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Abstract
Bisimulation equivalence is decidable in polynomial time over normed graphs generated by a
context-free grammar. We present a new algorithm, working in time O(n5), thus improving the
previously known complexity O(n8polylog(n)). It also improves the previously known complexity
O(n6polylog(n)) of the equality problem for simple grammars.
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1 Introduction

Equivalence checking, that is determining whether two systems are equal under a given
notion of equivalence, is an important verification problem with a long history. In this paper
we consider systems described by context-free grammars. It is well known that language
equivalence is undecidable in this class [1]. A decidability result was obtained by Korenjak and
Hopcroft [12] for a restricted class of deterministic context-free grammars (simple grammars).
Remarkably, the language containment is undecidable even for simple grammars [7].

In the context of process algebras, a grammar may be considered as a description of
a transition graph rather than a language. The adequate concept of equivalence is then
bisimilarity (bisimulation equivalence), a notion strictly finer than language equivalence.
For graphs generated by context-free grammars, called context-free processes, bisimilarity is
known to be decidable due to the result of [5]. It has also been demonstrated that bisimilarity
is the only equivalence in van Glabbeek’s spectrum [8] which is decidable for context-free
processes. This places bisimilarity in a very favourable position.

Historically the first decision procedure for bisimilarity on infinite-state systems was given
by [3] for a class of normed context-free processes, those defined by grammars in which,
roughly, each nonterminal generates at least one word. Clearly, language equivalence is still
undecidable in this class, as normedness assumption does not facilitate testing language
equality. As language equivalence and bisimilarity coincide on deterministic graphs the result
of [3] was a strict extension of [12]. Later, decidability was extended to all context-free
processes [5].

In the normed case, a series of consecutive papers [4, 10, 11] lead finally to a remarkable
polynomial-time algorithm of [9] for bisimilarity. The working time O(n13) was however
not satisfactory and hence further results followed: an O(n7polylog n)-time algorithm was
proposed for equivalence of simple grammars [2] and an O(n8polylog n)-time algorithm
was given for bisimilarity [13]. The latter cut down to simple grammars works in time
O(n6polylog n). We report a further progress: we give an O(n5) time algorithm for bisimi-
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larity on normed context-free processes, thus improving the previously known bound by a
factor of O(n3). We improve the case of simple grammars just as well.

Our approach is substantially different from all recent algorithms which, roughly, compute
the base of the bisimulation equivalence by eliminating the incorrect decompositions from the
initial ’overapproximating’ base. Instead, we apply the refinement scheme used previously
for the commutative context-free processes. Our starting point is the algorithm, given in [6],
that works for both normed commutative and non-commutative processes. Intuitively, the
algorithm combines the algorithmic theory of compressed strings, useful for non-commutative
case, with the iterative approximation refinement scheme used in commutative case. In
this paper we demonstrate, roughly speaking, that the latter scheme may be implemented
efficiently for non-commutative processes in time O(n5).

We start by defining the problem in Section 1. The following section introduces a
necessary background material, namely pattern-matching in compressed strings and unique
decomposition in a finitely-generated monoid, and explains the refinement scheme exploited
in our algorithm. Then, in Sections 3 and 4 we present the algorithm itself. Section 3 provides
a general outline and intentionally omits a number of details; in Section 4 we provide all the
implementation details missing in Section 3.

Context-Free Processes and Bisimilarity.

Ingredients of a process definition ∆ are a finite alphabet Σ, a finite set V of variables, and a
finite set of rules

X
a−→ α, (1)

with a ∈ Σ and α ∈ V∗. Such process definitions are usually called in the literature Basic
Process Algebra, or Context-Free Processes. The explanation of the latter is that each rule
can be seen as a production X −→ aα of a context-free grammar in Greibach normal form.
Elements of V∗ are called here processes; a variable X can be seen as an elementary process.

∆ defines a transition system: its states are processes α ∈ V∗; and for each a ∈ Σ, there is
a transition relation containing triples (α, a, β), where a ∈ Σ and α, β ∈ V∗, written α a−→ β.
The transition relations are defined by a prefix rewriting: Xβ a−→ αβ whenever ∆ contains
a rule X a−→ α, and β ∈ V∗.

I Definition 1. Given a binary relation R over V∗, we say that a pair (α, β) of processes
satisfies expansion in R, written (α, β) ∈ exp(R), if

whenever α a−→ α′, there exists some β′ with β a−→ β′ and (α′, β′) ∈ R; and
whenever β a−→ β′, there exists some α′ with α a−→ α′ and (α′, β′) ∈ R.

A binary relation S satisfies expansion in R if each pair (α, β) ∈ S does, i.e., S ⊆ exp(R).
A relation R is a bisimulation if it satisfies expansion in itself. We say that α and β are
bisimilar, denoted by α ∼ β, if (α, β) belongs to some bisimulation.

From now on we assume that ∆ is normed, i.e., for each variable X ∈ V∗ there is a finite
sequence X a1−→ α1 . . .

ak−→ αk = ε leading from X to the empty process ε. By |X| denote
the smallest length of such sequence and call it the norm of X (intuitively, |X| is the length
of the shortest word generated from X).

We consider the following Normed-BPA-Bisim Problem:

Instance: A normed process definition ∆ and two variables X,Y ∈ V.
Question: Is X ∼ Y ?
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262 Fast equivalence-checking for normed context-free processes

A more general problem of checking whether α ∼ β, for given α, β ∈ V∗, can be easily reduced
to the above one. The size of ∆, denoted by N , is the sum of lengths of all the rules in ∆.
Clearly n ≤ N . Our main result is the following:

I Theorem 2. Normed-BPA-Bisim Problem can be solved in time O(N5).

Thinking of ∆ as of a grammar, call ∆ a simple grammar if for each X and a, there is at
most one rule (1) in ∆. As a direct corollary of Theorem 2 we obtain:

I Corollary 3. Equivalence of simple grammars can be solved in time O(N5).

Our algorithm, similarly to previous ones [9, 13], builds a finite base of ∼ that, once
constructed, allows to answer the Normed-BPA-Bisim Problem in constant time.

2 Preliminaries

Acyclic morphisms.

Let A be a finite set of terminal symbols, ranged over by a, b, . . ., and let S be a finite set of
non-terminal symbols, ranged over by x, y, z, . . .. Assume a total ordering < of non-terminal
symbols. An acyclic morphism is a mapping h : S→ (S ∪ A)∗ such that all symbols appearing
in h(x) are strictly smaller than x wrt. <. We implicitely extend the domain of h to S ∪ A,
assuming h to be identity on A. Due to the acyclicity requirement, h induces a monoid
morphism h∗ : (S ∪ A)∗ → A∗, as the limit of compositions h, h2 = h ◦ h, . . .. Formally,
h∗(z) = hk(z), for the smallest k with hk(z) ∈ A∗. Then the extension of h∗ to all strings in
(S ∪ A)∗ is as usual. Therefore each symbol z ∈ S represents a nonempty string h∗(z) over A.
Its length ‖h∗(z)‖ may be exponentially larger than the size of h, written size(h), defined
as the sum of lengths of all strings h(z), z ∈ S.

A relevant parameter of a symbol z, wrt. an acyclic morphism h, is its depth, written
depthh(z), and defined as the longest path in the derivation tree of z. A depth of h, written
depth(h), is the greatest depth of a symbol.

An acyclic morphism h is binary if ‖h(zi)‖ = 2, for all zi ∈ S. Any acyclic morphism h

may be transformed to the equivalent binary one: replace each h(zi) of length greater than 2
with a balanced binary tree, using ‖h(zi)‖ − 2 auxiliary symbols. Note that in consequence
the depth of h may increase by a logarithmic factor, but the size of h may only increase by a
constant factor. In the sequel we only consider binary morphisms.

In a word of length n we distinguish n+ 1 positions 0 . . . n. If h(z) = xy, i.e., h∗(z) =
h∗(x)h∗(y), then by the cutting position in z we mean the position in h∗(z) equal to the
length of h∗(x). We say that a substring touches a given position if this position is either
inside this substring or on the border. The occurrence table of h stores, for each two symbols
x, y ∈ S, the set of starting positions of occurrences of h∗(x) in h∗(y) that touch the cutting
position in y. The whole table may be stored compactly in O(|S|2) memory due to the
following:

I Lemma 4. (Basic Lemma [15]) The set of starting positions of occurences of h∗(x) in
h∗(y) that touch the cutting position in y, if non-empty, is an arithmetic progression.

I Theorem 5. ([14]) Given a binary acyclic morphism h, one may compute in time
O(size(h)2 · depth(h)) the occurence table of h.
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Generalized acyclic morphisms.

From now on assume that each terminal symbol a ∈ A has assigned its norm |a|, a positive
integer. Norm extends additively to all strings from A∗. For non-terminal symbols, we put
|z| := |h∗(z)|.

I Lemma 6. Given a binary acyclic morphism h, a symbol z ∈ S, and k < ‖h∗(z)‖, one
may compute in time O(depthh(z)) an acyclic morphism h′ extending h, such that one of
new symbols of h′ represents the suffix of h∗(z) of norm k (assumed that such exists), and
size(h′) ≤ size(h) +O(depthh(z)) and depth(h′) = depth(h).

For efficiency reasons it is favourable not to compute explicitely the representation of the
suffix of h∗(z) of norm k. Instead, we will represent this suffix symbolically, as follows.
By now, an acyclic morphism was defined by equations of the form h(z) = x y, meaning
h∗(z) = h∗(x)h∗(y). Now we will allow a more general form:

h(z) = x suffixk(y), (2)

where 0 < k ≤ |y|, to mean that h∗(z) is concatenation of h∗(x) and the suffix of h∗(y) of
norm k. Note that (2) is well defined only when the required suffix exists. As a particular
case, for k = |y|, one gets the standard definition h(z) = x y. As before we asume acyclicity
in (2), i.e., x, y < z.

Theorem 5 may be adapted to the generalized acyclic morphisms, with a slightly worst
time. Naively, one could get rid of all ’truncated’ variables y in (2) using Lemma 6, ending
with a quadratic blow-up of the size of the morphism, and then apply Theorem 5. We claim
that one can do better:

I Theorem 7. Given a generalized binary acyclic morphism h, one may compute in time
O(size(h)3 · depth(h)) the occurence table of h.

From now on generalized acyclic morphisms are briefly called acyclic morphisms.

Unique decomposition.

Assume from now on a fixed normed process definition ∆, i.e., a finite alphabet Σ, a finite set
V = {X1, . . . , Xn} of variables, and a finite set of rules of the form Xi

a−→ α, a ∈ Σ, α ∈ V∗.
The complexity considerations in this section and later on are wrt. the size N of ∆.

Assume also that variables V = {X1, . . . , Xn} of a process definition are ordered according
to non-decreasing norm: |Xi| ≤ |Xj | whenever i < j. We write Xi < Xj if i < j. Note that
|X1| is necessarily 1, and that norm of a variable is at most exponential wrt. the size of ∆,
understood as the sum of lengths of all rules.

A congruence is norm-preserving if whenever α and β are related then |α| = |β|. Let
≡ be an arbitrary norm-preserving congruence in V∗. Intuitively, an elementary process
Xi is decomposable if Xi ≡ αβ for some α, β 6= ε. Note that |α|, |β| < |Xi| then. For
technical convenience we prefer to apply a slightly different definition. We say that Xi is
decomposable wrt. ≡, if Xi ≡ α for some process α ∈ {X1, . . . , Xi−1}∗; otherwise, Xi is called
indecomposable, or prime wrt. ≡. In particular, X1 is always prime.

Denote by P the set of primes wrt. ≡. It is easy to show by induction on norm that for each
process α there is some γ ∈ P∗ with α ≡ γ; in such case γ is called a prime decomposition of
α. Note that a prime decomposition of Xi is either Xi itself, or it belongs to {X1, . . . , Xi−1}∗.
We say that ≡ has the unique decomposition property if each process has precisely one prime
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264 Fast equivalence-checking for normed context-free processes

decomposition. While the set P of primes depends on the chosen ordering of variables (in
case Xi ≡ Xj , i 6= j), the unique decomposition property does not.

The following lemma is shown by considering the unique prime decompositions:

I Lemma 8 (Left cancellation). If ≡ has the unique decomposition property and γα ≡ γβ

then α ≡ β.

The refinement step.

A transition α a−→ β is called norm-reducing if |β| < |α|; we write α a−→n-r β in such case.
We will need a concept of norm-reducing bisimulation (n-r-bisimulation, in short), i.e., a
bisimulation over the transition system restricted to only norm-reducing transitions. The
appropriate norm-reducing expansion wrt. R (cf. Def. 1) will be written as n-r-exp(R). Every
bisimulation is a n-r-bisimulation (as a norm-reducing transition must be matched in a
bisimulation by a norm-reducing one) but the converse does not hold in general.

I Proposition 1. Each n-r-bisimulation, and hence each bisimulation, is norm-preserving.

For a norm-preserving equivalence ≡ over processes, let ∼≡n-r denote the union of all
n-r-bisimulations contained in ≡. It witnesses most of typical properties of bisimulation
equivalence. Being the union of n-r-bisimulations, ∼≡n-r is a n-r-bisimulation itself, in fact
the greatest n-r-bisimulation that is contained in ≡. It admits the following fix-point
characterization:

I Proposition 2. (α, β) ∈∼≡n-r iff α ≡ β and (α, β) ∈ n-r-exp(∼≡n-r).

Moreover ∼≡n-r is clearly an equivalence as ≡ is assumed to be so. The relation ∼≡n-r may be
thus seen as the bisimulation equivalence relativized to pairs of processes related by ≡ and
to norm-reducing moves only.

The relativized bisimulation equivalence will play a crucial role in the algorithm, that will
work by consecutive refinements of a current congruence until it finally stabilizes. Instead of
the classical refinement step ≡ 7→ ≡ ∩ exp(≡), we prefer to use the following one:

≡ 7→ ∼≡∩ exp(≡)
n-r .

This transformation will be refered to as the refinement step, and ∼≡∩ exp(≡)
n-r will be called

the refinement of ≡.
By the results of [6] specialized to normed BPA, it follows:

I Lemma 9. ([6]) If a norm-preserving congruence ≡ has the unique decomposition property
then the refinement of ≡ is a congruence with the unique decomposition property.

3 Outline of the algorithm

Overall idea.

We describe the algorithm in a top-down manner, introducing the implementation details
incrementally. The overall idea is as follows: we start with the initial congruence ≡, given
simply by the norm equality (cf. Prop. 1), and then perform the fixpoint computation by
refining ≡ until it finally stabilizes:
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Initialize ≡ as the norm equality.
repeat

replace ≡ by its refinement
until ≡ coincides with its refinement.

Note that the approximating congruence ≡ always subsumes bisimulation equivalence
∼ in the course of the algorithm, ∼⊆≡. Moreover, if ≡ and its refinement coincide, then
≡⊆ exp(≡) and thus the opposite implication ≡⊆∼ follows. Thus the approximation scheme
is correct wrt. the bisimulation equivalence. At the end of this section we will argue that the
algorithm always terminates after at most n iterations.

Now we will outline a way of implementing the scheme above.

Representation by an acyclic morphism.

Clearly, instead of the whole (infinite!) congruence ≡, the algorithm should maintain a
finite representation of ≡. As a succint representation we choose an acyclic morphism
h : S → (S ∪ A)∗. The set A of terminal symbols will consist of all variables Xi that are
currently prime wrt. ≡, and the set of non-terminal symbols S will contain the variables
currently decomposable wrt. ≡, together with some other auxiliary symbols, to be defined
later on. We assume that the ordering < on S is consistent with the ordering X1 < . . . < Xn.
For any variable Xi, h∗(Xi) ∈ A∗ ⊆ V∗ will describe the prime decomposition of Xi. The
morphism h will represent ≡ in the following sense: α ≡ β ⇐⇒ h∗(α) = h∗(β). Below we
prefer to write =h instead of ≡ to emphesize the role of h.

Recall that due to Lemma 9 the congruence ≡ invariantly has the unique decomposition
property, hence always some h exists that represents ≡ (e.g., take as h(Xi) the prime
decomposition of Xi). Note however that the same congruence may be represented by many
different acyclic morphisms. A key ingredient of the algorithm will be an efficient construction
of a sufficiently succint one.

As the congruence ≡ is norm-preserving, norm of Xi is always equal to norm of h(Xi),
and hence to norm of h∗(Xi) as well.

Leftmost prime factors.

If Xi ≡ Xjγ, j < i and Xj is prime wrt. ≡ we say that Xj is the leftmost prime factor of Xi

wrt. ≡. Note that due to the unique decomposition property of ≡, Xi may have at most
one leftmost prime factor wrt. ≡. Moreover, Lemma 8 guarantees that if Xi ≡ Xjα and
Xi ≡ Xjβ are two decompositions of Xi, starting with the same variable Xj , then α ≡ β

and thus α ≡ β is determined uniquely up to ≡. In consequence, it is crucial just to know,
for each variable Xi, which variable Xj , j < i, if any, is the leftmost prime factor of Xi

wrt. the current congruence ≡. In the algorithm, this information will be maintained using
the indices lpf(i) ∈ {1 . . . n− 1}, for i ∈ {2 . . . n}, with the following meaning: if the variable
Xi is currently decomposable wrt. ≡, then Xlpf(i) is the leftmost prime factor of Xi. Clearly

lpf(i) < i. (3)

As ≡ is represented by an acyclic morphism h, Xlpf(i) always belongs to A and is the first
letter in h∗(Xi) (and the first letter in h(Xi) as well, which will become apparent shortly).
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266 Fast equivalence-checking for normed context-free processes

Outline of the algorithm.

for i ∈ {2 . . . n} do let lpf(i) := 1;
A := {X1}; A′ := A;
initialize h;

repeat
for Xi ∈ {X2 . . . Xn} \ A do (∗)

if ¬ lpfactor(Xi, Xlpf(i)) then (∗∗)
for Xj ∈ {Xlpf(i)+1 . . . Xi−1} ∩ (A′ \ A) do (∗ ∗ ∗)

if lpfactor(Xi, Xj) then
let lpf(i) := j;
( h′(Xi) is defined as a side-effect of lpfactor(Xi, Xj) )
break the inner for loop;

fi
if the inner for loop not broken then add Xi to A′ fi

fi
A := A′; h := h′;

until A does not change

In the for loops (∗) and (∗∗∗), the variables are assumed to be inspected in the increasing
order X1 ≤ . . . ≤ Xn.

Each iteration of the repeat loop, as outlined above, corresponds to a single refinement
step of ≡: given the current acyclic morphism h it computes a new acyclic morphism, say
h′, representing the refinement of =h (the latter has unique decomposition property by
Lemma 9). The subroutine lpfactor(Xi, Xj), invoked several times in the algorithm, is to
check whether Xj is the leftmost prime factor of Xi wrt. the refinement of =h. The acyclic
morphism h′ is computed as a side-effect of the invocations of lpfactor; thus lpfactor(Xi,
Xj) is invoked under assumption that the value of h′ is already known for the variables from
{X1 . . . Xi−1}. Description of this subroutine and other implementation details related to
the computation of h′ are deferred to the next section. Here, we merely focus on the scheme
of updating the indices lpf(i).

In the inner for loop (∗ ∗ ∗), the variable Xj ranges over {Xlpf(i)+1 . . . Xi−1} ∩ (A′ \ A).
The rationale behind restricting this range so is the following.

As the refinement of =h is clearly finer than =h (we may write =h′ ⊆=h), a decomposition
wrt. the refinement of =h is automatically a decomposition wrt. =h. Thus, if some Xi is
decomposable wrt. =h, then there are just two possibilities for a new value of lpf(i) (denote it
by lpf(i)′): either it remains unchanged, lpf(i)′ = lpf(i) (if the lpfactor (∗∗) succeeds), or it
changes. In the latter case, its new value lpf(i)′ may be only chosen from A′ \ A, as otherwise
Xi would have two different leftmost prime factors wrt. (the coarser) =h. Moreover, the new
value of lpf(i) must be necessarily bigger than the old one. This follows from the observation
that the ’fresh’ prime variable Xlpf(i)′ ∈ A′ \ A was not so in the previous iteration, and again
by the unique decomposition property its leftmost prime factor was necessarily the same as
the previous leftmost prime factor of Xi:

lpf(lpf(i)′) = lpf(i). (4)

Thus lpf(i) < lpf(i)′ by (3).
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The size of the set A of terminal symbols (containing exactly the prime variables wrt. =h)
increases in each iteration of the repeat loop (except for the very last iteration). Thus the
total number of iterations is at most n.

Concerning the correctness: if A does not change in one iteration of the repeat loop, it
clearly follows that =h coincides with its refinement, which guarantees that =h reaches the
bisimulation equivalence, as discussed in the beginning of this section.

4 Implementation of the algorithm

Now we explain how the acyclic morphism h is initialized and refined during one iteration of
the repeat loop; and how the subroutine lpfactor is implemented. Total running time is
discussed at the end of this section.

Initialization of h.

For any right-hand side β of a production in ∆ we introduce a non-terminal symbol Yβ , and
define h(Yβ) = β. Then we transform h into binary form, if necesssary. This will possibly
introduce further auxiliary symbols; in the sequel these further symbols will not be mentioned
explicitly. The symbols Yβ (together with the other auxiliary symbols) will be continuously
contained in S during the algorithm and their definition will never change. The number of
the symbols is O(N).

Distinguish one fixed norm-reducing transition rule

Xi
ai−→n-r αi (5)

for every variable Xi, 2 ≤ i ≤ n; clearly |Xi| = |αi|+ 1. These distinguished rules will be
fixed in the algorithm. For i ≥ 2, we initilize h by

h(Xi) = X1 Yαi
, (6)

which gives a decomposition of Xi wrt. the norm equality, i.e., h∗(Xi) = X
|Xi|
1 .

Initially, A = {X1} and S = {Yβ}β ∪ {X2 . . . Xn}.

Invariant.

In the algorithm, the acyclic morphism h is determined by the leftmost prime factors and by
the distinguished norm-reducing rules (5). Recall that Xlpf(i) is the leftmost prime factor
of Xi wrt. =h. The following invariant will be respected by h after each iteration of the
repeat loop (note that (6) is a special case when lpf(i) = 1):

h(Xi) = Xlpf(i) suffix|Xi|−|Xlpf(i)|(Yαi) for every Xi /∈ A. (7)

Why is (7) correct? It follows from the claim below.

I Claim 1. Let h be an acyclic morphism such that the congruence =h is a norm-reducing
bisimulation. If Xi =h Xjδ then h∗(δ) is a suffix of h∗(αi).

Indeed: consider a norm-reducing transition Xi
ai−→ αi and a matching transition of Xjδ, say

Xjδ
ai−→ γδ; as Xj is an active variable, the process δ stays unchanged, and thus αi =h γδ

as required.
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268 Fast equivalence-checking for normed context-free processes

From h to h′.

As the refinement of =h is included in =h, a decomposition wrt. the refinement of =h is
automatically a decomposition wrt. =h. Thus a variable prime wrt. =h is still prime wrt.=h′ :
A ⊆ A′. We do not introduce any new symbols for h′: A∪ S = A′ ∪ S′, and hence S ⊇ S′. Thus
S′ = {Yβ}β ∪ {X2 . . . Xn} \ A′.

We assume that the occurrence table for h is available prior to each succesive iteration
of the repeat loop (it was constructed in the previous iteration). As a side-effect of the
consecutive invocations of lpfactor during one iteration of the repeat loop, the algorithm
computes incrementally the occurrence table for h′. We assume that prior to each invocation of
lpfactor(Xi, Xj) the occurrence table for h′ is already computed for variables {X1 . . . Xi−1}.

Implementation of lpfactor(Xi, Xj).

The subroutine lpfactor is given, as its input, two variables Xi, Xj . Its task is to check
whether Xj is the leftmost prime factor of Xi wrt. ∼=h ∩ exp(=h)

n-r , the refinement of =h.

It is assumed that prior to the call of lpfactor(Xi, Xj), all variables X2, . . . , Xi−1 have
been processed by the outer for loop and either qualified to A′, or have already a definition
in h′. We thus assume that on {X1 . . . Xi−1} the congruence =h′ represented by h′ agrees
with ∼=h ∩ exp(=h)

n-r . In particular (h′)∗(αi) is already defined, as all variables appearing in
αi are in {X1 . . . Xi−1}. It is also assumed that Xi /∈ A′ and Xj ∈ A′. Recalling (7), the
aim of lpfactor(Xi, Xj) is to check whether substituting lpf(i) = j in (7) is correct for the
refinement of h. I.e., the aim is to check the ’candidate’:

h′(Xi) = Xj suffix|Xi|−|Xj |(Yαi
). (8)

The right-hand side of (8) is meaningful only when (h′)∗(Yαi) = (h′)∗(αi) has a suffix of
norm |Xi| − |Xj |, say ᾱ ∈ (A′)∗; this is verified in point 1 below. The ’candidate’ (8) is
acceptable if the following condition holds:

(Xi, Xj ᾱ) ∈ ∼=h ∩ exp(=h)
n-r , (9)

By referring directly to Prop. 2, one sees that (9) is equivalent to

Xi =h Xjᾱ and (Xi, Xj ᾱ) ∈ exp(=h) and (Xi, Xj ᾱ) ∈ n-r-exp(=h′).

(In the last condition we use the assumption that =h′ agrees with ∼=h ∩ exp(=h)
n-r on variables

from {X1 . . . Xi−1}.) These three conditions are verified in points 2, 3 and 4 below.
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subroutine lpfactor(Xi, Xj):

1. Check if (h′)∗(Y ′αi
) has a suffix of norm l := |Xi| − |Xj |. If no, return false.

As A ⊆ A′ we conclude that h∗(Yαi) has a suffix of norm l too, the fact to be
needed in the following points.

2. Test if

Xi =h Xj suffixl(Yαi
) (in A∗). (10)

If this is not the case, return false.

3. For each a ∈ Σ, let Ca := {α : Xi
a−→ α} and Da := {β : Xj

a−→ β}; then for all
α ∈ Ca and β ∈ Da, test if

Yα =h Yβ suffixl(Yαi
) (in A∗). (11)

If the bisimulation expansion condition (for each α ∈ Ca, there exists β ∈ Da

such that (11) holds; and for each β ∈ Da, there exists α ∈ Ca such that (11)
holds) is not satisfied return false.

4. For each a ∈ Σ, let Ca := {α : Xi
a−→n-r α} and Da := {β : Xj

a−→n-r β}; then
for all α ∈ Ca and β ∈ Da, test if

Yα =h′ Yβ suffixl(Yαi) (in (A′)∗). (12)

If the bisimulation expansion condition, with (12) in place of (11), is not satisfied
return false.

5. Extend h′ by h′(Xi) = Xj suffix|Xi|−|Xj |(Yαi
) and return true.

In case when the ’candidate’ (9) is checked succesfully, as a side-effect of the invocation
of lpfactor the acyclic morphism h′ is extended in point 5.

It remains now to explain how the equality tests (10), (11) and (12) are implemented.
Basing on the the same insight as in Theorem 7 we prove:

I Lemma 10. Each of equality tests (10), (11) may be solved in time O(N). All equality
tests (12) during one iteration of the repeat loop require O(N4) time.

Total running time.

The time needed for a single iteration of the repeat loop is devoted to two tasks: (I)
construction of the occurrence table for h′, as a side-effect of solving tests (12), and (II)
solving the equality tests (10) and (11). Task (I) requires O(N4) total time, by Lemma 10
and Theorem 7, knowing that the depth of h is at most n (note that the depth is so even
after increasing by a logarithmic factor when transforming h to the binary form). Concerning
(II), there are O(N2) equality tests in a single iteration of the repeat loop and each of them
requires O(N) time by Lemma 10, hence the latter task is time-dominated by the former one.
As the number of iterations is at most n, we get total time O(N5), as stated in Theorem 2.
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Example.

As an example, we analyze a run of our algorithm for the following input process definition:

X
a−→ ε Y

a−→ ε Y
b−→ Y Y

b−→ X Z
a−→ X

Z
b−→ Z Z

b−→ Y Y T
a−→ Y Y W

a−→ ZZ W
b−→W

Variables are ordered as follows: X < Y < Z < T < W . The compression issue, i.e.,
representation of the approximating congruences by acyclic morphisms, are completely
omitted here for simplicity. We fix:

αX = ε 1αY = ε αZ = X αT = Y Y αW = ZZ.

The initial decomposition is: Y ≡ X, Z ≡ XX, T ≡ XXX, W ≡ XXXXX; variable X
is the only prime.

Let us analyze the first iteration of the repeat loop; the refinement of ≡ computed
in this iteration we denote by ≡′. We check that lpfactor(Y,X) yields false, because
(Y,X) 6∈ exp(≡): Y has a b-move, X has not. So Y becomes prime. Next we check
that lpfactor(Z,X) yields false because (Z,XX = XαZ) 6∈ exp(≡). We check that
lpfactor(Z, Y ) yields true, so we put Z ≡′ Y X = Y αZ . Next we check that lpfactor(T,X)
yields true, hence T ≡′ XY Y = XαT . Now we proceed with processing of the last variable
W . We check that lpfactor(W,X) yields false, because (W,XY XYX ≡′ XαW ) 6∈ exp(≡):
W has a b-move, X has not. Finally, we check that lpfactor(W,Y ) yields true, so now
W ≡′ Y αW ≡′ Y ZZ ≡′ Y Y XY X.

After the first iteration, the decomposition is: Z ≡ Y X, T ≡ XY Y , W ≡ Y Y XY X; the
primes are A = {X,Y }.

Now we proceed with the analysis of the second iteration of the repeat loop. We check
that lpfactor(Z, Y ) yields false, because (Z, Y X) 6∈ exp(≡): there is no good Duplicator’s
response to the move Z b−→ Y Y . In consequence, Z becomes prime. Next we check that
lpfactor(T,X) yields true. In consequence, T ≡′ XY Y . Finally, we process variableW . We
check that lpfactor(W,Y ) yields false, as (W,Y ZZ) 6∈ exp(≡): there is no good response
to the move Y b−→ X. The next candidate for the left-most prime factor is Z, a ’fresh’
prime. We check that lpfactor(W,Z) yields false, but the reason is different than before:
αW = ZZ has no suffix of norm |W | − |Z| = 3.

After the second iteration, we have four primes A = {X,Y, Z,W} and the decomposition
is T ≡ XY Y .

The third iteration is the last one as A does not change any more.
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