedding matrix needs the preceding value to interpolate, which
makes the size of 𝑑 as 𝑚𝑎𝑥 (d−1), where 𝑚𝑎𝑥 (𝑑) denotes the
maximum number of dimensions observed for any table. The
obtained values of 𝑑 for Tabnet and TabTransformer are 693 and
208 for web tables 1365 and 352 for TUS data, respectively.

5.2 Results and Discussion
For all experimental results, the bold and underlined values in the
tables indicate the best and the second-best results considering
the corresponding embedding methods, respectively. Table 2
presents the clustering results for schema inference using only
schema-level data. The following can be observed:

(i) The selected table representation significantly im-
pacts performance, with SBERT significantly outperform-
ing FastText in most cases for all clustering algorithms on
all datasets. SDCN achieved 0.38 higher ARI with SBERT than
FastText, where Birch and K-means with SBERT outperformed
Fast Text by 0.34 and 0.17 in the ARI on web tables data. Sim-
ilarly, EDESC and SHGP with SBERT are superior by 0.23 and
0.13 ARI to FastText on TUS data. Figures 3a and 3b confirm that
the separability of data points for SBERT is more robust than for
FastText, in which data points are compact in the latent space,

640



Table 1: Dataset properties for schema inference, entity resolution and domain discovery

Properties Schema Inference Entity Resolution Domain Discovery
web tables TUS Music Brainz 2K GeoSet Camera Monitor

Sources N/A N/A 5 4 24 26
Number of Instances 429 4248 ∼ 2𝐾 3021 19036 34481

GT clusters 26 37 684 786 56 81

−5 0 5 10 15 20 25

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

SBERT

0

5

10

15

20

25

Gr
ou

nd
 tr
ut
h 
la
be

ls

(a) Schema-level

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

12
FastText

0

5

10

15

20

25

Gr
ou

nd
 tr
ut
h 
la
be

ls
(b) Schema-level

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0

2

4

6

8

10

12

14

TabNet

0

5

10

15

20

25

Gr
ou

nd
 tr
ut
h 
la
be

ls

(c) Schema+Instance-level

4 6 8 10 12 14

2

4

6

8

10

12

14

16
TabTransformer

0

5

10

15

20

25

Gr
ou

nd
 tr
ut
h 
la
be

ls

(d) Schema+Instance-level

Figure 3: Umap representation [45] of pre-trained sentence
and tabular based encodings on web tables data. X and Y
axes represent the dimensions of the reduced UMAP space.
UMAP preserves the local structure, showing that points
that were close together in the embedding space are near
each other in the UMAP space.

which is unsuitable for clustering. (ii) The DC algorithms out-
perform the SC algorithms in most cases, with the largest
differences being for SBERT-supportedmodels. EDESC with
SBERT obtained higher ARI scores (0.15, 0.18, and 0.66 ) on TUS
data compared to K-means, DBSCAN and Birch, respectively. K-
means, which considers convex and isotropic clusters, obtained a
modest ACC difference of 0.09, signifying its likely struggles with
dense data. Birch did better, and achieved an ARI of 0.33, but still
lower than SDCN (0.13 ARI) and EDESC (0.08 ARI) on web tables
data. DBSCAN predicted one cluster with zero ARI, which shows
its lower ability with varying data densities. (iii) SDCN pre-
dicted fewer clusters than other competitors while main-
taining superior performance. SDCN with SBERT predicted
16 clusters, diverging from the 26 predicted by EDESC and SHGP,
matching the GT count. However, SDCN’s superior performance
compared to EDESC and SHGP indicates its AE’s ability to pri-
oritize clusters’ internal coherence and quality over count. In
contrast, EDESC and SHGP failed to maintain the inter-cluster
separability, even when meeting the GT count.

Table 3 presents the clustering results for schema inference
using both schema and instance level data. The following can
be observed: (i) SDCN is significantly more compatible with
Tabnet than TabTransformer on all datasets. SDCN with
Tabnet obtained an ARI score 0.19 and 0.13 higher than TabTrans-
former on web tables and TUS data, respectively. This superior

performance exhibits Tabnet’s ability to select prominent features
at each decision step, thus improving SDCN’s feature extraction
process with more detailed data understanding. Figures 3c and
3d represent no significant latent space difference in terms of
data points’ relative positions. This low visual difference entirely
depends on the Umap projections, which can lead to the loss of
information in relationships among the tables. Furthermore, it
shows that web table data does not have a clear cluster struc-
ture, making it difficult to discover meaningful patterns. Adding
instance-level evidence with tabular embedding failed to show its
suitability for clustering compared with schema-level evidence
with SBERT for both datasets. (ii) Changing the embeddings
does not affect the overall performance trend for the DC
method when we consider Schema+Instance-level data. We
observe that DC methods outperformed SC methods with both
Tabnet (SDCN obtained 0.46, 0.45, 0.46 higher ARI compared
to K-means, DBSCAN, and Birch, respectively) and TabTrans-
former (SDCN obtained 0.24 higher ARI compared to K-means,
DBSCAN, and Birch) on web tables data. Like schema-level, in
Schema+Instance-level, DBSCAN’s repeated inability to effec-
tively differentiate clusters within the dense data representation
resulted in a single cluster for Tabnet and TabTransformer on
web tables data. (iii) The provision of K does not significantly
impact the clustering algorithms’ overall performance. For
example, Birch with TabTransformer may have been expected to
outperform EDESC due to the prescription of a fixed number of
clusters (26), but EDESC outperformed Birch by 0.07 ARI even
though it only produced 14 clusters. Similar behavior can be seen
when using Tabnet with EDESC, which produced 12 clusters
compared to 26 GT clusters and achieved 0.09 higher ARI than
K-means, which generated 26 clusters on web tables data. On
the other hand, DBCSCAN produced 3 clusters on TUS data but
failed to produce convincing clusters, compared EDESC with an
exact number of predicted clusters 37 as GT. (iv) Tabnet and
TabTransformer treat all attributes as being equally impor-
tant. As a result, even when two tables share a subject attribute,
they may be clustered separately because their other attributes
are different. A subject attribute identifies the artifact that the ta-
ble is about. For example in web tables data, tables T1 and T2, are
clustered separately where they have a common subject column
Country and other columns (T1.Total population in 2004 (million),
T1.Annual population growth rate (%), T1.Population density (per-
sons per square km.), T1.Average number of persons per household)
and (T2.rank, T2.population, T2.date of information).

In terms of relative performance between Tables 2 and 3, em-
pirical results for the web tables dataset show that: schema-
level evidence is more suitable for DC and SC, and adding
instance-level evidence leads to poorer performance. This
is because the actual instances tend to have low overlap even
when their tables are clustered together in the GT. For example,
SDCN with Tabnet failed to cluster tables T3 and T4, which be-
long to the class Film because of the same schema and different
instances, e.g., (T3.fansrank: 101, T3.title: treasure sierra madre,

641



Table 2: Schema Inference: Schema-level clustering results DC (SDCN, EDESC and SHGP) vs SC (K-means, Birch and
DBSCAN) using pre-trained embeddings on web tables and TUS datasets.

SDCN SHGP EDESC K-means DBSCAN Birch

Dataset Metric SBERT FastText SBERT FastText SBERT FastText SBERT FastText SBERT FastText SBERT FastText
𝐾 16 19 26 26 26 26 26 26 1 1 26 26

web ARI 0.46 0.08 0.10 0.05 0.41 0.14 0.27 0.10 0.0 -0.018 0.33 -0.01
tables ACC 0.58 0.27 0.32 0.27 0.55 0.35 0.45 0.31 0.29 0.24 0.49 0.28

𝐾 37 33 37 37 37 36 37 37 18 4 12 1
TUS ARI 0.74 0.70 0.65 0.53 0.88 0.65 0.73 0.63 0.70 0.05 0.22 0.0

ACC 0.79 0.74 0.73 0.63 0.87 0.73 0.79 0.69 0.78 0.29 0.40 0.20

Table 3: Schema Inference: Schema+Instance-level clustering results DC (SDCN, EDESC and SHGP) vs SC (K-means, Birch
and DBSCAN) using tabular embeddings on web tables and TUS datasets. TT and TN refer to TabTransformer and Tabnet,
respectively.

SDCN SHGP EDESC K-means DBSCAN Birch

Dataset Metric TT TN TT TN TT TN TT TN TT TN TT TN
𝐾 26 26 26 26 14 12 26 26 1 1 26 26

web tables ARI 0.26 0.45 0.02 -0.019 0.09 0.08 0.02 -0.013 0.023 -0.007 0.02 -0.013
ACC 0.42 0.55 0.29 0.25 0.31 0.31 0.29 0.27 0.29 0.26 0.28 0.27
𝐾 37 37 37 37 37 37 37 37 3 3 37 37

TUS ARI 0.29 0.34 0.06 0.06 0.24 0.25 0.21 0.25 0.02 0.03 0.18 0.26
ACC 0.44 0.45 0.21 0.21 0.40 0.38 0.38 0.38 0.26 0.26 0.35 0.38

T3.year: 1948, T3.director: john huston, T3.overallrank: 92) and
(T4.fansrank: 442, T4.title: game, T4.year: 1997, T4.director: david
fincher, T4.overallrank: 1491).

Overall, considering the observations and evidence from Ta-
bles 2 and 3, we can conclude that DC outperforms SC, regardless
of the selected embedding strategy.

6 ENTITY RESOLUTION
Entity resolution is the well-studied process of identifying where
two or more records in a dataset represent the same real world
object [17, 23]. Entity resolution thus takes place at the instance
level. Most entity resolution proposals focus on pairwise simi-
larity between records. However, the transitive closure of the
pairwise similarity relationship may not lead to suitable clusters,
and as a result some entity resolution proposals include a clus-
tering step (e.g., [18, 30]). We note that deep learning has been
applied with positive results to entity resolution (e.g., [22, 62]),
but that the need for training data is a barrier to adoption [11].
Deep clustering can potentially provide some of the benefits of
deep representation learning in an unsupervised setting. The task
of entity resolution with clustering can be defined as: given a
set of records 𝑅 = {𝑟1, 𝑟2, 𝑟3 . . . 𝑟𝑛} identify every subset 𝑅𝑠 ⊆ 𝑅

that refers to the same real world entity using clustering.
For the entity resolution task, we employed the MusicBrainz

[57] and Geographic Settlements (GeoSet) datasets [57]. Mu-
sicBrainz contains continuously updated song data from five
sources and includes duplicates for 50% of the original records,
whereas GeoSet contains geographical real-world entities from
four data sources.

The original "Music Brainz 200K" version contains 100,000
GT clusters. As this dataset has a large number of clusters, we
use it to investigate the scalability of the DC and SC algorithms,
reporting algorithm runtime for varying numbers of clusters and
instances (see Figure 4). To investigate the impact of the number
of instances on performance, we hold 𝐾 = 200 as a constant and

duplicate the clusters to keep a fixed 𝐾 for varying numbers of
instances. Figures 4a shows that the run time of SC methods
is significantly lower than that of DC methods, and that run
time grows broadly linearly for all methods. Not surprisingly, the
DC methods are slower, as DC involves deep neural networks
with many hidden layers and parameters, and training of these
networks contains the computation of gradients and the updating
of network weights, which is computationally expensive. SHGP
is several times slower than other DC methods because it uses
structural clustering to generate pseudo-labels, and clustering
from complex relationships and structures within heterogeneous
graphs is time-consuming [69].

To investigate the impact of the number of clusters on per-
formance (see Figure 4b), we choose the number of instances
corresponding to different values of 𝐾 . We can observe that in-
creasing the number of clusters significantly impacts the run
time of all DC methods. All DC methods have relatively low run
times until about 1000 to 1500 clusters, at which point run times
rapidly increase. In SDCN, the computational cost of distance
calculations (from each data point 𝑛 to its cluster centroid) grows
linearly when the number of clusters is small, and the runtime is
dominated by the number of instances. However, as the number
of clusters increases, SDCN needs to do more computation from
each data point to each cluster centroid, causing the runtime to
grow more than linearly. SHGP uses K-means to get hard cluster
labels from low-dimensional embeddings. When we increase 𝐾 ,
the assignment step (where each data point is assigned to the
nearest centroid) takes longer as there are more centroids to
compare. Similarly, the process takes longer when the centroid is
updated based on its assigned data points because there are more
centroids to update. EDESC faces the same issues during the ini-
tialization of the subspace with K-means clustering. SC methods
have linear runtime growth. K-means updates its centroid (dis-
tance calculation to each data point from each centroid) once per
iteration and is not impacted by increasing 𝐾 . DBSCAN does not
depend on the 𝐾 , but instead, the density of data, leading to the

642



(a) Runtime vs. Number of Instances.

(b) Runtime vs. Number of Clusters 𝐾 .

Figure 4: Runtimes for different numbers of instances and
clusters

linear runtime. Birch used data points to construct the clustering
feature tree, and increasing 𝐾 does not affect this construction,
leading to linear runtime.

Considering the scalability issue of DC methods, we reduce
the Music Brainz 20K [57] to Music Brainz 2K to provide more
manageable run times for entity resolution tasks. To ensure the
dataset is balanced, we discarded all instances associated with a
single cluster, sorting them by cluster-ID in increasing order, and
chose the top ∼ 2𝐾 instances with 684 clusters. The properties of
the datasets evaluated for entity resolution are given in Table 1.

We use schema+instance-level data to cluster all records that
describe the same real world entity. Schema-level information
is not considered because each record in the Music Brainz 2K
dataset contains the same attributes with different descriptions.

Embedding rows with data heterogeneity problems can be
challenging, for example, coping with missing attributes for a
particular record, the size of the description, and data type ambi-
guity (for example handling numeric data andmulti-word tokens).
Consider a scenario of identifying duplicate records with differ-
ent descriptive patterns (year:2008, language:eng), (year:’08’, lan-
guage:English), (year:, language:eng) and (year:2008, length: 24sec).
The data suffer from several issues, including missing year, year
value with numerical and categorical type, same record with dif-
ferent attribute and value abbreviations. Considering these issues,
we used EmbDi [14] to embed records into the embedding matrix,
which can be directly input to the DC algorithms. EmbDi [14] is
based on a tripartite graph with three types of node, specifically
value node (representation of unique value), a column node (cor-
responds to the columns or attribute representation), and a row
node (a unique token for each tuple). These nodes are connected
in a graph based on the structural information that exists in the
dataset. EmbDi adopts randomwalks between neighboring nodes
to capture the local and global structure in the graph, where the
length of the random walk and the number of walks per node

are user-defined. Column nodes with similar neighborhoods are
placed together in the embedding space. EmbDi offers optimiza-
tions to handle data heterogeneity problems. We selected only
those encodings produced by EmbDi with prefixes (see [14]) 𝑖𝑑𝑥_,
as each token with prefix 𝑖𝑑𝑥_ represents one tuple.

As SBERT has shown competitive performance on schema
inference, we have also applied the pre-trained SBERT model to
entity resolution tasks. We computed the SBERT embeddings of
each row of the six attributes in the Music Brainz 2K and three
attributes in GeoSet.

6.1 Results and Discussion
Table 4 presents the clustering results for entity resolution using
Schema+Instance-level data. The following can be observed: (i)
Running SDCN did not manage to improve the representa-
tion compared to AE for any of the datasets.We observed
that SDCN was not further optimizing the representation learned
by AE during pre-training as measured by the silhouette score.
Due to this, we used the representation of both datasets learned
by AE from the pre-training module without considering the
clustering loss from SDCN. (ii) Most clustering algorithms
produced better results with SBERT than with EmbDi. AE
with SBERT leads with a 0.26 (for Music Brainz) and 0.24 (for
GeoSet) higher ARI than AE with EmbDi. For Music Brainz data,
AE with SBERT obtained 616 more TP pairs than AE with Em-
bDi. For example, one pair, which is TP in AE with SBERT and
FN in AE with EmbDi, is (title: 009-Ballade a donner, length: 4m
2sec, artist: Luce Dufault, album: Luce Dufault (1996), year: nan,
language: Fre.) and (title: Luce Dufault - Ballade Ã donner, length:
242, artist: nan, album: Luce Dufault, year: 96, language: French).
EmbDi encoded (length: 242) as numerical which is given in sec-
onds and (length: 4m 2sec) as a string token, whereas SBERT
considered both as strings. Similarly, EmbDi did not manage
to preserve the contextual information by comparing text with
its abbreviations (language: Fre. vs. language: French). (iii) The
best overall results are with AE for both representations
in DC methods. AE outperforms EDESC on Music Brainz data
with 0.08 and 0.34 higher ARI scores with EmbDi and SBERT,
respectively, since AE learned features more effectively than
those learned during the training with EDESC. ACC shows that
AE with SBERT assigns 7% more samples to the correct clusters
in the prediction compared to the number of clusters assigned
with EDESC using SBERT. For example, the cosine similarity of
two contextually similar SBERT vectors representing (title: Uriah
Heep - Southern Star, length: 266, artist: nan, album: Into the Wild,
year: 11, language: English) and (title: 0B1-Southern Star, length:
4m 26sec, artist: Heep Uriah, album: Into the Wild (2011), year: nan,
language: Eng.) is 0.78, and should be clustered together with
high contextual similarity. However, EDESC placed the two rows
in separate clusters compared to AE, which produced the correct
clusters. (iv) EDESC with SBERT failed to distinguish most
of the unary clusters (TN in GT) leading it to predict the
incorrect number of clusters (668 against 684 GT clusters)
compared to AE. Most EDESC unary clusters have been merged
in the prediction, causing a high FP rate (EDESC misassigns rows
to the same cluster when they should be in different clusters). For
example, two instances sharing lexically similar values (length:
4m 56sec, year: nan, language: Eng.) and (length: 4m 29sec, year:
nan, language: Eg.) belonging to different clusters in GT but ob-
tain high cosine similarity (0.99) in the EDESC latent space with
SBERT resulting in a misclassification. (v) The original EmbDi

643



Table 4: Entity Resolution: clustering results DC (AE, EDESC and SHGP) vs SC (K-means, Birch and DBSCAN) using EmbDi
and SBERT on Music Brainz 2K and GeoSet datasets.

AE EDESC SHGP K-means DBSCAN Birch

Dataset Metric EmbDi SBERT EmbDi SBERT EmbDi SBERT EmbDi SBERT EmbDi SBERT EmbDi SBERT
𝐾 684 684 684 668 684 684 684 684 0 1 684 684

Music Brainz ARI 0.51 0.77 0.43 0.43 0.20 0.16 0.41 0.38 0.0 0.00 0.41 0.56
ACC 0.71 0.86 0.67 0.79 0.51 0.48 0.65 0.67 0.002 0.004 0.67 0.76
𝐾 786 786 786 786 786 786 786 786 N/A 1 786 688

GeoSet ARI 0.61 0.85 0.60 0.81 0.43 0.72 0.57 0.74 0.0 0.0005 0.59 0.31
ACC 0.72 0.91 0.73 0.89 0.63 0.84 0.72 0.86 0.001 0.002 0.71 0.59

representation does not perform especially well, but is im-
proved on by AE and EDESC. In EmbDi, high similarity scores
may be given even where there are few attributes in common. For
example, all rows in the largest cluster contain only the common
attribute value (Language: spa.), which occurred frequently. The
cosine similarity of EmbDi vectors of two records with different
values of (title, length, artist, album, year) and the same value
of (Language: spa) is 0.75, causing the SC algorithms to cluster
them together. The representation learned by AE from EmbDi re-
solved this issue. (vi) SC methods were outperformed by DC
methods for both datasets. Although showing some strength,
Birch and K-means do not match the feature learning capabili-
ties of DC methods, reflected in the lower ACC scores than AE
(0.19 and 0.10 for Music Brainz with SBERT and 0.05 and 0.32
for GeoSet with SBERT, respectively). SHGP, however, failed to
produce better clusters than K-means and Birch, with lower ARI
scores of 0.14 and 0.16 with EmbDi on GeoSet data. Like schema
inference, DBSCAN struggles in entity resolution and produces
one cluster due to highly similar dense data regions.

7 DOMAIN DISCOVERY
Domain discovery is the process of identifying collections of
values that instantiate an application concept. Discovering do-
mains tends to involve looking for similar collections of values
in different dataset columns. Most prior work has used bespoke
algorithms [41, 48, 52], but in this section we investigate the use
of generic clustering techniques for identifying columns that
share domains.

For domain discovery, the clustering problem can be defined
as: for a given set of columns𝐶 = {𝑐1, 𝑐2, 𝑐3 . . . 𝑐𝑛} identify every
subset𝐶𝑠 ⊆ 𝐶 that shares a common domain using clustering. To
infer a domain from a set of columns, we considered schema-level
evidence with pre-trained sentence transformer SBERT and word
embedding technique FastText, and Schema+Instance-level with
SBERT and EmbDi [14].

We used the Di2KG (Camera and Monitor) datasets2, which
consist of camera and monitor specifications extracted from mul-
tiple e-commerce web pages. The datasets are highly hetero-
geneous in terms of single or multiple sources. For example,
synonyms, e.g., lens from www.cambuy.com.au and normalized
optical zoom from buy.net, semantically represent the same do-
main. There are several homonyms, i.e., screen type is considered
in some sources to represent screen size. The properties of the
datasets evaluated for domain discovery is presented in Table 1.
Similar to entity resolution, in some experiments the representa-
tion is not well learned in the training of SDCN but by the AE in
the pre-training module. Based on the silhouette score, we use

2http://di2kg.inf.uniroma3.it/datasets.html

the AE instead of SDCN in some domain discovery experiments.
The details are given in the hyperparameter setting3.

We used three embedding methods for column clustering,
considering schema-level and schema+instance-level data. To
encode column attributes, we used pre-trained models SBERT
and FastText as we used in schema inference. To encode columns
at schema+instance-level, we utilized the Schema Matching (SM)
version of EmbDi (Algorithm 5 in EmbDi [14]) and evaluated
skip-gram as a learning method with piece-wise smoothing. In
domain discovery, we have a set of columns with cell values
that can be represented as a phrase in SBERT which is trained
on diverse text corpora and can capture semantic and syntactic
information. Considering this, we used SBERT to encode column
headers and values jointly. SBERT processes each column and
generates embeddings representing the semantic content of the
column headers and values. Subsequently, the embedding for
each column is computed by performing a mean operation on
the corresponding column header and value embeddings.

7.1 Results and Discussion
Table 5 shows the clustering results for domain discovery using
schema-level data. We observe the following: (i) All the cluster-
ing algorithms perform quite similarly when considering
schema-level data. This suggests that DC is not significantly
improving the representation and indicates that the represen-
tations used capture the necessary structure and meaningful
differences well enough for SC to group suitable column head-
ers, especially in the Camera dataset. (ii) SHGP outperformed
SDCN and EDESC using SBERT with Monitor data. SHGP
obtained an ACC score of 0.03 higher than SDCN and EDESC,
in contrast with its performance in domain discovery and entity
resolution. SHGP captured more syntactic structures within the
column headers and hierarchically divided the graph into various
sub-graphs with similar features. For example, attributes (max
resolutions), (resolution) and (supported graphics resolutions) are
true positives in GT and SHGP but false negatives in the SDCN
prediction. (iii) SBERT and FastText with schema-level data
are much more similar than in schema inference. SBERT
is leading by 0.03 ARI in SDCN, 0.08 ARI score in EDESC, and
0.05 ARI score in SHGP, a relatively small difference compared
to the performance of FastText in SI. This is because, in schema
inference, we have long contextual phrases compared to domain
discovery. The attribute phrases in the Camera dataset are small,
and FastText does not need to consider the order of words to
embed, leading to good performance.

Table 6 presents the clustering results for domain discovery us-
ing schema+instance-level data. We observe the following: (i)All

3https://github.com/hafizrauf/dc_data-integration

644



Table 5: Domain discovery: Schema-level clustering resultsDC (SDCN/AE, EDESC and SHGP) vs SC (K-means, Birch and
DBSCAN) using SBERT and FastText on Di2KG (Camera and Monitor) datasets.

SDCN/AE EDESC SHGP K-means DBSCAN Birch
Dataset Metric SBERT FastText SBERT FastText SBERT FastText SBERT FastText SBERT FastText SBERT FastText

𝐾 42 56 56 56 56 56 56 56 49 47 56 44
Camera ARI 0.74 0.71 0.78 0.70 0.66 0.69 0.73 0.71 0.73 0.35 0.76 0.58

ACC 0.69 0.68 0.74 0.66 0.62 0.65 0.69 0.66 0.69 0.53 0.70 0.62
𝐾 81 81 81 81 81 81 81 81 99 100 81 81

Monitor ARI 0.59 0.57 0.59 0.57 0.59 0.54 0.57 0.55 0.27 0.30 0.52 0.54
ACC 0.58 0.56 0.58 0.54 0.61 0.55 0.57 0.54 0.50 0.51 0.54 0.56

Table 6: Domain discovery: Schema+Instance-level clustering results DC (SDCN/AE, EDESC and SHGP) vs SC (K-means,
Birch and DBSCAN) using SBERT and EmbDi on Di2KG (Camera and Monitor) datasets.

SDCN/AE EDESC SHGP K-means DBSCAN Birch
Dataset Metric SBERT EmbDi SBERT EmbDi SBERT EmbDi SBERT EmbDi SBERT EmbDi SBERT EmbDi

𝐾 51 56 56 56 56 56 56 56 42 1 56 56
Camera ARI 0.86 0.13 0.81 0.11 0.47 0.07 0.51 0.12 -0.005 0.02 0.78 0.03

ACC 0.80 0.17 0.78 0.15 0.56 0.11 0.56 0.15 0.25 0.13 0.74 0.14
𝐾 81 81 81 81 81 81 81 81 87 2 81 81

Monitor ARI 0.64 0.06 0.62 0.06 0.51 0.02 0.58 0.06 0.05 0.002 0.60 0.04
ACC 0.63 0.13 0.62 0.13 0.53 0.08 0.58 0.13 0.38 0.06 0.61 0.13

('sensor si
ze',)

('optical zo
om',)

('image format',)
('dimensions',)

('s
en

so
r s

ize
',)

('o
pt
ica

l z
oo

m
',)

('i
m
ag

e f
or
m
at
',)

('d
im

en
sio

ns
',)

1 0.24 0.09 0.32

0.24 1 0.2 0.19

0.09 0.2 1 0.19

0.32 0.19 0.19 1 0.2

0.4

0.6

0.8

1.0

(a) Schema-level

('sensor si
ze',)

('optical zo
om',)

('image format',)
('dimensions',)

('s
en

so
r s

ize
',)

('o
pt
ica

l z
oo

m
',)

('i
m
ag

e f
or
m
at
',)

('d
im

en
sio

ns
',)

1 0.77 0.9 0.92

0.77 1 0.85 0.82

0.9 0.85 1 0.94

0.92 0.82 0.94 1 0.80

0.85

0.90

0.95

1.00

(b) Schema+instance-level

Figure 5: Heat map representation of SBERT (schema-
level) (a) and EmbDi (b) with SDCN on Camera data. When
instance-level data is added for encoding, we can observe
that all true negative cases in (a) are false positives in (b).

clusteringmethods struggled to integrate Schema+Instance
data with EmbDi and showed much better performance
with SBERT on all datasets. EmbDi failed to produce suitable
embeddings for column headers and values because EmbDi em-
phasizes relationships between columns in a table, which are
not especially relevant to domain discovery. In contrast, SBERT
considers the textual context for each column header and value

and then combines them, ignoring surrounding columns. Fur-
thermore, the performance of EmbDi is also impacted by the
syntactic dissimilarity between column headers. For example,
two-column attributes in Camera data (image size pixels) and
(max resolution) are lexically dissimilar with a cosine similarity
of 0; however, they can have similar instance values. The largest
cluster predicted by EDESC with EmbDi contains 1151 columns
that belong to 13 GT domains but represent one domain in the
prediction, which shows a high false positive rate. Some exam-
ples of domains clustered by EDESC with EmbDi but not in the
GT clusters are (battery type, lens type, battery life, camera type).
We used heat maps (Figure 5) to analyze how the distance vectors
of columns are similar or dissimilar. We investigate how adding
instance-level data affects the representation of columns. For
heat map visualization, columns are selected randomly from the
predicted clusters of SDCN encoded with SBERT (schema-level)
and EmbDi (schema+instance-level). Unlike SBERT, EmbDi with
SDCN groups those columns that are neither syntactically similar
nor belong to the same domain. Adding instance-level data gives
rise to a poorer encoding for SDCN with EmbDi. Figure 5a con-
firms that different columns that should be in the same cluster are
in different clusters. This indicates that the column headers are
lexically different and suitable for models pre-trained on large dic-
tionaries. Figure 5b shows that all the example columns belong to
different real-world domains but are still assigned to one cluster.
SBERT with SDCN managed to segregate those columns, which
are lexically different, from schema-level evidence. (ii) Combin-
ing instance-level data with schema-level data helps in
domain discovery but not schema inference for all cluster-
ing methods. In domain discovery, the column headers have
high syntactic similarity despite belonging to different domains.
Adding more relevant information from column values into the
feature space makes the features more different, and clustering
methods find criteria to differentiate between clusters. On the
other hand, the table attributes in schema inference have high
semantic similarity with more similar table values, making the
features more similar to each other. Adding table values into

645



feature space may lead to highly overlapping features, which
clustering methods find hard to cluster correctly. For example,
in domain discovery, the SBERT cosine similarity between two
column headers (headphone outputs) and (headphone out) that
belonging to different domains is 0.78, which is relatively high
and they are likely to be placed in one cluster; however, when we
add instance-level data (headphone outputs: 1) and (headphone
out: yes), this provides additional information, making the two
features less similar.

8 DISCUSSION
The following are cross-cutting findings from the experiments:
SDCN with SBERT performed well in several problems (particu-
larly for schema inference with schema-level data on web tables,
entity resolution on both datasets and domain discovery with
schema+instance-level on the Camera dataset) compared to other
embedding methods. SDCN allows for fine-tuning of SBERT by
way of the lower-dimensional latent space of the AE, potentially
capturing deeper semantic relationships in sentences. For ex-
ample, for schema inference, the representation of the two sets
of table attributes (common name, scientific name, family) and
(species, scientific name, day, high count, total count) from table
Bird are well learned by AE when SBERT is fine-tuned compared
to FastText because SBERT considers the context of these at-
tributes, whereas FastText uses sub-word information. The two
sets of table attributes are correctly clustered together in SDCN
with SBERT but are apart with FastText.
EDESC performed better clustering when there were a large number
of clusters with small cluster cardinality (particularly for schema
inference with schema-level on web tables using FastText, do-
main discovery with schema-level on Camera datasets using
SBERT and with schema+instance-level on Monitor datasets us-
ing EmbDi). When there are a large number of clusters, and each
cluster contains a relatively small number of instances, those
small clusters tend to contain instances with a higher degree of
separation (the similarity between instances is higher within the
same cluster and lower between different clusters). This occur-
rence of clusters with prominent distinct features reduces the
overlap between different subspaces. In contrast, where there
are a small number of large clusters, these tend to have lower
inter-cluster distances, increasing the probability of overlapping
subspaces in which instances that should be in different clusters
are assigned to the same subspace. For example, the GT’s mean
cluster cardinality for web tables data is 16.5; EDESC with Fast-
Text predicted 14 clusters with cardinality below 16.5 compared
to SDCN with FastText, which predicted 9, thereby missing more
smaller clusters.
SDCN prioritizes cluster quality over quantity. SDCN forms fewer
clusters (observed for schema inference with schema-level using
SBERT onweb tables data and domain discovery schema+instance-
level using SBERT on Camera data), but these clusters are denser
and better separated than in SC methods, which even when they
produce the same number of clusters as in the GT these are less
dense and compact. An example of this phenomenon in domain
discovery on schema+instance-level Camera data is that SDCN
with SBERT formed 42 clusters against 56 GT clusters and yet out-
performed Birch and K-means by 0.08 and 0.35 ARI respectively,
even though they produced the correct number of clusters.
SHGP performs poorly for all problems except when applied to the
Monitor dataset, executing domain discovery on schema-level data

using SBERT. Since SHGP uses K-means to cluster the embeddings
learned by two modules, Att-LPA and Att-HGNN (referred to
SHGP in Section 3), this indicates that SBERT embeddings of raw
columns are more robust than SHGP embeddings (a fine-tuned
version of SBERT using Att-LPA and Att-HGNN ).
DBSCAN performed poorly for all experiments in schema inference
and entity resolution and predicted a minimal number of clusters,
sometimes a singular cluster. We observed that DBSCAN tends to
merge distinct clusters into one cluster because all clusters have
similar densities. In DBSCAN, a cluster is a dense space region
separated by lower-density regions. If all the instances fall in the
same density region, it becomes difficult for DBSCAN to differ-
entiate between clusters. We validate this observation using the
Kolmogorov-Smirnov (KS) test [3, 59] to determine the similarity
in density distributions between different features. The KS test
compares the cumulative distributions of the pairs of instances to
determine their differences. The null hypothesis is that the pairs
of instances are drawn from the same distribution. We applied
the KS test pairwise to all possible pairs of features obtained
from SBERT embeddings of web tables data for schema inference
considering schema-level data. The KS test returns two measures,
the K-statistic (smaller value indicates that all features share the
same distribution or density) and p-value (smaller value suggests
rejecting the null hypothesis). We obtained mean K-statistic =
0.06, indicating that all features represent the same distribution
(similar densities), and mean p-value = 0.65, confirming that we
cannot reject the null hypothesis.

9 COMPARISONWITH BESPOKE METHODS
Sections 5 to 7 compare DC and SC algorithms for data integration
tasks, showing that DC can provide significant benefits over SC
for these tasks. This section investigates how DC performs com-
pared with state-of-the-art unsupervised approaches to schema
inference, entity resolution and domain discovery. Throughout,
we compare the bespoke methods with SDCN, using the most
effective representation found for each problem in Sections 5 to
7.

Schema Inference. There are few works on schema inference
for tables that can be seen as directly competing with the clus-
tering approach investigated in Section 5. The first approach we
compare with is explicitly associated with a schema inference
proposal [1], and uses 𝐷3𝐿 [10], which combines several LSH-
indexes to measure the similarity of datasets, along with an SC
algorithm. The second approach we compare with, Starmie [25],
uses contrastive learning over the ROBERTa language model [42]
to generate fine-tuned representations for table and column simi-
larity, and proposes clustering results over these representations
using an SC algorithm. Thus, as a baseline, this combines SC
with a language model that has been fine-tuned for dataset sim-
ilarity. The results are presented in Table 7. It can be observed
that the DC results are better than Starmie for both datasets and
𝐷3𝐿 for the TUS dataset. 𝐷3𝐿 uses an SC algorithm to perform
clustering over the similarity matrix. When we use AE over the
𝐷3𝐿 similarity matrix, AE obtained better results than 𝐷3𝐿 (0.60
ARI and 0.73 ACC). This indicates that 𝐷3𝐿 outperforms Tabnet
(in terms of better representation), and AE outperforms 𝐷3𝐿 (in
terms of better clustering). In 𝐷3𝐿, the comparison criteria are
mostly syntactic, but include features of both headers and in-
stances. In Starmie, the representation is learned from instances,
and has been fine-tuned for similarity comparison, whereas in

646



Table 7: Comparing DC with bespoke solutions.

Schema Inference Entity Resolution Domain Discovery
dataset TUS web tables GeoSet Music Brainz Camera Monitor

encoding Tabnet Tabnet SBERT SBERT SBERT SBERT
metric ARI ACC ARI ACC ARI ACC ARI ACC ARI ACC ARI ACC
D3L 0.56 0.72 0.14 0.31 Jaccard 0.07 0.58 0.16 0.59 D4 0.29 0.27 N/A N/A

Starmie 0.11 0.33 0.10 0.31 JedAI Cosine 0.32 0.64 0.58 0.69 Starmie -0.007 0.14 0.001 0.09
SDCN 0.34 0.45 0.45 0.55 Dice 0.31 0.64 0.57 0.69 SDCN 0.86 0.80 0.64 0.63

SDCN 0.85 0.91 0.77 0.86

SDCN the representation has been fine-tuned for similarity clus-
tering. Starmie uses a connected component algorithm [25] to
produce clusters, and we observe that Starmie encountered an
over-segmentation issue where it produces too many small clus-
ters (173 with 113 unary clusters) against 26 GT clusters on web
tables data. This indicates that the similarity graph obtained from
Starmie column embeddings given to the connected component
algorithm is not robust enough, making it sensitive to minor
variations.

Entity Resolution. There are many results on entity resolution
(ER); as a comparator, we use a workflow from JedAI [44, 49].
JedAI is a platform that brings together state-of-the-art clustering
algorithms to support empirical evaluation. We use the schema-
agnostic workflow from JedAI because: (i) it is unsupervised
and the deep clustering approaches are also schema-agnostic; (ii)
the default parameters of the workflow have been derived from
experience with many datasets and thus should provide robust
performance; (iii) different similarity metrics are supported; and
(iv) the workflow includes a clustering step, whereas quite a lot
of ER proposals stop at pairwise comparison. The results are
presented in Table 7. It can be seen that SDCN outperforms the
JedAI unsupervised workflow with all similarity measures; the
issue with the performance of JedAI for these datasets is primarily
during the clustering stage, with too many small clusters being
produced.

Domain Discovery. There are not many fully unsupervised do-
main discovery proposals. We experiment with: D4 (Data Driven
Domain Discovery) [48], a bespoke algorithm that seeks to iden-
tify domains from overlaps in column extents; and Starmie [25],
which as discussed for Schema Inference, uses self-supervised
contrastive learning over the ROBERTa language model to pro-
duce column embeddings. We note that D4 may infer that a
column participates in several domains, whereas by clustering
columns, we have been associating each column with a single
domain. To overcome this issue for the experiments, we asso-
ciated each column with the D4 domain that has the greatest
coverage. The results are presented in Table 7. The following can
be observed: (i) DC outperforms D4 on the benchmark dataset;
this is because D4 assumes consistent representations for col-
umn values, and the datasets used regularly manifest represen-
tational inconsistencies. Although we have successfully run D4
on several datasets, it did not manage to identify domains in
the Monitor dataset4. (ii) Starmie has not performed well for
this task. Starmie’s performance heavily relies on the fine-tuning
process over ROBERTa, which is less specialized in computing
contextual similarities at the sentence level than SBERT. The
embeddings produced by Starmie were observed to have high

4Specifically, D4 returned context signature count 0 with the Monitor dataset

intra-class variability (variations within the same cluster) com-
pared to those obtained by SBERT, which directly affects the
clustering performance.

10 CONCLUSIONS
We have investigated the application of DC for schema inference,
entity resolution and domain discovery, tasks that cluster tables,
rows and columns, respectively. Experiments have explored the
use of DC algorithms on these mainstream data management
tasks, using a variety of embeddings for complete tables, columns,
and rows. Results have been reported comparing three existing
DC algorithms with three non-DC algorithms representing differ-
ent clustering paradigms. The results show that DC algorithms
consistently outperform non-DC clustering algorithms for data
integration tasks, thus motivating their adoption to cluster tab-
ular datasets or their components. We have also compared the
DC proposals with state-of-the-art algorithms for each of schema
inference, entity resolution and domain discovery, where once
again the results are encouraging, consistently outperforming
the bespoke proposals.

We identified potential future research opportunities by empir-
ical evaluation, which include (i) Exploring distance functions to
effectively measure row-to-row, column-to-column and table-to-
table similarity in the latent space for deep clustering. (ii) Efficient
transformation of dense to sparse matrices before learning the
representation. (iii) Exploring different techniques to minimize
the effect of large numbers of clusters on deep clustering perfor-
mance; as the number of clusters grows, the model’s complexity
increases, and it becomes more likely that some clusters will be
very similar, leading to more challenging optimization problems.

ACKNOWLEDGMENTS
The authors would like to acknowledge the assistance given by
Research IT and the use of the Computational Shared Facility
(CSF) at The University of Manchester. Hafiz Tayyab Rauf is
supported by a studentship from The University of Manchester.

REFERENCES
[1] Nour Alhammad, Alex Bogatu, and Norman W. Paton. 2022. Towards Schema

Inference for Data Lakes. CoRR abs/2206.03881 (2022). https://doi.org/10.
48550/ARXIV.2206.03881 arXiv:2206.03881

[2] Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, and Daniel Cremers. 2018.
Clustering with Deep Learning: Taxonomy and New Methods. CoRR
abs/1801.07648 (2018). arXiv:1801.07648 http://arxiv.org/abs/1801.07648

[3] KOLMOGOROV AN. 1933. Sulla determinazione empirica di una legge didis-
tribuzione. Giorn Dell’inst Ital Degli Att 4 (1933), 89–91.

[4] Sercan Ö. Arik and Tomas Pfister. 2021. TabNet: Attentive Interpretable
Tabular Learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press,
6679–6687. https://ojs.aaai.org/index.php/AAAI/article/view/16826

647



[5] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
2019. Parametric schema inference for massive JSON datasets. VLDB J. 28, 4
(2019), 497–521. https://doi.org/10.1007/s00778-018-0532-7

[6] Gilbert Badaro and Paolo Papotti. 2022. Transformers for Tabular Data Repre-
sentation: A Tutorial on Models and Applications. Proc. VLDB Endow. 15, 12
(2022), 3746–3749. https://www.vldb.org/pvldb/vol15/p3746-badaro.pdf

[7] Jinqiang Bai, Shiguo Lian, Zhaoxiang Liu, Kai Wang, and Dijun Liu. 2018.
Deep Learning Based Robot for Automatically Picking Up Garbage on the
Grass. IEEE Trans. Consumer Electron. 64, 3 (2018), 382–389. https://doi.org/
10.1109/TCE.2018.2859629

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment 2008, 10 (2008), P10008.

[9] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. 2020.
Structural Deep Clustering Network. In WWW ’20: The Web Conference 2020,
Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (Eds.). ACM / IW3C2, 1400–1410. https://doi.org/10.1145/
3366423.3380214

[10] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-
stantinou. 2020. Dataset Discovery in Data Lakes. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
709–720. https://doi.org/10.1109/ICDE48307.2020.00067

[11] Alex Bogatu, Norman W. Paton, Mark Douthwaite, Stuart Davie, and André
Freitas. 2021. Cost-effective Variational Active Entity Resolution. In 37th IEEE
International Conference on Data Engineering, ICDE 2021, Chania, Greece, April
19-22, 2021. 1272–1283. https://doi.org/10.1109/ICDE51399.2021.00114

[12] Deng Cai, Xiaofei He, and Jiawei Han. 2005. Document Clustering Using
Locality Preserving Indexing. IEEE Trans. Knowl. Data Eng. 17, 12 (2005),
1624–1637. https://doi.org/10.1109/TKDE.2005.198

[13] Jinyu Cai, Jicong Fan, Wenzhong Guo, Shiping Wang, Yunhe Zhang, and Zhao
Zhang. 2022. Efficient Deep Embedded Subspace Clustering. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022. IEEE, 21–30. https://doi.org/10.1109/CVPR52688.
2022.00012

[14] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Inte-
gration Tasks. In Proceedings of the 2020 International Conference on Man-
agement of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1335–1349.
https://doi.org/10.1145/3318464.3389742

[15] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. 2018.
Deep Clustering for Unsupervised Learning of Visual Features. In Com-
puter Vision - ECCV 2018 - 15th European Conference, Munich, Germany, Sep-
tember 8-14, 2018, Proceedings, Part XIV. 139–156. https://doi.org/10.1007/
978-3-030-01264-9_9

[16] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos,
Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. 2019. Summarizing
semantic graphs: a survey. VLDB J. 28, 3 (2019), 295–327. https://doi.org/10.
1007/s00778-018-0528-3

[17] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-End Entity Resolution
for Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1–127:42. https://doi.org/
10.1145/3418896

[18] Gianni Costa, Giuseppe Manco, and Riccardo Ortale. 2010. An incremental
clustering scheme for data de-duplication. Data Min. Knowl. Discov. 20, 1
(2010), 152–187. https://doi.org/10.1007/s10618-009-0155-0

[19] Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. 2021. Near-
est Neighbor Matching for Deep Clustering. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer
Vision Foundation / IEEE, 13693–13702. https://doi.org/10.1109/CVPR46437.
2021.01348

[20] Daniel P. M. de Mello, Renato M. Assunção, and Fabricio Murai. 2022. Top-
Down Deep Clustering with Multi-Generator GANs. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Vir-
tual Event, February 22 - March 1, 2022. AAAI Press, 7770–7778. https:
//ojs.aaai.org/index.php/AAAI/article/view/20745

[21] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai,
and Heng Huang. 2017. Deep Clustering via Joint Convolutional Autoencoder
Embedding and Relative Entropy Minimization. In IEEE International Confer-
ence on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE
Computer Society, 5747–5756. https://doi.org/10.1109/ICCV.2017.612

[22] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. Proc. VLDB Endow. 11, 11 (2018), 1454–1467. https://doi.org/10.
14778/3236187.3236198

[23] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19, 1
(2007), 1–16. https://doi.org/10.1109/TKDE.2007.250581

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases

with Noise. In Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining (KDD-96), Portland, Oregon, USA, Evangelos
Simoudis, Jiawei Han, and Usama M. Fayyad (Eds.). AAAI Press, 226–231.
http://www.aaai.org/Library/KDD/1996/kdd96-037.php

[25] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023.
Semantics-aware Dataset Discovery from Data Lakes with Contextualized
Column-based Representation Learning. Proc. VLDB Endow. 16, 7 (2023),
1726–1739. https://doi.org/10.14778/3587136.3587146

[26] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool. 2020. SCAN: Learning to Classify Images
Without Labels. In Computer Vision - ECCV 2020 - 16th European Conference
Proceedings, Part X (LNCS, Vol. 12355), Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (Eds.). Springer, 268–285. https://doi.org/10.
1007/978-3-030-58607-2_16

[27] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021.
Revisiting Deep Learning Models for Tabular Data. In Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (Eds.). 18932–18943. https://proceedings.neurips.cc/paper/
2021/hash/9d86d83f925f2149e9edb0ac3b49229c-Abstract.html

[28] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomás
Mikolov. 2018. Learning Word Vectors for 157 Languages. In Proceedings of
the Eleventh International Conference on Language Resources and Evaluation,
LREC 2018, Miyazaki, Japan, May 7-12, 2018, Nicoletta Calzolari et al. (Eds.).
European Language Resources Association (ELRA). http://www.lrec-conf.
org/proceedings/lrec2018/summaries/627.html

[29] J. A. Hartigan and M. A. Wong. 1979. Algorithm AS 136: A K-Means Clustering
Algorithm. Applied Statistics 28, 1 (1979), 100. https://doi.org/10.2307/2346830

[30] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. 2009.
Framework for Evaluating Clustering Algorithms in Duplicate Detection. Proc.
VLDB Endow. 2, 1 (2009), 1282–1293. https://doi.org/10.14778/1687627.1687771

[31] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimen-
sionality of data with neural networks. science 313, 5786 (2006), 504–507.

[32] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar S. Karnin. 2020. Tab-
Transformer: Tabular Data Modeling Using Contextual Embeddings. CoRR
abs/2012.06678 (2020). arXiv:2012.06678 https://arxiv.org/abs/2012.06678

[33] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman,
and João Carreira. 2021. Perceiver: General Perception with Iterative Attention.
In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research,
Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 4651–4664. http:
//proceedings.mlr.press/v139/jaegle21a.html

[34] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian D. Reid. 2017.
Deep Subspace Clustering Networks. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (Eds.). 24–33. https://proceedings.neurips.cc/paper/2017/
hash/e369853df766fa44e1ed0ff613f563bd-Abstract.html

[35] Licheng Jiao and Jin Zhao. 2019. A Survey on the New Generation of Deep
Learning in Image Processing. IEEE Access 7 (2019), 172231–172263. https:
//doi.org/10.1109/ACCESS.2019.2956508

[36] Kenza Kellou-Menouer, Nikolaos Kardoulakis, Georgia Troullinou, Zoubida
Kedad, Dimitris Plexousakis, and Haridimos Kondylakis. 2022. A survey on
semantic schema discovery. The VLDB Journal 31 (2022), 675–710.

[37] Young Jin Kim and Hany Hassan. 2020. FastFormers: Highly Efficient Trans-
former Models for Natural Language Understanding. In Proceedings of Sus-
taiNLP: Workshop on Simple and Efficient Natural Language Processing, Sus-
taiNLP@EMNLP 2020, Online, November 20, 2020, Nafise Sadat Moosavi, An-
gela Fan, Vered Shwartz, Goran Glavas, Shafiq R. Joty, Alex Wang, and
Thomas Wolf (Eds.). Association for Computational Linguistics, 149–158.
https://doi.org/10.18653/v1/2020.sustainlp-1.20

[38] Jakub Klímek and Martin Necaský. 2010. Reverse-engineering of XML
Schemas: A Survey. In Proceedings of the Dateso 2010 Annual International
Workshop on DAtabases, TExts, Specifications and Objects, Stedronin-Plazy,
Czech Republic, April 21-23, 2010. 96–107. http://ceur-ws.org/Vol-567/paper19.
pdf

[39] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah.
2021. A Survey of Deep Learning Applications to Autonomous Vehicle Control.
IEEE Trans. Intell. Transp. Syst. 22, 2 (2021), 712–733. https://doi.org/10.1109/
TITS.2019.2962338

[40] Ivano Lauriola, Alberto Lavelli, and Fabio Aiolli. 2022. An introduction to
Deep Learning in Natural Language Processing: Models, techniques, and tools.
Neurocomputing 470 (2022), 443–456. https://doi.org/10.1016/j.neucom.2021.
05.103

[41] Keqian Li, Yeye He, and Kris Ganjam. 2017. Discovering Enterprise Concepts
Using Spreadsheet Tables. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
August 13 - 17, 2017. 1873–1882. https://doi.org/10.1145/3097983.3098102

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR
abs/1907.11692 (2019). arXiv:1907.11692 http://arxiv.org/abs/1907.11692

648



[43] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang,
and En Zhu. 2022. Deep Graph Clustering via Dual Correlation Reduction.
In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 7603–7611.
https://ojs.aaai.org/index.php/AAAI/article/view/20726

[44] Georgios M. Mandilaras, George Papadakis, Luca Gagliardelli, Giovanni Si-
monini, Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi,
Themis Palpanas, Manolis Koubarakis, Alicia Lara-Clares, and Antonio Fariña.
2021. Reproducible experiments on Three-Dimensional Entity Resolution with
JedAI. Inf. Syst. 102 (2021), 101830. https://doi.org/10.1016/J.IS.2021.101830

[45] Leland McInnes and John Healy. 2018. UMAP: Uniform Manifold Approxi-
mation and Projection for Dimension Reduction. CoRR abs/1802.03426 (2018).
arXiv:1802.03426 http://arxiv.org/abs/1802.03426

[46] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long.
2018. A Survey of Clustering With Deep Learning: From the Perspective of
Network Architecture. IEEE Access 6 (2018), 39501–39514. https://doi.org/10.
1109/ACCESS.2018.2855437

[47] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825. https:
//doi.org/10.14778/3192965.3192973

[48] Masayo Ota, Heiko Mueller, Juliana Freire, and Divesh Srivastava. 2020. Data-
Driven Domain Discovery for Structured Datasets. Proc. VLDB Endow. 13, 7
(2020), 953–965. https://doi.org/10.14778/3384345.3384346

[49] George Papadakis, Georgios M. Mandilaras, Luca Gagliardelli, Giovanni Si-
monini, Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi,
Themis Palpanas, and Manolis Koubarakis. 2020. Three-dimensional Entity
Resolution with JedAI. Inf. Syst. 93 (2020), 101565. https://doi.org/10.1016/J.
IS.2020.101565

[50] Sungwon Park, Sungwon Han, Sundong Kim, Danu Kim, Sungkyu Park, Se-
unghoon Hong, and Meeyoung Cha. 2021. Improving Unsupervised Image
Clustering With Robust Learning. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision
Foundation / IEEE, 12278–12287. https://doi.org/10.1109/CVPR46437.2021.
01210

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[52] Federico Pial, Paolo Atzeni, Paolo Merialdo, and Divesh Srivastava. 2022. Fine-
grained semantic type discovery for heterogeneous sources using clustering.
VLDB Journal (2022). https://doi.org/10.1007/s00778-022-00743-3

[53] Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto. 2018. Gen-
erative Probabilistic Novelty Detection with Adversarial Autoencoders.
In Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett (Eds.). 6823–6834. https://proceedings.neurips.cc/paper/2018/hash/
5421e013565f7f1afa0cfe8ad87a99ab-Abstract.html

[54] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics. https://doi.org/10.18653/v1/d19-1410

[55] Dominique Ritze and Christian Bizer. 2017. Matching Web Tables To DBpedia
- A Feature Utility Study. In Proceedings of the 20th International Conference on
Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017,
Volker Markl, Salvatore Orlando, Bernhard Mitschang, Periklis Andritsos,
Kai-Uwe Sattler, and Sebastian Breß (Eds.). OpenProceedings.org, 210–221.
https://doi.org/10.5441/002/edbt.2017.20

[56] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathemat-
ics 20 (1987), 53–65.

[57] Alieh Saeedi, Eric Peukert, and Erhard Rahm. 2017. Comparative Evalua-
tion of Distributed Clustering Schemes for Multi-source Entity Resolution.
In Advances in Databases and Information Systems - 21st European Confer-
ence, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10509), Marite Kirikova, Kjetil Nørvåg, and
George A. Papadopoulos (Eds.). Springer, 278–293. https://doi.org/10.1007/
978-3-319-66917-5_19

[58] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still)
Use DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 19:1–19:21. https:
//doi.org/10.1145/3068335

[59] Nickolay Smirnov. 1948. Table for estimating the goodness of fit of empirical
distributions. The annals of mathematical statistics 19, 2 (1948), 279–281.

[60] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss,
and Tom Goldstein. 2021. SAINT: Improved Neural Networks for Tabular
Data via Row Attention and Contrastive Pre-Training. CoRR abs/2106.01342
(2021). arXiv:2106.01342 https://arxiv.org/abs/2106.01342

[61] Chunfeng Song, Feng Liu, Yongzhen Huang, LiangWang, and Tieniu Tan. 2013.
Auto-encoder Based Data Clustering. In Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications - 18th Iberoamerican Congress,
CIARP 2013, Havana, Cuba, November 20-23, 2013, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 8258), José Ruiz-Shulcloper andGabriella Sanniti
di Baja (Eds.). Springer, 117–124. https://doi.org/10.1007/978-3-642-41822-8_
15

[62] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash
Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep Learning
for Blocking in Entity Matching: A Design Space Exploration. Proc. VLDB
Endow. 14, 11 (2021), 2459–2472. https://doi.org/10.14778/3476249.3476294

[63] Saravanan Thirumuruganathan, Nan Tang, Mourad Ouzzani, and AnHai Doan.
2020. Data Curation with Deep Learning. In Proceedings of the 23rd Interna-
tional Conference on Extending Database Technology, EDBT 2020, Copenhagen,
Denmark, March 30 - April 02, 2020. 277–286. https://doi.org/10.5441/002/edbt.
2020.25

[64] Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. 2021. MiCE: Mixture of Con-
trastive Experts for Unsupervised Image Clustering. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net. https://openreview.net/forum?id=gV3wdEOGy_V

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[66] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin,
and Hongbin Zha. 2019. Deep Comprehensive Correlation Mining for Image
Clustering. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 8149–
8158. https://doi.org/10.1109/ICCV.2019.00824

[67] Yifan Xing, Tong He, Tianjun Xiao, Yongxin Wang, Yuanjun Xiong, Wei Xia,
David Wipf, Zheng Zhang, and Stefano Soatto. 2021. Learning Hierarchical
Graph Neural Networks for Image Clustering. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021. IEEE, 3447–3457. https://doi.org/10.1109/ICCV48922.2021.00345

[68] Weidi Xu, Haoze Sun, ChaoDeng, and Ying Tan. 2017. Variational Autoencoder
for Semi-Supervised Text Classification. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, Satinder Singh and Shaul Markovitch (Eds.). AAAI Press, 3358–3364.
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14299

[69] Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, and
Jianbin Huang. 2022. Self-supervised Heterogeneous Graph Pre-training Based
on Structural Clustering. In NeurIPS. http://papers.nips.cc/paper_files/paper/
2022/hash/6c7297baffe5c85ea1d9e1ccb1222ab8-Abstract-Conference.html

[70] Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan, and Yueting Zhuang. 2010.
Image Clustering Using Local Discriminant Models and Global Integration.
IEEE Trans. Image Process. 19, 10 (2010), 2761–2773. https://doi.org/10.1109/
TIP.2010.2049235

[71] Fei Ye and Adrian G. Bors. 2022. Deep Mixture Generative Autoencoders.
IEEE Trans. Neural Networks Learn. Syst. 33, 10 (2022), 5789–5803. https:
//doi.org/10.1109/TNNLS.2021.3071401

[72] Cong Yu and H. V. Jagadish. 2006. Schema Summarization. In Proceedings
of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006. 319–330. http://dl.acm.org/citation.cfm?id=1164156

[73] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang Zhang,
Jun Guo, and Zhouchen Lin. 2019. Self-Supervised Convolutional Subspace
Clustering Network. In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision
Foundation / IEEE, 5473–5482. https://doi.org/10.1109/CVPR.2019.00562

[74] Tian Zhang, Raghu Ramakrishnan, andMiron Livny. 1996. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996, H. V. Jagadish and Inderpal Singh Mumick
(Eds.). ACM Press, 103–114. https://doi.org/10.1145/233269.233324

[75] Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng,
Liqiang Nie, Zhouchen Lin, and Xian-Sheng Hua. 2021. Graph Contrastive
Clustering. In 2021 IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE, 9204–9213. https:
//doi.org/10.1109/ICCV48922.2021.00909

[76] Pan Zhou, Yunqing Hou, and Jiashi Feng. 2018. Deep Adversarial Subspace
Clustering. In 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision
Foundation / IEEE Computer Society, 1596–1604. https://doi.org/10.1109/
CVPR.2018.00172

[77] Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Zhao Li, Jiajun Bu,
Jia Wu, Xin Wang, Wenwu Zhu, and Martin Ester. 2022. A Comprehen-
sive Survey on Deep Clustering: Taxonomy, Challenges, and Future Direc-
tions. CoRR abs/2206.07579 (2022). https://doi.org/10.48550/arXiv.2206.07579
arXiv:2206.07579

649


