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Abstract
We consider the satisfiability problem for modal logic over classes of structures definable by
universal first-order formulas with three variables. We exhibit a simple formula for which the
problem is undecidable. This improves an earlier result in which nine variables were used. We also
show that for classes defined by three-variable, universal Horn formulas the problem is decidable.
This subsumes decidability results for many natural modal logics, including T, B, K4, S4, S5.
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1 Introduction

Modal logic for almost a hundred year has been an important topic in many academic
disciplines, including philosophy, mathematics, linguistics, and computer science. Currently
it seems to be most intensively investigated by computer scientists. Among numerous
branches in which modal logic, sometimes in disguise, finds applications, are hardware and
software verification, cryptography and knowledge representation.

Modal logic was introduced by philosophers to study modes of truth. The idea was to
extend propositional logic by some new constructions, of which two most important were ♦ϕ
and �ϕ, originally read as ϕ is possible and ϕ is necessary, respectively. A typical question
was, given a set of axioms A, corresponding usually to some intuitively acceptable aspects of
truth, what is the logic defined by A, i.e. which formulas are provable from A in a Hilbert-like
system.

One of the most important steps in the history of modal logic was inventing a formal
semantics based on the notion of the so-called Kripke structures. Basically, a Kripke
structure is a directed graph, called a frame, together with a valuation of propositional
variables. Vertices of this graph are called worlds. For each world truth values of all
propositional variables can be defined independently. In this semantics, ♦ϕ means ϕ is true
in some world connected to the current world; and �ϕ, equivalent to ¬♦¬ϕ, means ϕ is true
in all worlds connected to the current world.

It appeared that there is a beautiful connection between syntactic and semantic approaches
to modal logic [12]: logics defined by axioms can be equivalently defined by restricting classes
of frames. E.g., the axiom ♦♦P → ♦P (if it is possible that P is possible, then P is possible),
is valid precisely in the class of transitive frames; the axiom P → ♦P (if P is true, then P
is possible) – in the class of reflexive frames, P → �♦P (if P is true, then it is necessary
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that P is possible) – in the class of symmetric frames, and the axiom ♦P → �♦P (if P is
possible, then it is necessary that P is possible) – in the class of Euclidean frames.

Thus we may think that every modal formula ϕ defines a class of frames, namely the
class of those frames in which ϕ is valid. A formula ϕ is valid in a frame K if for any possible
truth-assignment of propositional variables to the worlds of K, ϕ is true at every world.
While this definition involves quantification over sets of worlds, many important classes of
frames, in particular all the classes we mentioned above, can be defined by simple first-order
formulas. For a given first-order sentence Φ over the signature consisting of a single binary
symbol R we define KΦ to be the set of those frames which satisfy Φ.

In this paper we are interested in the satisfiability problem for modal logic over classes
of frames definable by universal first-order formulas. The first result in this area was that
there exists a universal first-order formula with equality Φ, such that the global satisfiability
problem for modal logic over KΦ is undecidable [6]. By global satisfiability we mean the
problem of determining if there exists a Kripke structure such that a given modal formula ϕ
is true at every world of this structure. That result has been recently improved in [8] in two
aspects: by removing equality and globalness. Namely, the authors exhibited a formula Φ′
without equality, such that the standard, local, satisfiability problem for modal logic over
KΦ′ is undecidable.

The formula from [8] uses nine variables. A natural question arises, how many variables are
necessary to obtain undecidability. Note that transitive, reflexive, symmetric, or equivalence
frames are definable by formulas with just three variables. The satisfiability problem for
modal logic over those classes is known to be decidable [9]. It appears however that there
exists a universal first-order formula without equality with only three variables defining the
class of frames over which satisfiability problem for modal logic is undecidable. Exhibiting
such a formula is the first contribution of our paper.

I Theorem 1. There exists a three-variable universal formula Γ′, without equality, such that
the local satisfiability problem for modal logic over KΓ′ is undecidable.

Our formula, despite the fact that it uses much smaller number of variables, is also simpler
than the formula from [8]. Actually, if we only want to show the undecidability of global
satisfiability then we can use a formula Γ which is just a single, universally quantified clause
consisting of six literals.

We emphasize that our result is optimal with respect to the number of variables. Indeed,
if Φ is an arbitrary (not necessarily universal) first-order sentence with two variables, then
the satisfiability problem for modal logic over KΦ can be reduced to the satisfiability problem
for the two-variable fragment of first-order logic, FO2, using the standard translation of
modal logic into FO2. The latter problem is known to be decidable [10, 4]. For details about
the standard translation see e.g. [2].

Decidable classes of frames we mentioned earlier can be defined by three-variable first-
order sentences even if we further restrict the language to universal Horn formulas, UHF.
Universal Horn formulas were considered in [7], where a dichotomy result was proved, that
the satisfiability problem for modal logic over the class of structures defined by an UHF
formula (with an arbitrary number of variables) is either in NP or PSpace-hard. In the same
paper decidability is shown for a rich subclass of UHF, including in particular all formulas
which imply reflexivity. However, the problem remained open for formulas involving variants
of transitivity. The authors of [7] conjecture that the problem is decidable, and in PSpace
for all universal Horn formulas. Our second contribution is confirming this conjecture for the
case of formulas with at most three-variables, UHF3.
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266 Modal Logics Definable by Universal Three-Variable Formulas

I Theorem 2. Let Φ be a UHF3 sentence. Then the local and the global satisfiability problems
for modal logic over KΦ are decidable.

This theorem extends the decidability results for the classes we mentioned earlier in this
introduction, in particular for modal logics T, B, K4, S4, S5. It also works for some interesting
classes of frames, for which, up to our knowledge, decidability has not been established so
far. An example is the class defined by ∀xyz(xRy ∧ yRz → zRx).

We provide a full classification of UHF3 sentences, with respect to the complexity of
satisfiability of modal logic over the classes of frames they define. It appears, that except for
the trivial case of inconsistent formulas for which the problem is in P, local satisfiability is
either NP-complete or PSpace-complete, and global satisfiability is NP-complete, PSpace-
complete, or ExpTime-complete.

2 Preliminaries

As we work with both first-order logic and modal logic we help the reader by distinguishing
them in our notation: we denote first-order formulas with Greek capital letters, and modal
formulas with Greek small letters. We assume that the reader is familiar with first-order and
propositional logic.

Modal logic extends propositional logic with the operator ♦ and its dual �. Formulas
of modal logic are interpreted in Kripke structures, which are triples of the form 〈W,R, π〉,
where W is a set of worlds, 〈W,R〉 is a directed graph called a frame, and π is a function
that assigns to each world a set of propositional variables which are true at this world. We
say that a structure 〈W,R, π〉 is based on the frame 〈W,R〉.

The semantics of modal logic if defined recursively. A modal formula ϕ is (locally) satisfied
in a world w of a model M = 〈W,R, π〉, denoted as M, w |= ϕ if (i) ϕ is a variable and
ϕ ∈ π(w), (ii) ϕ = ϕ1 ∨ ϕ2 and M, w |= ϕ1 or M, w |= ϕ2, (iii) ϕ = ¬ϕ′ and M, w 6|= ϕ′,
or (iv) ϕ = ♦ϕ′ and there exists a world v ∈ W such that (w, v) ∈ R and M, v |= ϕ′. We
abbreviate ¬♦¬ϕ by �ϕ. By |ϕ| we denote the length of ϕ measured as the total number of
occurrences of propositional variables. We say that a formula ϕ is globally satisfied in M,
denoted as M |= ϕ, if for all worlds w of M, we have M, w |= ϕ.

For a given class of frames K, we say that a formula ϕ is locally (resp. globally) K-
satisfiable if there exists a frame K ∈ K, a structure M based on K, and a world w ∈ W
such that M, w |= ϕ (resp. M |= ϕ). We define the local (resp. global) satisfiability problem
K-SAT (resp. global K-SAT) as follows. For a given modal formula, is this formula locally
(resp. globally) K-satisfiable?

For a given formula ϕ, a Kripke structure M, and a world w ∈W we define the type of w
(with respect to ϕ) in M as tpϕ

M(w) = {ψ : M, w |= ψ and ψ is subformula of ϕ}. We write
tpM(w) if the formula is clear from the context. Note that |tpϕ

M(w)| < |ϕ|.
The set of universal Horn formulas with three variables without equality, UHF3, is defined

as the set of those Φ which are of the form ∀xyz.Φ1∧Φ2∧. . .∧Φi, where each Φi is a Horn clause.
A Horn clause is a disjunction of literals of which at most one is positive. We usually present
Horn clauses as implications. For example, the formula ∀xyz.(xRy∧yRz ⇒ xRz)∧(xRx⇒ ⊥)
defines the set of transitive and irreflexive frames. We often skip the quantifiers and represent
such formulas as sets of clauses, e.g.: {xRy ∧ yRz ⇒ xRz, xRx⇒ ⊥}. We assume without
loss of generality that each Horn clause is of the form Ψ ⇒ ⊥, Ψ ⇒ xRx, or Ψ ⇒ xRy.
We define Ψ(v1, v2, v3) as the instantiation of Ψ with x = v1, y = v2, and z = v3, e.g.
(xRy ∧ yRz)(a, b, c) = aRb ∧ bRc. We denote by Φp the set of the clauses of Φ containing a
positive literal, i.e. all clauses of Φ except those of the form Ψ⇒ ⊥.
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Figure 1 The structure GN. Its universe is N × N.
Reflexive arrows are omitted for clarity.

Figure 2 Completing the
grid. Dotted arrows are en-
forced by Γ and τ .

3 Undecidability

In this section we work with signatures consisting of a single binary symbol R, and a number
of unary symbols, including Pij , for 0 ≤ i, j ≤ 2. Structures over such signatures can be
naturally viewed as Kripke structures in which R is the accessibility relation, and unary
relations describe valuations of propositional variables. To simplify our notation we assume
that subscripts in Pij are always taken modulo 3, e.g. if i = 2, j = 2, then Pi+1,j+1 denotes
P00.

Let
Γ = ∀xyz.¬xRy ∨ yRx ∨ ¬xRz ∨ zRx ∨ yRz ∨ zRy.

First, we prove that global KΓ-SAT is undecidable. Then we use the trick from [8] and show
that also local KΓ′ -SAT is undecidable, for Γ′ being a modification of Γ, using still only three
variables.

3.1 General idea
Note that Γ can be rewritten as ∀xyz.(xRy ∧ ¬yRx ∧ xRz ∧ ¬zRx)→ (yRz ∨ zRy), i.e. it
says, that if there are one-way connections from a world x to worlds y, z, then there is also a
connection (not necessarily one-way) between y and z. The structure GN illustrated in Fig. 1
(we assume that this structure is reflexive) is a model of Γ. Note that it is important that
some connections are two-way. In GN we can define the horizontal adjacency relation by the
following formula with free variables x, y:

∨
ij(Pijx∧ Pi+1,jy ∧ xRy). Analogously, we define

the vertical adjacency:
∨

ij(Pijx ∧ Pi,j+1y ∧ xRy). GN can be now viewed as an expansion
of the standard grid on N× N.

To get the undecidability we construct a modal formula τ , capturing some properties
of GN, such that any model M |= τ from KΓ locally looks like a grid. Namely, τ says that
every element satisfying Pij has three R-successors: one in Pi+1,j , one in Pi,j+1, and one in
Pi+1,j+1, and forbids connections from Pi+1,j+1 to Pi,j+1, Pi+1,j , and Pij . If we consider
now any element a in a model, we see that τ enforces the existence of its horizontal successor
ah, its vertical successor av and its upper-right diagonal successor ad (see Fig. 2). By τ , the
connections to these successors are one-way, so we need, by Γ, connections between ah and
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268 Modal Logics Definable by Universal Three-Variable Formulas

ad, and av and ad. Again, by τ , these connections has to go from ah to ad, and from av to
ad, so ad is indeed a horizontal successor of av, and a vertical successor of ah.

Below we present a more detailed proof covering also the case of finite satisfiability,
i.e. satisfiability in the class of finite models. The technique we employ is quite standard. It
is similar e.g. to the technique used in [11].

3.2 Domino systems
In the proof we use some well known results on domino systems.

I Definition 3. A domino system is a tuple D = (D,DH , DV ), where D is a set of domino
pieces and DH , DV ⊆ D×D are binary relations specifying admissible horizontal and vertical
adjacencies. We say that D tiles N× N if there exists a function t : N× N→ D such that
∀i, j ∈ N we have (t(i, j), t(i+ 1, j)) ∈ DH and (t(i, j), t(i, j + 1)) ∈ DV . Similarly, D tiles
Zk ×Zl, for k, l ∈ N, if there exists t : Zk ×Zl → D such that (t(i, j), t(i+ 1 mod k, j)) ∈ DH

and (t(i, j), t(i, j + 1 mod l)) ∈ DV .

The following lemma comes from [1, 5].

I Lemma 4. The following problems are undecidable:

(i) For a given domino system D determine if D tiles N× N.
(ii) For a given domino system D determine if there exists k ∈ N such that D tiles Zk ×Zk.

3.3 Grid definition
We capture some properties of GN by a modal formula τ .

τ = τ0 ∧
∧

0≤i,j≤2
(τ♦ij ∧ τ

�
ij ),

where τ0 says that each element satisfies one of Pij , τ♦ij ensure that all elements have
appropriate horizontal, vertical and upper-right diagonal successors, and τ�ij forbid reversing
the horizontal, vertical and upper-right diagonal arrows.

τ♦ij = Pij → (♦Pi+1,j ∧ ♦Pi,j+1 ∧ ♦Pi+1,j+1),

τ�ij = Pij → �(¬Pi−1,j ∧ ¬Pi,j−1 ∧ ¬Pi−1,j−1).

Note that τ�ij allow for reflexive edges.

3.4 Domino encoding
We encode an instance of the domino problem by a modal formula in a standard way. For a
given domino system D = (D,DH , DV ) we define

λD = λ0 ∧
∧

0≤i,j≤2
(λH

ij ∧ λV
ij).

For every d ∈ D we use a fresh propositional letter Pd. λ0 says that each world contains
a domino piece, λH

ij and λV
ij say that pairs of elements satisfying horizontal and vertical

adjacency relations respect DH and DV , respectively.

λH
ij =

∧
d∈D

((Pd ∧ Pij)→ �(Pi+1,j →
∨

d′:(d,d′)∈DH

Pd′)),
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λV
ij =

∧
d∈D

((Pd ∧ Pij)→ �(Pi,j+1 →
∨

d′:(d,d′)∈DV

Pd′)).

The following lemma establishes the undecidability of the global satisfiability and the
global finite satisfiability problems for modal logic over KΓ.

I Lemma 5. Let D be a domino system.

(i) D tiles N× N iff there exists M ∈ KΓ such that M |= τ ∧ λD.
(ii) D tiles some Zk × Zk iff there exists a finite M ∈ KΓ such that M |= τ ∧ λD.

Proof. As in the case of symbols Pij , when referring to τ�ij or τ♦ij we assume that subscripts
are taken modulo 3.

Part (i), ⇒ Let t be a tiling of N× N. We construct M by expanding GN in such a way
that for every i, j ∈ N the element (i, j) satisfies Pt(i,j). It is readily checked that M is as
required.

Part (i), ⇐ We explain how to construct a function f : N× N→M , such that for every
i, j ∈ N: (a) M |= Pij(f(i, j)), (b) M |= f(i, j)Rf(i+ 1, j), (c) M |= f(i, j)Rf(i, j + 1).

First we show how to define f on N× {0}. Let f(0, 0) = c for an arbitrary element c of
M satisfying P00. Such c exists owing to τ0 and τ♦ij . Assume that for some i > 0 we have
defined f(i− 1, 0) = a, and let ah be an R-successor of a satisfying Pi0. Such ah exists owing
to τ♦i−1,0. Define f(i, 0) = ah.

Assume now that f is defined for N × [0, . . . , j − 1] for some j > 0. We extend this
definition to N × {j}. Let f(0, j − 1) = a. By the inductive assumption a satisfies P0,j−1.
Choose av to be an R-successor of a satisfying P0j . Such av exists by τ♦0,j−1. Set f(0, j) = av.

Assume that we have defined f(i− 1, j − 1) = a, f(i− 1, j) = av, and f(i, j − 1) = ah.
By the inductive assumptions M |= Pi−1,j−1(a) ∧ Pi−1,j(av) ∧ Pi,j−1(ah) ∧ aRah ∧ aRav.
Choose ad to be an R-successor of a satisfying Pij . Such ad exists by τ♦i−1,j−1. By τ�ij , ah,
av and ad cannot be connected to a, so Γ enforces R-connections between ah and ad, and
between av and ad. Since τA

ij forbids connection from ad to ah, and from ad to av, it has to
be that M |= ahRad ∧ avRad. This finishes definition of f with the desired properties.

We define a tiling t : N×N by setting t(i, j) = d for such d that f(i, j) satisfies Pd (there
is at least one such d owing to λ0). Properties (a), (b), (c) of f and the formulas λH

ij , λ
V
ij

imply that t is a correct tiling.

Part (ii) ⇒ Let l = 3k for some k ∈ Z. We define Gl to be the quotient of GN by the
relation ≈: (i, j) ≈ (i′, j′) iff i ≡ i′ mod l and j ≡ j′ mod l. Gl can be seen as an expansion
of the standard grid on Zl × Zl torus. It is readily checked that for every k ∈ N we have
G3k |= Γ and G3k |= τ .

If D tiles Zk×Zk then it also tiles Z3k×Z3k. Let t be a tiling of Z3k×Z3k. We construct
M by expanding G3k in such a way that for every i, j ∈ Z3k the element (i, j) satisfies Pt(i,j).
Again, checking that M is as required is straightforward.

Part (ii) ⇐ We want to define for some k, l ∈ Z a function f : Zk × Zl → M satisfying:
(a) M |= Pij(f(i, j)), (b) M |= f(i, j)Rf(i+ 1 mod k, j), (c) M |= f(i, j)Rf(i, j + 1 mod l).
We define f as a partial function on N×N and then restrict it to an appropriate domain.

We first define f on N× {0}, exactly as in the proof of Part (i), ⇐. Since M is finite this
time, it has to be that f(k, 0) = f(k′, 0) for some k > k′. To simplify the presentation we
assume k′ = 0, but this assumption is not relevant. Observe that for i ∈ [0, k) we have
M |= f(i, 0)Rf(i+1 mod k, 0). We extend the definition of f to [0, k)×N inductively. Assume
that f is defined on [0, k)×{0, . . . , j − 1}. We define it on [0, k)×{j}. For each i ∈ [0, k) we
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270 Modal Logics Definable by Universal Three-Variable Formulas

find an element ai
d in M such that M |= Pi+1,j(ai

d) ∧ f(i, j − 1)Rai
d. Such ai

d exists owing
to τ♦i,j−1. We set f(i+ 1 mod k, j) = ai

d. Now Γ and formulas of the type τ� enforce for all
i ∈ [0, k) that M |= f(i, j − 1)Rf(i, j), and M |= f(i, j)Rf(i+ 1 mod k, j).

Finiteness of M implies now that for some l > l′ we have f�[0, k)× {l} = f�[0, k)× {l′}.
Again for simplicity we assume that l′ = 0. Observe that at this moment f is as desired on
Zk × Zl. We define a tiling t : Zk × Zl by setting t(i, j) = d for such d that f(i, j) satisfies
Pd (there is at least one such d owing to λ0). Properties (a), (b), (c) of f and the formulas
λH

ij and λV
ij imply that t is a correct tiling of Zk × Zl. This implies that there exists also a

correct tiling of Zm × Zm for m = gcd(k, l).
J

3.5 Local satisfiability
Observe that our proof of the undecidability of global satisfiability over KΓ works for the
subclass of reflexive models. This allows us to use the trick from [8] to cover also the case
of local satisfiability. We enforce by a modal formula the existence of an irreflexive world
and, by a first-order formula, we make it connected to all reflexive worlds. Such a universal
world can be then used to reach all relevant elements in the model. The class of structures is
defined by a formula Γ′, which says that each world with an incoming edge is reflexive and
has an incoming edge from all irreflexive worlds, and enforces Γ for all reflexive worlds:

Γ′ = ∀xyz.((xRy ∧ ¬zRz)→ (yRy ∧ zRy))∧
((xRx ∧ yRy ∧ zRz)→ (¬xRy ∨ yRx ∨ ¬xRz ∨ zRx ∨ yRz ∨ zRy)).

In the modal formula we use a fresh symbol PU to distinguish an irreflexive world. Now,
for a given domino system D we can show that PU ∧ �¬PU ∧ ♦> ∧ �(τ ∧ λD) is locally
(finitely) satisfiable over KΓ′ iff D covers N× N (some Zk × Zk). This proves Theorem 1.

See subsection 5.6 of [8] for details of the outlined trick.

4 Decidability

In this section, we prove Theorem 2. The general idea of the proof is standard: we are going
to show that for every UHF3 formula Φ and every modal formula ϕ, if ϕ is KΦ-satisfiable
then it is also KΦ-satisfiable in a “nice” model.

We start from an arbitrary model M |= ϕ based on a frame from KΦ and unravel it into
a model M0 whose frame is a tree with the degree of its nodes bounded by |ϕ|. Clearly the
frame of M0 is not necessarily a member of KΦ. In the next step we add to M0 the edges
implied by the Horn clauses of Φ. This is performed in countably many stages, until the
least fixed point is reached. We observe that the resulting structure, M∞, is still a model of
ϕ, and its frame belongs to KΦ.

Then we show that every model which can be obtained in the described way falls into one
of the four classes, which we call the class of semi-trees, transitive-trees, clique-unions, and
tripartitions.1 Moreover, for a given UHF3 formula Φ there exists a single class of models,
such that every KΦ-satisfiable modal formula ϕ has a model from this class.

Finally, we argue that for a given modal formula ϕ, checking if it has a model from one
of our four classes is decidable. If ϕ is KΦ-satisfiable in a clique-union or in a tripartition it

1 We choose such names for simplicity. In fact, in transitive trees transitivity may fail near the end of a
path, and clique-unions may have heads and tails. See Definition 7.
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can be shown that it is also KΦ-satisfiable in a clique-union or a tripartition of polynomially
bounded size, so we can simply guess such a small model and verify it; if ϕ is KΦ-satisfiable
in a semi-tree or in a transitive-tree then we use some adaptations of the standard techniques
for satisfiability of modal logics over the class of all frames, and over the class of transitive
frames, respectively.

4.1 Minimal tree-based models
We say that an edge (w1, w2) is a consequence of Φ in 〈W,R〉 if for some w3 ∈ W and
Ψ1 ⇒ Ψ2 ∈ Φ we have R |= Ψ1(w1, w2, w3), and Ψ2(w1, w2, w3) = w1Rw2. We define the
consequence operator as follows.

ConsΦ,W (R) = R ∪ {(w1, w2) : (w1, w2) is a consequence of Φ in 〈W,R〉}

We are going to use this operator in stages, starting from a tree and adding edges required
by Φ. We define the closure operator as the least fixed-point of Cons:

ClosureΦ,W (R) =
⋃

i>0 Consi
Φ,W (R)

For a tree T = 〈W,R〉, we now define the minimal T-based model of Φ as CΦ(T ) =
〈W,ClosureΦ,W (R)〉. Note that CΦ(T ) is the smallest model of Φp containing all edges
from R.

I Lemma 6. Let ϕ be a modal formula and let Φ ∈ UHF3. If ϕ is KΦ-satisfiable, then there
exists a tree T in which the degree of its nodes is bounded by |ϕ|, such that ϕ has a model
based on the frame CΦ(T ).

Proof. Let M = 〈W,R, π〉 , u0 ∈W be such that M |= Φ and M, u0 |= ϕ.
We construct M0 = 〈W0, R0, π0〉 by an unraveling of M as follows. W0 is a subset of the

set of finite sequences of elements of W . We define W0 and R0 inductively. Initially, we put
(u0) ∈W0. Assume that (u0, . . . , uk) ∈W0. Let ♦ψ1, . . . ,♦ψs be all the formulas of the form
♦ψ from tpM(uk). There exist u1

k+1, . . . , u
s
k+1 ∈ W , such that for every i ∈ {1, . . . , s} we

have M |= ukRu
i
k+1 and ψi ∈ tpM(ui

k+1). For each such i we put (u0, . . . , uk, u
i
k+1) into W0

and add ((u0, . . . , uk), (u0, . . . , uk, u
i
k+1)) to R0. We define π0 as π0((u0, . . . , uk)) = π(uk).

Observe thatM0 = 〈W0, R0〉 is a tree in which the degree of the nodes is bounded by |ϕ|.
Let f : W0 →W be defined as f((u0, . . . , uk)) = uk. By a straightforward induction the

reader may verify that, for every ~u ∈W0 we have tpM0(~u) = tpM(f(~u)). This implies that
M0, (u0) |= ϕ.

Now, in countably many stages we add to M0 the edges implied by Φ. We define a
sequence of frames (Mi)i>0 and models (Mi)i>0 sharing the same universe W0 and mapping
π0. For K > 0 letMK = 〈W0,ConsK

Φ,W0
(R0)〉, MK = 〈MK , π0〉. Let M∞ be the natural

limit M∞ = 〈CΦ(M0), π0〉.
We show by induction over K, that for each ~u1, ~u2 ∈ W0 if MK |= ~u1R~u2, then M |=

f(~u1)Rf(~u2). It follows that for each ~u1, ~u2 ∈W0 if M∞ |= ~u1R~u2, then M |= f(~u1)Rf(~u2).
For K = 0 the conclusion is a straightforward consequence of the definition of M0. Assume
that MK satisfies the inductive hypothesis. For each ~u1, ~u2 ∈W0, if MK+1 |= ~u1R~u2, then
eitherMK |= ~u1R~u2 and by the inductive assumptionM |= f(~u1)Rf(~u2), or for some ~u3 ∈W0
and Ψ1 ⇒ Ψ2 ∈ Φ, we have MK |= Ψ1( ~u1, ~u2, ~u3), and Ψ2( ~u1, ~u2, ~u3) = ~u1R ~u2. In this case,
MK |= Ψ1( ~u1, ~u2, ~u3) implies by the inductive assumption that M |= Ψ1(f( ~u1), f( ~u2), f( ~u3)).
Since M |= Ψ1 ⇒ Ψ2, we have M |= f(~u1)Rf(~u2).

Let M∞ = 〈W0, R∞, π0〉. The structures M0 and M∞ have the same carrier and
R0 ⊆ R∞. We show that for each ~u ∈ W0 we have tpM∞(~u) = tpM0(~u). It implies that
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M∞, (u0) |= ϕ. Since the labeling of the worlds is the same, it is enough to show that in M0
and M∞ each world is connected with the worlds that satisfy the same subformulas. We
show that by induction.

Clearly, for every edge (~u,~v) from R∞ \R0 and a subformula ♦ψ of ϕ, if a world ~v satisfies
ψ in M∞, then by the inductive assumption we have that ψ ∈ tpM0(~v) = tpM(f(~v)), and
since M |= f(~u)Rf(~v) we have that ♦ψ ∈ tpM(f(~u)) = tpM0(~u). See the full version of this
paper for a detailed proof.

Finally, we have to prove that CΦ(M0) |= Φ. By definition CΦ(M0) satisfies every
Ψ1 ⇒ Ψ2 ∈ Φp. Suppose that CΦ(M0) does not satisfy Ψ⇒ ⊥ ∈ Φ. For some ~w1, ~w2, ~w3 we
have CΦ(M0) |= Ψ( ~w1, ~w2, ~w3), but then M |= Ψ(f( ~w1), f( ~w2), f( ~w3)). This contradicts the
assumption that M |= Φ. J

4.2 Catalogue of models
A well known result shows that every satisfiable modal formula is satisfied in a finite tree.
This tree-model property is crucial for the robust decidability of modal logics. Standard
restrictions of classes of frames lead to similar results, stating that some “nice” models exist
for all satisfiable formulas. For example, every formula satisfiable over transitive structures
has a model which is a transitive tree.

Here we generalize those results. We introduce four classes of models and show that for
each formula Φ all formulas satisfiable over KΦ have models in one of those classes.

I Definition 7. We say that a graph 〈W,R〉 is
a semi-tree if and only if there exists R0 ⊆ R such that 〈W,R0〉 is a tree and R is
contained in the reflexive, symmetric closure of R0.
a transitive-tree if and only if there exists R0 ⊆ R such that 〈W,R0〉 is a tree, R is contained
in the reflexive, transitive closure of R0, and for each directed path (u0, u1, . . . , uk) in
〈W,R〉 and each 2 ≤ i ≤ j ≤ k − 2 we have an edge from ui to uj .
a tripartition if and only if W can be partitioned into three independent sets I1, I2, I3
such that for d ∈ Ii and e ∈ Ij we have that dRe ⇐⇒ j = i+ 1 mod 3.
a clique-union if and only if W can be partitioned into Head, Tails, C1, . . . , Ck, where
C1, . . . , Ck are disjoint cliques, Heads is a semi-tree of height at most 2, Tails is a forest
of semi-trees of height at most 2, and there are no edges from C1 ∪ . . . ∪Ck to Head and
from Tails to Head ∪ C1 ∪ . . . ∪ Ck.

I Lemma 8. Let Φ ∈ UHF3. One of the following conditions holds:
For each tree T , the structure CΦ(T ) is a semi-tree.
For each tree T , the structure CΦ(T ) is a transitive tree.
For each tree T , the structure CΦ(T ) is a tripartition.
For each tree T , the structure CΦ(T ) is a clique-union.

This lemma, together with Lemma 6 imply that for every Φ ∈ UHF3 modal logic has one
of: semi-tree model property, transitive tree model property, tripartite model property, clique-
union model property over KΦ, i.e. every satisfiable formula has a model in one particular
class. The proof of Lemma 8 starts from the analysis of the possible shapes of CΦ(I), for
the four-element tree I consisting of a root a, its two children b, d and a child c of b. It
appears that studying what happens on this simple tree allows to see what can happen on
arbitrary trees. The whole proof goes by a careful analysis of cases. Details are given in the
full version of this paper. Here we only show some examples.
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Figure 3 A closure for Φ = {xRz ∧ zRy ⇒ yRx} – three independent sets.

I Example 9. Consider the formula Φ = {xRz ∧ zRy ⇒ yRx} and the tree T = 〈W,R〉 at
the left side of Fig. 3. In the middle we present CΦ(T ) – red edges belong to ConsΦ(R), blue
to Cons2

Φ(R), and yellow to Cons3
Φ(R). Observe that each world from the level i of the tree

is connected to all the worlds from the levels i+ 1 and i− 2. On the right side of the figure
we redraw the structure in a way underlining the partition into the three independent sets.

Figure 4 A closure for Φ = {xRz ∧ zRy ⇒ yRy, xRx ∧ xRy ∧ xRz ⇒ yRz} – a clique-union
(Tails = ∅ in this example).

I Example 10. Consider the formula Φ = {ϕ1, ϕ2}, where ϕ1 = xRz ∧ zRy ⇒ yRy and
ϕ2 = xRx ∧ xRy ∧ xRz ⇒ yRz, and the tree at the left side of Fig. 4. The formula ϕ1
enforces the following property: each world that has a predecessor that has a predecessor is
reflexive. The formula ϕ2 makes the relation R Euclidean except for the non-reflexive worlds.
As you can see at the right side of the figure, the fragment on which R is Euclidean collapses
into a clique.

I Example 11. Consider the formula Φ = {ϕ1, ϕ2}, where ϕ1 = xRy ∧ yRz ⇒ yRx and
ϕ2 = xRy ∧ yRx⇒ xRz, and the tree at the left side of Fig. 5. The formula ϕ1 enforces R
to be symmetric, except for the edges that go to the worlds with no successors. The formula
ϕ2 enforces connections from each world symmetrically connected to some other world to all
other worlds. As you can see at the right side of the figure, all worlds except for the leaves of
the tree form a clique.

4.3 Decidability procedures and complexity
In this subsection we sketch procedures deciding satisfiability of modal logics over classes
definable by UHF3, and discuss the complexity. We exclude from our considerations formulas
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Figure 5 A closure for Φ = {xRy ∧ yRz ⇒ yRx, xRy ∧ yRx⇒ xRz} – a clique with tails.

allowing only for paths of lenght bounded by a constant, e.g. xRy ∧ yRz → ⊥. Clearly, the
satisfiability problem over classes of frames defined by such formulas is NP-complete.
Tripartitions and clique unions. It appears that in these two cases we can prove the
following polynomial model property.

I Lemma 12. For a given UHF3 formula Φ and a modal formula ϕ if ϕ has a model in KΦ
which is a tripartition or a clique union then it has a finite model of the same kind of size
polynomially bounded by |ϕ|.

Consider first the case of tripartitions. For every subformula ♦ψ of ϕ, and every class of
the partition Ii, if ψ is true at some elements of Ii, then we mark one such element. We also
mark an element satisfying ϕ. We remove all unmarked elements. Since for a pair of classes
of the partition they are either not connected or connected universally this procedure does
not affect types of elements, so they still satisfy the same subformulas of ϕ.

The case of clique-unions is slightly more complicated. Recall that models from this class
except cliques may also contain heads and tails, which cause that sometimes for a subformula
♦ψ of ϕ we need more than one element satisfying ψ in a clique. However, the number of
such elements may be bounded polynomially in |ϕ|. Similarly, we can also bound the number
of cliques and tails. Technical details can be found in the full version of this paper.

In both cases the outlined arguments work for both local and global satisfiability. The
decision procedure is to guess for a given formula ϕ a model of polynomial size and verify
it. This establishes NP-upper bound. The matching lower bound follows from a trivial
reduction from the boolean satisfiability problem.
Semi-trees. Here we can use standard approaches to satisfiability of modal logic over the
class of all frames. In the case of local satisfiability we can bound the depth of tree-models
and the degree of their nodes linearly in |ϕ| and then check the existence of such models in
a depth-first search manner in PSpace. (see e.g. [9]2). The lower bound comes from the
standard reduction of QBF (see also [9]).

In the case of global satisfiability we can enforce models of depth exponential with respect
to the length of the formula. The existence of models can be checked by an alternating
procedure which first guesses the type of the root, then guesses types of its children, and
universally repeats the procedure for the children. This algorithm works in alternating
polynomial space, and thus the problem is in ExpTime. A matching lower bound can be
obtained as in [3].

2 Please note that while the cited result does not consider reflexivity and symmetry, there are only some
minor changes needed to cover these cases.
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Table 1 Complexity of modal logics defined by consistent UHF3 formulas.

A property implied by a formula Global satisfiability Local satisfiability
Polynomial model property NP-c NP-c
Semi-tree model property ExpTime-c PSpace-c
Transitive-tree model property PSpace-c PSpace-c

Transitive trees. This case can be treated similarly to the case of satisfiability over the
class of transitive frames, i.e. the case of logic K4 (see [9]). There are slight differences
because in our case transitivity may fail at the last two elements of a path, however this
detail does not cause real problems. We can also simply enforce infinite models (consider
e.g. the class of irreflexive, transitive models and a modal formula > ∧ ♦> ∧�♦>), so the
length of paths cannot be bounded. However, we can bound polynomially the number of
types on a path, which allows to show PSpace-completeness in both global and local cases.

Theorem 2 follows from the discussion above. The complexity results are summarized in
Table 1.
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