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Abstract
The paper proposes and studies temporal logics for attributed words, that is, data words with
a (finite) set of (attribute,value)-pairs at each position. It considers a basic logic which is a
semantical fragment of the logic LTL↓1 of Demri and Lazic with operators for navigation into
the future and the past. By reduction to the emptiness problem for data automata it is shown
that this basic logic is decidable. Whereas the basic logic only allows navigation to positions
where a fixed data value occurs, extensions are studied that also allow navigation to positions
with different data values. Besides some undecidable results it is shown that the extension by a
certain UNTIL-operator with an inequality target condition remains decidable.
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1 Introduction

Motivated by questions from XML theory and automated verification, extensions of (finite
or infinite) strings by data values from unbounded domains have been studied intensely
in recent years. Various logics and automata for such data words have been invented and
investigated.

A very early study by Kaminski and Francez [16] considered automata on strings over
an “infinite alphabet”. In [7], data words were invented as finite sequences of pairs (σ, d),
where σ is a symbol from a finite alphabet and d a value from a possibly infinite domain. In
[6] multi-dimensional data words were considered where every position carries N variable
valuations, for some fixed N . Similar models can be found for instance in [2] and other work
on parameterized verification. More powerful models were investigated in [19] and [14] where
every position is labeled by the state of a relational database, i.e., by a set of relations over a
fixed signature.

For the basic model of data strings with one data value per position a couple of automata
models and logics have been invented and their algorithmic and expressive properties have
been studied. On the automata side we mention register automata [16, 8, 22] (named finite
memory automata in [16, 8]), pebble automata [22, 24], alternating 1-register automata [12],
data automata [5] (or the equivalent class memory automata [3]).
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On the logical side, classical logics like two-variable first-order logic [5] have been studied
and recently order comparisons between data values have been considered [20, 23]. The
satisfiability problem for two-variable first-order logic over data words is decidable if data
values can only be compared for equality but positions can be compared with respect to
the linear order and the successor relation [5]. However, the complexity is unknown. It is
elementary if and only if testing reachability in Petri nets is elementary as well [5]. The proof
of decidability uses data automata, a strong automata model with decidable non-emptiness.

More relevant for this paper are previous investigations of temporal logics on data words.
A pioneering contribution was by Demri and Lazic [12] (the journal version of [11]) which
introduced Freeze LTL. In a nutshell, Freeze LTL extends LTL by freeze quantifiers which1
allow to “store” the current data value in a register and to test at a possibly different
position whether that position carries the same value. Freeze LTL has a decidable finite
satisfiability problem if it is restricted to one register (LTL↓1) and to future navigation, but
the complexity is not primitive recursive. With one register and past (and future) navigation
it is undecidable. In [15] it is shown that these lower bounds even hold if only navigation
with F and P (but without X) are allowed.

In [12], also a restriction of LTL↓1, simple LTL↓1 , was investigated and it was shown that it
is expressively equivalent to two-variable logics. The restriction requires that (syntactically)
between each value test and the corresponding freeze quantifier there is at most one temporal
operator and it disallows Until and Since navigation but allows past navigation. Thanks to
the (effective) equivalence to two-variable logics, simple LTL↓1 is decidable.

One of our aims in this paper was to find a decidable temporal logic on data words with
past navigation that is more expressive than simple LTL↓1. In particular it should allow
Until navigation with reference to data values. On the other hand, the logics we study are
semantical fragments of LTL↓1. Furthermore this work was motivated by the decidable logic
CLTL� for multi-attribute data words [10]. It allows to test whether somewhere in the future
(or past) a current data value occurs and it can compare data values between two positions
of bounded distance. The logics proposed in this paper are intended to have more expressive
power than CLTL� while retaining its decidability.

Contribution

We propose and investigate temporal logics for multi-attribute data words. An attributed
word is a string which can have a finite number of (attribute,value)-pairs at each position (in
the spirit of XML) and has propositions rather than symbols (in the spirit of LTL).

We first define Basic Data LTL which mimics the navigation abilities of simple LTL↓1,
if only positive register tests are used. As sequences of such navigation steps do not do
any harm we drop the requirement to freeze the data value at every step and replace freeze
quantifiers by a class quantifier which restricts a sub-formula to the positions at which this
data value appears. We show that a slight extension of this logic captures simple LTL↓1
(Proposition 2) and that it is decidable (Theorem 1). Although strictly more expressive than
CLTL�, the decidability proof for Basic Data LTL is conceptually simpler than the proof
given in [10]. It uses an encoding of multi-attribute words by data words and a reduction to
non-emptiness of data automata. A similar multi-attribute encoding has already been used in
[13]. The result generalizes to attributed ω-words (Theorem 3). Some obvious extensions (by
navigation with respect to two data values or Until navigation where intermediate positions

1 We note that the freeze quantifier itself was used already in [9] and in previous work, e.g., in [1].
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can be tested by data-free formulas) are undecidable (Theorems 4 and 6, respectively).
Finally, we add a powerful Until-operator to Basic Data LTL, which allows to navigate

to a position with a data value that is different from the value of a given attribute at the
starting position. Furthermore, it can test properties of intermediate positions by arbitrary
sub-formulas and can even test (in a limited way) whether intermediate positions have
attribute values different from or equal to the value on the starting position. The resulting
logic can express all properties expessible in two-variable first-order logic and contains the
Until operator. That this logic is still decidable is the main technical contribution of the
paper.

The paper is organized as follows. In Section 2, we define attributed words and Basic
Data LTL and give some example properties. In Section 3, we compare Basic Data LTL with
other logics. Section 4 shows that Basic Data LTL is decidable and presents undecidability
results for some extensions. Section 5 introduces the extended Until operator and shows
decidability of the resulting logic. It also shows (the simple fact) that an Until-operator
that navigates with respect to equality and allows (only) data-free intermediate tests quickly
leads to an undecidable logic. We conclude in Section 6. Due to lack of space most proofs
are only sketched or even missing. They can be found in the full version of the paper [17].

Related work

We discussed many related papers above. Another approach, combining temporal and classical
logics, was studied in [14]. It allows to navigate by temporal operators and to evaluate
first-order formulas in states. Properties depending on values at different states can be stated
by global universal quantification of values. In [6] a first-order logic on multi-dimensional
data words was studied.

Acknowledgements

The idea to extend the temporal logic that is equivalent to two-variable logics by Until
operators (without reference to data) goes back to a suggestion by Mikołaj Bojanczyk [4].
We are also indebted to Volker Weber with whom we carried out first investigations before
he tragically passed away in 2009. The remarks by the reviewers of FSTTCS 2010 helped to
improve the presentation and to add some additional references.

2 Definitions

We first fix the data model and define BD-LTL afterwards. Finally we give an example that
illustrates the way in which properties can be expressed

2.1 Attributed words
Let PROP and AT T be (possibly infinite) sets of propositions and attributes and D an
infinite set of data values. An attributed word w is a finite word where every position carries
a finite set {p1, . . . , pl} of propositions from PROP and a finite set {(a1, d1), . . . , (ak, dk) |
ai 6= aj for i 6= j} of attribute-value pairs from AT T × D.

Given an attributed word w we denote the proposition set of position i in w by w[i].P.
A position i is a p-position if p ∈ w[i].P. By w[i].@a we denote the value of attribute a
on position i. If position i does not carry attribute a, then w[i].@a = nil /∈ D. The word
projection of an attributed word w = w1 . . . wn is defined by str(w) := w[1].P . . . w[n].P . By
posd(w) we denote the set of class positions of d in w, that is, the set of positions of w with

FSTTCS 2010
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at least one attribute with value d. The class word classd(w) of w with respect to d is the
restriction of w to the positions of posd(w).

We always consider sets of words over some finite set P of propositions and a finite set V
of attributes2. We call an attributed word w V-complete for a finite set V ⊆ AT T if every
position of w has exactly one pair (a, da) for each a ∈ V. A {a}-complete word is called
1-attributed word . We refer to the value of attribute @a at a position i in a 1-attributed
word as the data value of i. There is an immediate correspondence between data strings
(that is, sequences of (symbol,value) pairs) and 1-attributed words. Thus, we use in this
paper automata and logics that were introduced for data strings also for 1-attributed words.

Attributed ω-words are defined accordingly.
For i, j ∈ N with i ≤ j we denote the interval {i, i+ 1, . . . j } by [i, j]. As usual we use

round brackets to denote open intervals, e.g., [3, 5) = {3, 4}.

2.2 Basic Data LTL
The logic Basic Data LTL (abbreviated: BD-LTL) has two main types of formulas, position
formulas and class formulas, where, intuitively, class formulas express properties of class words.
We first state the syntax of the logic and give an intuitive explanation of its non-standard
features afterwards.

We fix a finite set P ⊆ PROP of propositions and a finite set V ⊆ AT T of attributes.
The syntax of position formulas ϕ and class formulas ψ of BD-LTL (over P and V) are

defined as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | Yϕ | ϕUϕ | ϕSϕ | Cδ@aψ
ψ ::= ϕ | @a | ¬ψ | ψ ∨ ψ | X=ψ | Y=ψ | ψU= ψ | ψS=ψ

Here, p ∈ P, a ∈ V, δ ∈ Z. Intuitively, the quantifier C@aψ restricts the evaluation of ψ
to the class word induced by attribute a at the current position.

Next we define the formal semantics of position formulas. Let w be an attributed word
and i a position on w:

w, i |= p if p ∈ w[i].P;
w, i |= ¬ϕ if w, i 6|= ϕ;
w, i |= ϕ1 ∨ ϕ2 if w, i |= ϕ1 or w, i |= ϕ2;
w, i |= Xϕ if i+ 1 ≤ |w| and w, i+ 1 |= ϕ;
w, i |= ϕ1Uϕ2 if there exists a j ≥ i such that w, j |= ϕ2 and w, j′ |= ϕ1 for all j′ ∈ [i, j);
w, i |= Cδ@aψ if w[i].@a 6= nil, i+ δ ∈ [1, |w|], and w, i+ δ, w[i].@a |= ψ.

The operators Y and S are the past counterparts of X and U respectively. Their semantics is
defined analogously3.

Next, we define the semantics of class formulas. Let w be an attributed word, i a position
on w and d a data value.

w, i, d |= ϕ if w, i |= ϕ;
w, i, d |= @a if w[i].@a = d;
w, i, d |= X=ϕ if there exists a j ∈ posd(w) with j > i, and for the smallest such j it holds
w, j, d |= ϕ;

2 As we will use A for automata we use V here: Variables.
3 To avoid ambiguity: pSq holds if there is a q-position in the past and at the intermediate positions p

holds.
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w, i, d |= ϕ1 U= ϕ2 if there exists a j ∈ posd(w) with j ≥ i such that w, j, d |= ϕ2 and
w, k, d |= ϕ1 for all k ∈ posd(w) ∩ [i, j).

For the past class operators Y and S the semantics is defined analogously and the
semantics of the Boolean connectors is as usual. Finally, w |= ϕ, if w, 1 |= ϕ. We denote the
set of positional formulas by BD-LTL.

Besides ⊥ and > we use the following usual abbreviations:

Fϕ := >Uϕ Gϕ := ¬F¬ϕ Pϕ := >Sϕ Hϕ := ¬P¬ϕ

The abbreviations F= and G= and their past counterparts are defined analogously. Further-
more, we abbreviate Cδ@a@b by @a = Xδ@b.

2.3 Example: a simple client/server scenario
The following example illustrates how properties can be expressed in BD-LTL.

Consider an internet platform that uses m servers S1, . . . , Sm to process queries from
clients. Every client shall have a unique client number. As we do not know beforehand how
many clients will use the platform, we model the client numbers by the set D = N.

Each of the servers can either idle, be queried by a client or serve the answer for a
query. For server j, the actions are modeled by the set of propositions {qj , sj , ij}. Runs
of the internet platform can now be represented by an attributed word with attribute set
AT T = {S1, . . . , Sm} and set of propositions

⋃
1≤j≤m{qj , sj , ij}. That a server Sj shall

perform exactly one action from {qj , sj , ij} at any given time, can be easily expressed by a
BD-LTL-formula.

Let us look at an example system with three servers A, B and C. An example run
represented as an attributed word could look as follows.

Pos 1 2 3 4 5 6
Props {qA, qB , iC} {qA, qB , qC} {sA, qB , sC} {sA, sB , iC} {iA, sB , qC} {iA, sB , sC}
A 1 2 2 1 − −
B 2 3 4 2 3 4
C − 1 1 − 2 2

Here, e.g., at position 5 server A is idling, server B is serving client 3 and server C is queried
by client 2. Properties of runs can be expressed by BD-LTL formulas:

Queries are always served and a client can query a second time on a server only after the
previous query has been served:∧

Z∈{A,B,C}

G(qZ → C@Z(X=(@Z → ¬qZ) U=(@Z ∧ sZ)))

A server Z can serve a client only if there is an unanswered query by that client (i.e. the
last action by that client on Z was a query):∧

Z∈{A,B,C}

G(sZ → C@Z(Y=(¬@Z)S=(@Z ∧ qZ))))

A client with an open query on server A shall only be allowed to query server C until
server A answered the query:

G(qA → C@A(¬@B ∧X=((¬(qA ∧A) ∧ ¬(qB ∧B)) U= sA)))

FSTTCS 2010
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3 Expressiveness of BD-LTL

In this section we will give a short overview of established logics on strings with data values
and outline how BD-LTL fits in. We give a short introduction to freeze LTL and CLTL�, see
[12] and [10] for more details. Afterwards we compare these two logics to BD-LTL.

3.1 BD-LTL versus LTL↓1
Freeze LTL is an extension of LTL for data words by a freeze quantifier that binds the data
value of the current position to a variable (aka register) and allows to compare the value of a
position with the value bound to a variable. Satisfiability for freeze LTL is undecidable even
for two registers [12], therefore [12] proposed the 1-register fragment LTL↓1. In the framework
of 1-attributed words, formulas of LTL↓1 are of the form

ϕ ::= p | ↓ϕ |↑| ¬ϕ | ϕ ∧ ϕ | Xϕ | Yϕ | ϕUϕ | ϕSϕ.

The formal semantics of LTL↓1 (on data strings) can be found in [12]. We illustrate it by a
simple example: the formula G(p→ ↓F(q ∧ ↑)) expresses that each p-position has a future
q-position with the same data value.

In [12], the fragment simple LTL↓1 was invented, where at most one temporal operator is
allowed between the the freeze quantifier ↓ and a value test ↑. Furthermore, only the unary
temporal operators Xk,Yk,XkF,YkP, k ∈ N are allowed. Here, XkF is considered a single
operator, that is ↓XkF↑ is an allowed formula. The relative expressive power of BD-LTL
and LTL↓1 can be summarized in the following two propositions.
I Proposition 1. Every property of 1-attributed words that is expressible in BD-LTL can
also be expressed in LTL↓1.
The statement also holds for all extensions of BD-LTL considered in Section 5. Note however,
that LTL↓1 is undecidable whereas BD-LTL and its main extension in Section 5 are decidable.
I Proposition 2. The following logics are equivalent on 1-attributed words
(i) Simple LTL↓1
(ii) BD-LTL without Until and Since extended by Fδ6= and Pδ6=.
Here, Fδ6=ϕ intuitively navigates to a future position of distance ≥ δ with a different data value
and evaluates ϕ there. In the notation of Section 5 it is an abbreviation for >Uδ

@a(@a ∧ ϕ).
Note, that an analogous operator F δ=ϕ for equal data values can be simulated by Cδ@aF=ϕ.
The proof of both propositions is straightforward and therefore omitted.

3.2 BD-LTL versus CLTL�

Temporal logic of repeating values (CLTL�) was introduced in [10]. CLTL�-formulas are
of the form ϕ ::= x = Xδy | x = �y | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ | Yϕ | ϕSϕ, where x, y
are from a set of variables. A CLTL�-formula with variables {x1, . . . , xm} is evaluated on
sequences of m-tuples of data values (without labels from a finite set) but the extension
to {x1, . . . , xm}-complete attributed strings is straightforward. A formula x = Xδy tests
whether component x of the current position has the same data value as component y of the
δ-next position. A formula x = �y is true if there is a (strict) future position with the same
data value on component y as the current position has on component x. The semantics of
all other operators is as usual. The following proposition is straightforward, since x = �y
and x = Xδy can be encoded by C0

@xX=F=@y and Cδ@x@y, respectively.
I Proposition 3. On {x1, . . . , xm}-complete attributed words BD-LTL is strictly more ex-
pressive than CLTL�.
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4 Decidability of Basic Data LTL

This section states the main decidability result for BD-LTL and undecidability results for
some of its extensions.

I Theorem 1. Satisfiability for BD-LTL is decidable.

The proof of this result proceeds in two main steps. First it is shown that the satisfiability
problem for arbitrary attributed words can be reduced to the case of 1-attributed words. A
similar reduction from the multi-attribute to the 1-attribute case (for a different logic) has
been given in [13]. For 1-attributed words, BD-LTL-formulas can be translated into data
automata [5] and thus the satisfiability problem for BD-LTL can be reduced to the decidable
non-emptiness problem for data automata.

In a nutshell, a data automaton A = (B, C) consists of a finite state transducer B (the
base automaton) and a finite state automaton C (the class automaton). The string projection
of a given 1-attributed word w is processed by the base automaton, firstly. Then the output
w′ of B is processed class-wise by the class automaton, i.e. C is run for every data value d on
the class word classd(w). A accepts w, if B accepts and C accepts all class words.

We give only a proof sketch, see the full version of this article for a detailed proof [17].

I Theorem 2. Satisfiability for BD-LTL on 1-attributed words is decidable.

Proof. (Sketch.)
Let ϕ be a BD-LTL formula over a proposition set P and the attribute set {a}.
In the following we often call 1-attributed words simply words. Our automata will

expect instead of words w over P extended words w′ with additional propositions. First,
w′ allows the subformulas of ϕ as propositions. The intention is that a position i of w′
is marked with ψ if and only if w, i |= ψ. Furthermore, we use propositions =r for every
r ∈ {−N, . . . ,−1, 1, . . . , N}, for some N that is at least as large as every δ occurring in ϕ.
Proposition =r shall hold at position i if and only if w[i].@a = w[i+ r].@a.

The data automaton A now checks whether those additional propositions are correct. A
is the intersection of data automata for the following conditions:

i) The propositions =r are placed correctly.
ii) Subformulas are placed correctly (i.e. position i is labeled with proposition ψ if and

only if ψ is fulfilled on position i).
iii) ϕ is placed on the first position

Condition iii) can be easily checked. Condition i) can be checked by a data automaton
[3].

For ii), a data automaton for every subformula ψ is constructed, assuming the correctness
of subformulas of ψ. Checking the correctness is straightforward for subformulas ψ of type p,
¬χ, χ ∨ χ, Xχ, Yχ, χUχ, χSχ. Basically, these formulas can be checked solely by the base
automaton. The construction is equally straightforward for all types of class formulas. In
these cases, basically only class automata are needed.

To deal with the δ-shift in formulas of the form Cδ@aψ we use the propositions =r. E.g.,
to validate propositions of the form ψ = C7

@aF=χ at position i, the class automaton Aψ
infers from the =r propositions how many positions the class word has between i and i+ 7,
then it skips these positions and starts searching for a χ-position from there.

J

Theorem 1 can be easily extended to the case of attributed attributed ω-words as in [5].
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I Theorem 3. Satisfiability for BD-LTL on attributed ω-words is decidable.

Extensions of BD-LTL quickly yield undecidability. We consider two such extensions
here.

BD-LTL with Navigation along Tuples. We extend C@a to a quantifier C@a,@b that
‘freezes’ the values da and db of the attributes a and b, respectively. Operators X=,Y=,U=

and S= in the scope of C@a,@b then move along positions that have attributes with data
values da and db. At such positions the values of tuples of attributes can be tested for equality
with (da, db). For example the property ‘there is a future position with proposition p where
attribute c carries the same data value as attribute a at the current position, likewise for d
and b’ can be expressed by C@a,@bF

=((@c,@d) ∧ p).
However, already a restricted version of this extension is undecidable. We consider the

operators X@a,@b and Y@a,@b. Let the semantics of X@a,@b be defined by w, i |= X@a,@bϕ if
there is a j > i with w[i].@a = w[j].@a and w[i].@b = w[j].@b and for the smallest such j it
holds w, j |= ϕ. The operator Y@a,@b is defined analogously.

I Theorem 4. BD-LTL extended by the operators X@a,@b and Y@a,@b is undecidable on
finite (or infinite) attributed words.

The proof is along the lines of Proposition 27 in [5] by a reduction from the Post
Correspondence Problem (PCP).

BD-LTL with From-Now-On Operator. The from-now-on-operator N introduced in [18]
restricts the range of past operators. For an attributed word w = w1 . . . wn and a position i
of w let sufi(w) := wi . . . wn be the suffix of w starting at position i. The semantics of N is
then defined by

w, i |= Nϕ if sufi(w), 1 |= ϕ

I Theorem 5. BD-LTL extended by the operator N is undecidable on finite (or infinite)
attributed words.

The proof is by a reduction from the non-emptiness problem for Minsky two counter automata
[21].

5 Extended Navigation

As already discussed before, the navigational abilities of BD-LTL are limited. It seemingly
cannot4 even express the simple property that for every p-position i there is a q-position
j > i such that w[j].@b 6= w[i].@a. Furthermore, in class formulas ρU=τ , the formula ρ can
only refer to positions of the current class. Of course, it would be desirable to allow more
general forms of “Until navigation”.

In this section we discuss different possibilities to extend the navigational abilities of
BD-LTL in an “Until fashion”, some of which are decidable and some undecidable. In
particular, we exhibit an U-operator with the ability to navigate to a position with a
different attribute value and to state some properties on (all) intermediate positions and show
that BD-LTL remains decidable with this extension. The property stated in the previous
paragraph can be expressed using this operator.

The extensions we study allow formulas of the type ρUδ
@aτ , where δ ≥ 0. Intuitively, this

operator “freezes” the current value of attribute a and searches for a position j such that τ

4 We did not attempt to find a proof for this statement as we were aiming for an extended logic, anyway.
However, we did not find a simple way to express the property.
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holds at j and ρ hold everywhere in [i+ δ, j). In formulas as above, we will refer to ρ as the
intermediate formula and τ as the target formula. The “shift” parameter δ is needed as we
aim to design a semantic extension of simple LTL↓1.

Syntactically, the formulas ρ and τ are positive Boolean combinations of position formulas
and positive and negative attribute tests. More formally, we define the syntax of U-subformulas
χ by χ ::= ϕ | @b | @b | χ ∨ χ | χ ∧ χ. Intuitively, negative attribute tests @b check that
attribute b has a value (!) that is different from the current frozen value.

Thus, the semantics of formulas ρUδ
@aτ , where ρ and τ are U -subformulas, is defined by

the following additional rules.
w, i |= ρUδ

@aτ if there exists a j ≥ i+ δ such that w, j, w[i].@a |= τ and w, k, w[i].@a |= ρ

for all k ∈ [i+ δ, j)
w, i, d |= @b if w[i].@b 6∈ {nil, d}.

We simply use U@a instead of U0
@a. We remark that ρU−δ@aτ , for δ ≥ 0 can be expressed by

(ρU@a τ ∧
∧δ
i=1 ρi)∨(

∨δ
j=1(τj ∧

∧δ
i=j+1 ρi)), where, for k ∈ [1, δ], ρk and τk are obtained from

ρ and τ , respectively, by replacing every position formula ϕ by Ykϕ, every @b by @a = Y k@b
and every @b by ¬@a = Y k@b. It can be observed that this formula has the intended
meaning (that is, the semantics obtained by using −δ in the above semantics definition).
ρS@aτ is defined analogously.

First of all, we will see that the above mentioned restriction for class formulas ρU=τ is
indeed crucial. More precisely, if we allow positive attribute tests in the target formula of a
formula ρU@a τ then the logic becomes undecidable even if the intermediate formulas are
restricted to position formulas.

I Theorem 6. Let L denote the extension of BD-LTL by the formation rule ϕ ::= χU@a χ,
where χ denotes U-subformulas such that

all intermediate formulas are position formulas and
all target formulas are of the form @a ∧ ϕ with a position formula ϕ.

Then, satisfiability of L on finite (or infinite) attributed words is undecidable. This holds
even for 1-attributed words.

The proof is again by a reduction from the non-emptiness problem for Minsky two counter
automata [21]. As Theorem 6 does not leave much room for extensions of U@a operators
with positive attribute tests in the target formula we focus on negative attribute tests in
target formulas. However, as ρUδ

@a(τ1 ∨ τ2) ≡ (ρUδ
@aτ1) ∨ (ρU@a τ2) and position formulas

are closed under conjunctions it is clearly sufficient to consider target formulas of the form
ϕ ∧@b1 ∧ · · · ∧@bk. Unfortunately, at this point our techniques can only deal with the case
k = 1.

We turn our attention now to the intermediate formulas ρ. We recall that in the case of
positive attribute tests in target formulas even position formulas as intermediate formulas
yield undecidability. In the case of (single) negative attribute tests in target formulas we can
allow arbitrary intermediate position formulas.

Furthermore, we can add positive and negative attribute tests, but only in a limited
way. More precisely, we define the logic XD-LTL by adding ϕ ::= χUδ

@aχ
′ | χSδ@aχ′, to the

formation rules of BD-LTL and requiring that

1. χ is restricted to formulas of the form ρ∨ (@b∧ ρ=)∨ (@b∧ ρ 6=) where ρ=, ρ6= are position
formulas and ρ 6= logically implies5 ρ=, and

5 Readers who prefer a syntactical criterion might think of a formula ρ= of the form ϕ ∨ ρ6=.
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2. χ′ is restricted to formulas of the form @b ∧ τ , where τ is a position formula.

Intuitively, ρ= constrains positions where @b equals the current value of @a whereas ρ 6=
constrains those where it does not. The requirement that ρ6= implies ρ= is needed for the
proof of Theorem 8.

Clearly XD-LTL strictly extends BD-LTL and is contained in LTL↓1. Further it strictly
extends two-variable logic on 1-attributed words.

Following the general idea of the decidability proof for BD-LTL we first show decidability
of satisfiability for 1-attributed words and reduce the general case to this one.

I Theorem 7. Satisfiability for XD-LTL on finite 1-attributed words is decidable.

Proof. (Sketch.) The proof basically extends the proof of Theorem 2 for formulas of type
ψ = (@a ∧ ρ=) ∨ (@a ∧ ρ6=)Uδ

@a(@a ∧ τ). Note that in the case of 1-attributed words, any
additional disjunct ρ in the intermediate formula can be pushed into the disjunction by or-ing
it with both ρ= and ρ 6=.

For a given position i with data value d fulfilling w, i |= ψ we call the minimal position j
that fulfills ρ6= and has a data value different from d, the ψ-shepherd for i. We write H(j) for
the herd of j, that is the set of positions for which j is a ψ-shepherd. With each τ -position j
we associate a set S(j) of special positions. Roughly speaking, if i is in the herd of j, then
positions in [i, j) with the same data value as i are special. The special interval I(j) for a
shepherd j is the minimal interval containing S(j). Two crucial observations are that (1) all
positions in S(j) have the same data value and (2) |I(j) ∩ I(j′)| ≤ δ for j 6= j′.

In a nutshell, the idea for the construction of the data automaton for ψ is as follows.
Besides the propositions for the subformulas, we use further propositions of the form H, e+

and e− with the intention that for each shepherd marked by τ , the end points of the special
interval are marked by e+ and e−, respectively, and all positions in H(j) are marked by H.

As we are testing satisfiability, we can safely assume that all those propositions are already
present in the input word, but their consistency has to be verified by the automaton. The
automaton then checks that for each τ -position j the corresponding e+- and e−-positions are
as intended. Further it guesses and checks all other positions in S(j). Finally consistency of
H- and τ -positions is verified.

As for BD-LTL, special attention is needed for δ 6= 0. For the detailed proof, we refer the
reader to the full version of the paper [17].

J

By a straightforward extension of the proof of Theorem 1 we get the following.

I Theorem 8. Satisfiability for XD-LTL on finite attributed words is decidable.

6 Conclusion

We conclude by stating some questions that should be investigated further. We would be
interested to understand the exact border of undecidability. At this point, it is not exactly
clear which kinds of intermediate and target formulas can be allowed for Uδ

@a. It would also
be interesting to compare our logics with other logics that can deal with values, particularly
with guarded LTL-FO of [14]. Further investigations could try to identify fragments with
more reasonable complexity and try to add more arithmetics to the data domain.
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