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Abstract
We study the expressive power of fragments of inclusion and independence logic defined either by
restricting the number of universal quantifiers or the arity of inclusion and independence atoms
in formulas. Assuming the so-called lax semantics for these logics, we relate these fragments of
inclusion and independence logic to familiar sublogics of existential second-order logic. We also
show that, with respect to the stronger strict semantics, inclusion logic is equivalent to existential
second-order logic.
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1 Introduction

Independence logic [15] and inclusion logic [11] are recent variants of dependence logic.
Dependence logic [20] extends first-order logic by dependence atomic formulas

=(x1, . . . , xn) (1)

the meaning of which is that the value of xn is completely determined by the values of
x1, . . . , xn−1. The semantics of dependence logic is defined using sets of assignments rather
than a single assignment as in first-order logic. Independence logic replaces the dependence
atoms by independence atoms ~y⊥~x~z, the intuitive meaning of which is that, with respect to
any fixed value of ~x, the variables ~y are totally independent of the variables ~z. In inclusion
logic dependence atoms are replaced by inclusion atoms ~x ⊆ ~y, meaning that all the values
of ~x appear also as values for ~y. We study the expressive power of the syntactic fragments of
these logics defined either by restricting the number of universal quantifiers or the arity of
the independence and inclusion atoms in sentences. These results are proved with respect
to lax semantics. We also show that, under strict semantics, inclusion logic is equivalent to
existential second-order logic ESO while, by a recent result of Hella and Galliani [3], with
lax semantics inclusion logic is equivalent to greatest fixed point logic, and hence to LFP
(and PTIME) over finite (ordered) structures.

Since the introduction of dependence logic (D) in 2007 many interesting variants of it
have been introduced. In fact the team semantics of dependence logic has turned into a
general framework for logics in which various notions of dependence and independence can
be formalized. Dependence logic has a very intimate and well understood connection to ESO
dating back to the results of [17, 8, 22] on Henkin quantifiers. For some of the new variants
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and concepts in this area the correspondence to ESO does not hold. We briefly mention
some related work on the complexity theoretic aspects of these logics:

The extension of dependence logic by so-called intuitionistic implication → (introduced
in [1]) increases the expressive power of dependence logic to full second-order logic [23].
The model checking problem of full dependence logic, and many of its variants, was
recently shown to be NEXPTIME-complete. In fact, for any variant of dependence
logic whose atoms are PTIME-computable, the corresponding model checking problem is
contained in NEXPTIME [13].
The non-classical interpretation of disjunction in dependence logic has the effect that the
model checking problems of φ1 := =(x, y)∨ =(u, v) and φ2 := =(x, y)∨ =(u, v)∨ =(u, v)
are already NL-complete and NP-complete, respectively [18].

While dependence logic and independence logic are both equivalent to ESO in expressive
power [20, 15], for inclusion logic only containment in ESO has been shown [11]. Furthermore,
the expressive power of various natural syntactic fragments of independence and inclusion
logics is not understood at the moment. The starting point of our work were the results of
[7] on the fragments D(k∀) and D(k-dep) of dependence logic. The fragment D(k∀) contains
those D-formulas in which at most k variables have been universally quantified, and in the
formulas of D(k-dep) dependence atoms of arity at most k may appear (atoms of the form
=(x1, . . . , xn) satisfying n ≤ k + 1). The following results were shown in [7]:
1. D(k-dep) = ESOf (k-ary),
2. D(k∀) ≤ ESOf (k∀) ≤ D(2k∀)
where ESOf (k-ary) is the fragment of ESO in which the quantified functions and relations
have arity at most k, and ESOf (k∀) consists of ESO-sentences that are in Skolem Normal
Form and contain at most k universal first-order quantifiers. The equivalence in (1) was used
to show that in D(k-dep) even cardinality of a k + 1-ary relation cannot be expressed using
the result of Ajtai [2]. On the other hand, since

ESOf (k∀) = NTIMERAM(nk) < NTIMERAM(nk+1)

by [14] and [6], an infinite expressivity hierarchy for the fragments D(k∀) was shown using 2.
Above NTIMERAM(nk) denotes the family of classes of τ -structures that can be recognized
by a non-deterministic RAM in time O(nk).

In [11] it was observed that independence logic and inclusion logic can be given two
alternative semantics called strict and lax semantics. For dependence logic these two semantics
coincide in the sense that the meaning of any D-formula is the same under both interpretations.
For independence and inclusion logic formulas this is not the case as shown in [11]. In fact,
we will show that, with respect to strict semantics, inclusion logic is equivalent to ESO, while
by a recent result of Hella and Galliani [3], with lax semantics inclusion logic is equivalent
to greatest fixed point logic. In the rest of the article we consider the expressive power
of fragments of independence logic and inclusion logic with lax semantics. First we look
at fragments defined analogously to D(k-dep) of dependence logic. We let FO(⊥c)(k-ind)
contain those independence logic sentences in which independence atoms with at most k + 1
different variables may appear. Similarly in the sentences of FO(⊆)(k-inc) only inclusion
atoms of the form ~a ⊆ ~b, where |~a| = |~b| ≤ k may appear. Our results show that

FO(⊆)(k-inc) ≤ ESOf (k-ary) = FO(⊥c)(k-ind).

Then we consider the analogoues of D(k∀) in the case of FO(⊥) = FO(⊥c) [21], which is the
sublogic of independence logic allowing only so-called pure atoms ~y⊥~z, and FO(⊥,⊆). We
show that
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FO(⊥)(2∀) = FO(⊥),
FO(⊥,⊆)(1∀) = FO(⊥,⊆).

This article is organized as follows. In Section 2 we review some basic properties and
results regarding dependence logic and its variants. In Section 3 we compare the strict and
lax semantics and in Section 4.1 relate the arity fragments of independence logic and inclusion
logic with that of ESO. Finally, in Section 4.2 we consider fragments defined by restricting
the number of universally quantified variables.

2 Preliminaries

2.1 Team Semantics

Team semantics is a generalization of Tarski semantics in which formulas are interpreted
by sets of assignments, called teams, rather than by single assignments. In this subsection,
we will recall the definition of team semantics for first order logic. We will assume that all
our formulas are in negation normal form. Also, all structures considered in the paper are
assumed to have at least two elements.

I Definition 2. LetM be a first-order model and V a finite set of variables. Then
a team X over M with domain Dom(X) = V is a finite set of assignments from V to
the domain M ofM;
for a tuple ~v of variables in V , we write X(~v) for the set {s(~v) : s ∈ X} of all values that
~v takes in X, where s(~v) := (s(v1), . . . , s(vn));
for a subset W of V , we write X �W for the team obtained by restricting all assignments
of X to the variables in W .
For a formula φ, the set of free variables of φ is denoted by Fr(φ).

There exist two variants of team semantics, called respectively strict and lax, which differ
with respect to the interpretation of disjunction and existential quantification. Informally
speaking, the choice between strict and lax semantics corresponds to the choice between
disallowing or allowing nondeterministic strategies in the corresponding semantic games.1

We first give the definition of the lax version of team semantics; later, we will discuss
some of the ways in which strict semantics differs from it.

I Definition 3 (Team Semantics). Let M be any first-order model and let X be any team
over it. Then
TS-lit: For all first-order literals α,M |=X α if and only if, for all s ∈ X,M |=s α in the

usual Tarski semantics sense;
TS-∨: For all ψ and θ,M |=X ψ ∨ θ if and only if X = Y ∪ Z for two subteams Y and Z

such thatM |=Y ψ andM |=Z θ;
TS-∧: For all ψ and θ,M |=X ψ ∧ θ if and only ifM |=X ψ andM |=X θ;
TS-∃: For all ψ and all variables v, M |=X ∃vψ if and only if there exists a function H :

X → P(M)\{∅} such thatM |=X[H/v] ψ, where X[H/v] = {s[m/v] : s ∈ X,m ∈ H(s)};
TS-∀ : For all ψ and all variables v, M |=X ∀vψ if and only if M |=X[M/v] ψ, where

X[M/v] = {s[m/v] : s ∈ X,m ∈M}.

1 See [10] and [13] for details.

CSL’13
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IfM |=X φ, we say that X satisfies φ inM; and if a sentence (that is, a formula with no
free variables) φ is satisfied by the team {∅},2 we say that φ is true in M and we write
M |= φ.

In the team semantics setting, formulas φ and ψ are said to be logically equivalent, φ ≡ ψ,
if for all models M and teams X, with Fr(φ) ∪ Fr(ψ) ⊆ Dom(X), M |=X φ ⇔ M |=X ψ.
Logics L and L′ are said to be equivalent, L = L′, if every L-sentence φ is equivalent to some
L′-sentence ψ, and vice versa.

The following result can be proved by structural induction on the formula φ:

I Theorem 4 (Flatness). For all first order formulas φ and all suitable modelsM and teams
X, the following are equivalent:
1. M |=X φ;
2. For all s ∈ X,M |={s} φ;
3. For all s ∈ X,M |=s φ according to Tarski semantics.

2.2 Dependencies in Team Semantics

The advantage of team semantics, and the reason for its development, is that it allows us
to extend first-order logic by new atoms and operators. For the purposes of this paper,
the following atoms, inspired by database-theoretic dependency notions3, are of particular
interest:

I Definition 5. Let ~x be a tuple of variables and let y be another variable. Then =(~x, y)
is a dependence atom, with the semantic rule
TS-dep: M |=X=(~x, y) if and only if any two s, s′ ∈ X which assign the same value to
~x also assign the same value to y;

Let ~x, ~y, and ~z be tuples of variables (not necessarily of the same length). Then ~y ⊥~x ~z
is a conditional independence atom, with the semantic rule
TS-ind: M |=X ~y ⊥~x ~z if and only if for any two s, s′ ∈ X which assign the same value

to ~x there exists a s′′ ∈ X which agrees with s with respect to ~x and ~y and with s′ with
respect to ~z.

Furthermore, we will write ~x ⊥ ~y as a shorthand for ~x ⊥∅ ~y, and call it a pure independ-
ence atom;
Let ~x and ~y be two tuples of variables of the same length. Then ~x ⊆ ~y is an inclusion
atom, with the semantic rule
TS-inc: M |=X ~x ⊆ ~y if and only if X(~x) ⊆ X(~y);

Given a collection C ⊆ {=(. . .),⊥c,⊆} of atoms, we will write FO(C) (omitting the set
parenthesis of C) for the logic obtained by adding them to the language of first-order logic.
With this notation dependence logic, independence logic and inclusion logic are denoted by
FO(=(. . .)), FO(⊥c) and FO(⊆), respectively. We will also write FO(⊥) for the fragment of
independence logic containing only pure independence atoms.

2 {∅} is the team containing the empty assignment. Of course, this is different from the empty team ∅,
containing no assignments.

3 More precisely, dependence atoms correspond to functional dependencies [4], independence atoms to
embedded multivalued dependencies and conditional dependency conditions as in [12, 19], and inclusion
atoms to inclusion dependencies [9, 5].
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All formulas of all the above-mentioned logics satisfy the two following properties:

I Proposition 6 (Empty Team Property). For all modelsM and φ ∈ FO(=(. . .),⊥c,⊆) over
the signature ofM,M |=∅ φ.

I Proposition 7 (Locality). Let φ be a formula of FO(=(. . .),⊥c,⊆) whose free variables
Fr(φ) are contained in V . Then, for all models M and teams X, M |=X φ if and only if
M |=X�V φ.

Furthermore, we have the two following results for dependence logic:

I Proposition 8 (Downwards Closure). For all modelsM, dependence logic formulas φ and
teams X, ifM |=X φ thenM |=Y φ for all Y ⊆ X.

I Theorem 9 ([22, 8, 20]). Any dependence logic sentence φ is logically equivalent to some
ESO sentence φ∗, and vice versa.

What about independence logic? As shown in [15], a dependence atom =(~x, y) is logically
equivalent to the independence atom y ⊥~x y, and, since independence logic is clearly contained
in ESO, we have at once that

I Theorem 10 ([15]). Any independence logic sentence φ is logically equivalent to some
ESO sentence φ∗, and vice versa.

Furthermore,

I Theorem 11 ([21]). Any independence logic formula is equivalent to some pure independ-
ence logic formula.

For inclusion logic the following is known.

I Theorem 12.
1. An inclusion atom ~x ⊆ ~y is equivalent to the FO(⊥) expression

∀v1v2~z((~z 6= ~x ∧ ~z 6= ~x) ∨ (v1 6= v2 ∧ ~z 6= ~y) ∨ ((v1 = v2 ∨ ~z = ~y) ∧ ~z ⊥ v1v2))

where v1, v2 and ~z are new variables [11].
2. Any inclusion logic sentence φ is logically equivalent to some positive greatest fixpoint

logic sentence φ∗, and vice versa [3].

We conclude this subsection with two novel results, a characterization of dependence in
terms of pure independence and a prenex normal form theorem for formulas of our logics.

I Theorem 13. For all modelsM and teams X

M |=X=(~x, y)⇔M |=X ∀~z∃w((~z = ~x→ w = y) ∧ ~xy⊥~zw).

I Lemma 14. Let φ, ψ ∈ FO(=(. . .),⊥c,⊆) and let x be a variable not occurring free in ψ.
Then the following equivalences hold:
1. ∃xφ ∧ ψ ≡ ∃x(φ ∧ ψ),
2. ∃xφ ∨ ψ ≡ ∃x(φ ∨ ψ),
3. ∀xφ ∧ ψ ≡ ∀x(φ ∧ ψ),
4. ∀xφ ∨ ψ ≡ ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)) where a and b are new variables.

Lemma 14 allows us to show the following.

I Theorem 15. Any formula φ ∈ FO(=(. . .),⊥c,⊆) is logically equivalent to some formula
φ′ such that
1. φ′ is of the form Q1x1 . . . Qkxkψ, where ψ is quantifier-free;
2. Any literal or non-first-order atom which occurs in φ′ occurred already in φ;
3. The number of universal quantifiers in φ′ is the same as the number of universal quantifiers

in φ.

CSL’13
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3 Comparing strict and lax semantics

As we mentioned, there exists an alternative variant of lax semantics, called strict semantics.
It differs from lax semantics in the definition of the semantic rules for disjunction and
existential quantification, which are replaced respectively by
STS-∨: For all ψ and θ,M |=X ψ ∨ θ if and only if Y and Z exist such that Y ∪ Z = X,

Y ∩ Z = ∅,M |=Y ψ andM |=Z θ;
STS-∃: For all ψ and all variables v, M |=X ∃vψ if and only if there exists a function

F : X →M such thatM |=X[F/v] ψ, where X[F/v] = {s[F (s)/v] : s ∈ X}.
In the original version of dependence logic lax disjunction and strict existential quantification
were used [20]. However, since dependence logic is downwards closed, it does not make any
difference whether strict or lax version of disjunction (or existential quantification) is used.
In general the following holds.

I Proposition 16. IfM |=X φ according to strict team semantics, thenM |=X φ according
to lax team semantics.

For downwards closed logics, such as dependence logic, the converse is then also true.

I Proposition 17 ([11]). For all dependence logic formulas φ, models M and teams X,
M |=X φ holds wrt strict team semantics if and only if it holds wrt lax team semantics.

However, the same is false for both inclusion logic and independence logic. In particular, as
we will now see, inclusion logic with strict semantics is equivalent to full existential second
order logic, in contrast with the second item of Theorem 12.

By Theorem 9, it suffices to show that every dependence logic sentence is equivalent
to some inclusion logic sentence (with strict semantics). In order to do so, we will use the
following normal form theorem from [20]:

I Theorem 18 ([20]). Every dependence logic sentence is equivalent to some sentence of the
form

φ := ∀~x∃~y

∧
yi∈~y

=(~vi, ~yi) ∧ θ

 (19)

where for all i, ~vi is contained in ~x and where θ is a quantifier-free first-order formula.

As we will now show, in strict semantics the dependence atoms in (19) can be replaced by
equivalent inclusion logic subformulas; and, therefore, it follows at once that (strict) inclusion
logic is equivalent to dependence logic (and, therefore, to ESO) over sentences.

I Definition 20. LetM be a model and X a team, and let ~x be a tuple of variables in its
domain. We say that X is ~x-universal if for all tuples of elements ~m with |~m| = |~x|, there
exists one and only one s ∈ X with s(~x) = ~m.

I Lemma 21. If X is of the form {∅}[M/~x][ ~F/~y] then X is ~x-universal.

Proof. Obvious (but note that if the ~F were replaced by nondeterministic choice functions
~H, as in the case of the lax semantics, this would not hold). J

I Proposition 22. Let M be a model and X a ~x-universal team. Suppose also that y 6∈ ~x,
~v ⊆ ~x, and ~w = ~x\~v (that is, ~w lists, without repetitions, all variables occurring in ~x but not
in ~v). Then

M |=X=(~v, y)⇔M |=X ∀~q(~q~vy ⊆ ~w~vy).
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Proof. Suppose that M |=X=(~v, y), and let h = s[~m/~q] ∈ X[M/~q], where s ∈ X. Since
X is ~x-universal and ~x = ~v ∪ ~w, there exists an assignment s′ ∈ X such that s′(~w) = ~m

and s′(~v) = s(~v). Since y is a function of ~v alone, this implies that s′(y) = s(y). Finally,
h′ = s′[~m/~q] ∈ X[M/~q], and h′(~w~vy) = ~ms(~vy) = h(~q~vy), as required.

Conversely, suppose thatM |=X ∀~q(~q~vy ⊆ ~w~vy), and let s, s′ ∈ X be such that s(~v) =
s′(~v). Now let ~m = s′(~w), and consider h = s[~m/~q] ∈ X[M/~q]. By hypothesis, there exists
a h′ ∈ X[M/~q] such that h′(~w) = h(~q) = ~m and h′(~vy) = h(~vy) = s(~vy). This h′ is of
the form s′′[ ~m′/~q] for some s′′ ∈ X; and for this s′′, we have that s′′(~v) = s(~v) = s′(~v),
s′′(~w) = ~m = s′(~w) and s′′(y) = s(~y). Now, ~x = ~v ∪ ~w, and s′′ coincides with s′ over it, and
X is ~x-universal; therefore, we have to conclude that s′′ = s′. But then s′(y) = s′′(y) = s(y),
and therefore s′′ and s coincide over y too. J

I Corollary 23. With strict semantics inclusion logic is equivalent to ESO.

Proof. By Lemma 21 and the Proposition 22, any sentence of the form (19) can be expressed
in inclusion logic as

∀~x∃~y

∧
yi∈~y

(∀~qi(~qi~viy ⊆ ~wi~viy)) ∧ θ

 (24)

where for all i, ~wi = ~x\~vi; and this implies our result. J

The analogue of Theorem 7 (locality) for inclusion logic with strict semantics fails. As
an especially surprising example of such an failure we now show that one can find inclusion
logic sentences that count the number of assignments in a team:

I Theorem 25. For each natural number n there is a sentence φ ∈ FO(⊆) such that for all
modelsM and teams X where X 6= ∅ and the variables in Dom(X) do not appear in φ,

M |=X φ if and only if |X| ≥ n.

The failure of locality in non-downwards closed logics with strict semantics is somewhat
problematic, as it causes the interpretation of a formula to depend on the values that our
assignments take on variables which do not occur in it. As a consequence, in the rest of this
work we will focus on logics with lax semantics.

4 The expressive power of fragments

The purpose of this section is to generalize the classification of the expressive power of
fragments of dependence logic of [7] to the case of other variants (with respect to lax
semantics). We will consider the following fragments.

I Definition 26. Let C be a subset of {=(. . .),⊥c,⊥,⊆} and let k ∈ N. Then
1. FO(C)(k−dep) is the class of sentences of FO(C) in which dependence atoms of the form

=(~z, y), where ~z is of length at most k, may appear.
2. FO(C)(k−ind) is the class of sentences of FO(C) in which independence atoms of the

form ~y⊥~x~z, where ~x~y~z has at most k + 1 distinct variables, may appear.
3. FO(C)(k−inc) is the class of sentences of FO(C) in which inclusion atoms of the form

~a ⊆ ~b, where ~a and ~b are of length at most k, may appear.
4. FO(C)(k∀) is the class of sentences of FO(C) in which at most k universal quantifiers

occur.
As in [7], we will write D(k-dep) and D(k∀) for FO(=(. . .))(k−dep) and FO(=(. . .))(k∀),
respectively.

CSL’13
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4.1 Arity hierarchies
In this section we will prove that FO(⊥c)(k-ind) = ESOf (k-ary). In particular this also
implies that FO(⊥c)(k-ind) = D(k-dep) [7]. We will also prove that FO(⊆)(k-inc) ≤
ESOf (k-ary). The direction from ESOf (k-ary) to FO(⊥c)(k-ind) is straightforward.

I Proposition 27. ESOf (k-ary) ≤ FO(⊥c)(k-ind).

Proof. Let φ ∈ ESOf (k-ary). By [7] there exists a φ′ ∈ D(k-dep) equivalent to φ and of the
form

Q1x1 . . . Q
mxm∃y1 . . . ∃yn(

∧
1≤j≤n

=(~zj , yj) ∧ θ)

where ~zj , for 1 ≤ j ≤ n, is a sequence of length at most k. By [15] each dependence atom
=(~z, y) is equivalent to the independence atom y ⊥~z y. Therefore we can present φ′ in the
following independence logic form

Q1x1 . . . Q
mxm∃y1 . . . ∃yn(

∧
1≤j≤n

yj⊥~zj
yj ∧ θ)

where ~zjyj , for 1 ≤ j ≤ n, is a sequence of at most k + 1 different variables. J

We will next show the other direction.

I Lemma 28. Let ~b⊥~a~c be an independence atom where ~a, ~b and ~c are tuples of variables.
If ~b0 lists the variables in ~b−~a∪~c, ~c0 lists the variables in ~c−~a∪~b, and ~d lists the variables
in ~b ∩ ~c− ~a, then

~b⊥~a~c ≡ ~b0⊥~a ~c0 ∧
∧
d∈~d

=(~a, d).

Now we can prove the following proposition. In the proof we will present a translation
from independence logic to ESO, where independence atoms are coded by relation variables
preserving the arity of the atoms. Note that the translation presented in [15] does not
preserve this property.

I Proposition 29. FO(⊥c)(k-ind) ≤ ESOf (k-ary).

Proof. Let φ ∈ FO(⊥c)(k-ind). By Theorem 15 we may assume that φ is in prenex normal
form Q1x1 . . . Q

nxnθ where θ is a quantifier-free formula. By Lemma 28 we may assume
that each independence atom in θ is either of the form =(~z, y) or ~b⊥~a~c where

y is not listed in ~z,
~a, ~b and ~c do not share any variables,
|~z| ≤ k and |~a~b~c| ≤ k + 1.

Let us next consider the subformulas of θ. We will enumerate the subformulas of θ by
θ~i where ~i is a binary sequence encoding the location of the subformula in θ. Let θλ := θ

where λ is the empty sequence. If θ~i is a conjunction (or a disjunction), then we denote its
conjuncts (or the disjuncts) as θ~i0 and θ~i1. Now let S := {~i | θ~i is a subformula of θ}, and
let D and I be the subsets of S consisting of sequences ~i for which θ~i is a dependence atom
or an independence atom, respectively. Let ≤ be a partial order in S where ~i ≤ ~j if ~i~k = ~j

for some binary ~k. Then ~i ≤ ~j if and only if θ~j is a subformula of θ~i.
Next we will define a Φ ∈ ESOf (k-ary) equivalent to φ. First we define ϕ~i for each ~i ∈ S

inductively as follows:
ϕ~i := θ~i if θ~i is a first-order atom,
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ϕ~i := S~i(~a~b) ∧ T~i(~a~c) if θ~i is ~b ⊥~a ~c,
ϕ~i := f~i(~z) = y if θ~i is =(~z, y),
ϕ~i := ϕ~i0 ∧ ϕ~i1 if θ~i is θ~i0 ∧ θ~i1,
ϕ~i := ϕ~i0 ∨ ϕ~i1 if θ~i is θ~i0 ∨ θ~i1.

Now let ϕ := ϕλ. Then ϕ is a quantifier-free first-order formula sharing the structure of θ
where the dependence and independence atoms are interpreted using new function symbols
f~i and relation symbols S~i and T~i, respectively. Let ~z~i, for ~i ∈ I, list the variables in
{x1, . . . , xn} \ Fr(θ̃i). In the following, for example, ∃(S~i)~i∈I denotes the prefix ∃S~i1 . . . ∃S~im
where ~i1, . . . ,~im enumerates I. So let us define Φ as

∃(S~i)~i∈I(T~i)~i∈I(f~i)~i∈D(Q1x1 . . . Q
nxnϕ ∧ Ω) (30)

where

Ω :=
∧
~i∈I

[∀~a~b~c(S~i(~a~b) ∧ T~i(~a~c))→ ∃~z~i(
∧
~j≤~i

ϕ~j ∧Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ))] (31)

where ϕ′ := ϕ(x′1/x1) . . . (x′n/xn) and

χ :=
∧

1≤k≤n
Qk=∃

(x1 = x′1 ∧ . . . ∧ xk−1 = x′k−1)→ xk = x′k. (32)

The idea behind Φ is that the relation variables S~i and T~i, for ~i ∈ I, encode a subteam
X~i that satisfies ~b ⊥~a ~c. Then Ω will ensure that for each s, s′ ∈ X~i with s(~a) = s′(~a) there
is s′′ corresponding to the values of ~a~b~c and ~z~i such that s′′(~a~b~c) = s(~a~b)s′(~b). The variables
x′i and χ will ensure that s′′ ∈ X~i. We will now prove that

M |= φ⇔M |= Φ.

Only if-part: Assume thatM |= φ. Then there are functions

Fi : X[F1/x1] . . . [Fi−1/xi−1]→ P(M) \ {∅},

for 1 ≤ i ≤ n, such that
M |=Y θ

when Y := {∅}[F1/x1] . . . [Fn/xn]. Note that Fi(s) = M if Qi = ∀.
Let us then construct teams Y~i, for ~i ∈ S, such thatM |=Y~i

θ~i, as follows. Let Yλ := Y .
Assume thatM |=Y~i

θ~i where θ~i = θ~i0 ∧ θ~i1. Then Y~i0 := Y~i and Y~i1 := Y~i.
Assume that M |=Y~i

θ~i where θ~i = θ~i0 ∨ θ~i1. Then choose Y~i0 ∪ Y~i1 = Y~i so that
M |=Y~i0

θ~i0 andM |=Y~i1
θ~i1.

We then note that

M |=Y~i

~b ⊥~a ~c if θ~i is ~b ⊥~a ~c, (33)
M |=Y~i

=(~z, y) if θ~i is =(~z, y). (34)

Now, for θ~i of the form ~b ⊥~a ~c, the interpretations of S~i and T~i will be the following:

SM~i := {s(~a~b) | s ∈ Y~i},
TM~i := {s(~a~c) | s ∈ Y~i}.
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For θ~i of the form =(~z, y) we interpret f~i as follows:

fM~i (~a) :=
{
b if s(~zy) = ~ab for some s ∈ Y~i,
0 otherwise

where 0 ∈M is arbitrary. Now f~i is well defined by (34). Let thenM∗ := (M, ~SM, ~TM, ~fM).
We will show that

M∗ |= Q1x1 . . . Q
nxnϕ ∧ Ω.

Consider the first conjunct. For each xi with Qi = ∃ we can choose a value for it so that the
values of x1, . . . , xi agree with some s ∈ Y . Thus it suffices to show that, for s ∈ Y ,

M∗ |=s ϕ.

Since ϕ is a first-order formula, by Theorem 4 it suffices to show thatM∗ |=Y ϕ. This can
be done inductively: For each atomic ϕ~i,M∗ |=Y~i

ϕ~i by the definitions. IfM∗ |=Y~i0
ϕ~i0 and

M∗ |=Y~i1
ϕ~i1, and ϕ~i is either disjunction or conjunction of ϕ~i0 and ϕ~i1, thenM∗ |=Y~i

ϕ~i by
the construction of Y~i. This concludes the claim and thus the first conjunct part.

Next we will to show thatM∗ |= Ω where Ω is the formula∧
~i∈I

[∀~a~b~c(S~i(~a~b) ∧ T~i(~a~c))→ ∃~z~i(
∧
~j≤~i

ϕ~j ∧Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ))].

Let~i ∈ I and assume that θ~i = ~b ⊥~a ~c. Let ~α~β~γ be such that ~α~β ∈ SM~i and ~α~γ ∈ TM~i . Then
there are s, s′ ∈ Y~i such that s(~a~b) = ~α~β and s′(~a~c) = ~α~γ. By (33) we can choose s′′ ∈ Y~i
such that s′′(~a~b~c) = s(~a~b)s′(~c). Let us then choose the values for ~z~i according to s′′. Then
all the values of x1, . . . , xn agree with s′′. Now, sinceM∗ |=Y~j

ϕ~j for all ~j, and s′′ ∈ Y~j for
~j ≤~i, it follows by Theorem 4

M∗ |=s′′

∧
~j≤~i

ϕ~j .

Now it suffices to show that

M∗ |=s′′ Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ).

For each x′i with Qi = ∃ we choose a value for it so that, for some t ∈ Y , the values of
x′1, . . . , x

′
i are t(x1), . . . , t(xi). In particular, if the values of x′1, . . . , x′i−1 agree with s′′, then

we choose x′i according to s′′ also. Let s∗ be an extension of s′′ which is constructed according
to these rules. Now using the fact thatM∗ |=t ϕ for all t ∈ Y , and the way s∗ was chosen,
we get

M∗ |=s∗ ϕ
′ ∧ χ.

HenceM |= Φ. This concludes the only if-part.
If-part: Assume thatM |= Φ. Then we can find interpretations ~SM, ~TM and ~fM such

that
M∗ |= Q1x1 . . . Q

nxnϕ ∧ Ω

when M∗ := (M, ~SM, ~TM, ~fM). Consider the usual semantic game for first-order logic
where player ∃ plays the role of verifier and player ∀ plays the role of falsifier. Then there
is a winning strategy for player ∃ in the semantic game for Q1x1 . . . Q

nxnϕ ∧ Ω overM∗.
Let Y consist of assignments s : {x1, . . . , xn} → M corresponding to every possible play
of x1, . . . , xn where player ∃ follows her winning strategy. Analogously, let Y ′ consist of
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assignments s : {x1, . . . , xn} →M that correspond to every possible play of x′1, . . . , x′n where
player ∃ follows her winning strategy. Let X := Y ∪ Y ′. We will show that

M |=X θ.

We know thatM∗ |=X ϕ. Let us now define X~i, for ~i ∈ S, as follows. Recall that ϕλ = ϕ

where λ is the empty sequence. We also let Xλ := X.
IfM∗ |=X~i

ϕ~i where ϕ~i = ϕ~i0 ∧ ϕ~i1, then we let X~i0 := X~i and X~i1 := X~i.
If M∗ |=X~i

ϕ~i where ϕ~i = ϕ~i0 ∨ ϕ~i1, then we let X~i0 := {s ∈ X~i | M∗ |=s ϕ~i0} and
X~i1 := {s ∈ X~i | M∗ |=s ϕ~i1}.

From the construction it follows thatM∗ |=X~i
ϕ~i, for ~i ∈ S, and that X~i0 ∪X~i1 = X~i if ϕ~i

is a disjunction. We will now show that for each atomic θ~i,M |=X~i
θ~i:

1. If θ~i is a first-order atom, then the claim follows from θ~i = ϕ~i.
2. If θ~i is =(~z, y), then the claim follows fromM∗ |=X~i

f~i(~z) = y.
3. Assume that θ~i is ~b ⊥~a ~c. Then M∗ |=X~i

S~i(~a~b) ∧ T~i(~a~c). Let s, s′ ∈ X~i be such that
s(~a) = s′(~a). We have to show that there is s′′ ∈ X~i such that s′′(~a~b~c) = s(~a)s(~b)s′(~c).
NowM∗ |= Ω, so consider a play in the semantic game where player ∀ chooses first the
conjunct with index ~i from Ω, and then chooses s(~a)s(~b)s′(~c) as values for ~a~b~c. Since
s(~a)s(~b) ∈ SM~i and s(~a)s′(~c) ∈ TM~i , then player ∃ plays according to her strategy and
chooses values for ~z~i so that

M∗ |=s′′

∧
~j≤~i

ϕ~j ∧Q
1x′1 . . . Q

nx′n(ϕ′ ∧ χ)

where s′′ is the assignment agreeing with the chosen values for ~a~b~c and ~z~i. Now we let
player ∀ play each x′i with Qi = ∀ as s′′(xi). Then because of χ (defined in (32)) player
∃ must also play each x′i with Qi = ∃ as s′′(xi). Hence s′′ corresponds to a play of
x′1, . . . , x

′
n, and thus s′′ ∈ X.

Since M∗ |=s′′
∧
~j≤~i ϕ~j , it is a straightforward induction to show that s′′ ∈ X~i. This

concludes the step 3.
Now using the previous, a straightforward backward induction shows thatM |=X θ. It then
suffices to show that there are functions

Fi : {∅}[F1/x1] . . . [Fi−1/xi−1]→ P(M) \ {∅}

such that Fi(s) = M if Qi = ∀, and that

X = {∅}[F1/x1] . . . [Fn/xn].

We define these functions inductively so that {∅}[F1/x1] . . . [Fi/xi] = X � {x1, . . . , xi}, for
1 ≤ i ≤ n. Assume that we have defined F1, . . . , Fi successfully. We will define Fi+1 as
wanted. Assume first that Qi+1 = ∃. Then for s ∈ {∅}[F1/x1] . . . [Fi/xi], we let

Fi+1(s) = {t(xi+1) | t ∈ X, t � {x1, . . . , xi} = s}.

By the induction assumption Fi+1(s) is non-empty, though it may not be singleton in case
there are multiple plays where values of x1, . . . , xi (or x′1, . . . , x′i) agree with s. We note that

{∅}[F1/x1] . . . [Fi+1/xi+1] = X � {x1, . . . , xi+1}.

Assume then that Qi+1 = ∀. For s ∈ {∅}[F1/x1] . . . [Fi/xi], we let Fi+1(s) = P(M) and
note that

X � {x1, . . . , xi+1} ⊆ {∅}[F1/x1] . . . [Fi+1/xi+1].

CSL’13



274 Hierarchies in independence logic

For the other direction, assume that s ∈ {∅}[F1/x1] . . . [Fi/xi] and let a ∈M . We show that
s(a/x) ∈ X � {x1, . . . , xi+1}. By the induction assumption s ∈ X � {x1, . . . , xi}, and thus
there is a play of x1, . . . , xn (or x′1, . . . , x′n) that agrees with s in the first i variables. Let s′
be the assignment corresponding to this play. Now instead of choosing s′(xi+1) (or s′(x′i+1))
at move i + 1, player ∀ can choose a for xi+1 (or for x′i+1). Let t be an assignment that
corresponds to some play with these moves for the first i + 1 variables. Then t ∈ X and
t � {x1, . . . , xi+1} = s(a/xi+1). This concludes the proof, and thus also the only if-part.

Note that in Φ each function or relation variable has an arity at most k. This concludes
the proof. J

I Theorem 35. ESOf (k-ary) = FO(⊥c)(k-ind).

Proof. Follows from Propositions 27 and 29. J

This gives us immediately a corollary regarding inclusion logic. Recall that FO(⊆)(k-inc)
denotes the class of inclusion logic sentences in which inclusion atoms of width at most k
(i.e. atoms of the form ~a ⊆ ~b where |~a| = |~b| ≤ k) may appear.

I Theorem 36. Assume k ≥ 2. Then FO(⊆)(k-inc) ≤ ESOf (k-ary).

Proof. Using item 1 of Theorem 12, we first translate inclusion logic sentences to independence
logic, and then apply Proposition 29. It is easy to check that this translation takes us to
ESOf (k′-ary), where k′ = max{k, 2}. J

There is no hope of proving the other direction, since, e.g., even cardinality cannot be
expressed in FO(⊆) [3], but it is expressible in ESOf (1-ary). Next we will show that
ESOf (k-ary) ≤ FO(⊥)(2k + 2-ind).

I Theorem 37. ESOf (k-ary) ≤ FO(⊥)(2k + 1-ind) ≤ ESOf (2k + 1-ary).

Proof. For the first inequality, note that ESOf (k-ary) = D(k-dep) by [7], and D(k-dep) ≤
FO(⊥)(2k + 1-ind) by Theorem 13. The second inequality follows from Theorem 35. J

4.2 ∀-hierarchies
In this section, we will examine the fragments FO(C)(k∀). We will prove that, contrary to
the case of the fragments D(k∀) [7], the following holds:
1. If {⊥,⊆} ⊆ C then the hierarchy collapses at level 1: FO(C) = FO(C)(1∀);
2. If ⊥ ∈ C then it collapses at level 2: FO(C) = FO(C)(2∀).

We will use the following result from [21]:

I Proposition 38. Let φ be a FO(⊥) sentence. Then φ is equivalent to an formula of the
form ∀~x∃~y(θ ∧ χ), where θ is a conjunction of pure independence atoms and χ is first-order
and quantifier-free.

Since, as we saw in the Preliminaries, we can define inclusion atoms and conditional inde-
pendence atoms in terms of pure independence atoms, it follows at once that any sentence of
FO(=(. . .),⊥c,⊆) is equivalent to some sentence of the above form.

Using this, we will prove that

I Theorem 39. FO(⊥,⊆)(1∀) = FO(=(. . .),⊥c,⊆).
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Proof. Let φ ∈ FO(=(. . .),⊥c,⊆). We will show that there exists a φ′ ∈ FO(⊥,⊆)(1∀) equi-
valent to it. As we said, we can assume that φ is of the form ∀x1 . . . ∀xm∃xm+1 . . . ∃xm+n(θ∧
χ), where θ is a conjunction of pure independence atoms and χ is first-order and quantifier-free.
Let us then define φ′ as

∀x1∃x2 . . . ∃xm∃xm+1 . . . ∃xm+n(
∧

2≤i≤m
(x1 ⊆ xi ∧ x1 . . . xi−1⊥xi) ∧ θ ∧ χ).

We claim that φ′ is equivalent to φ. Assume first that M |= φ. Then there are, for
m+ 1 ≤ i ≤ m+ n, functions

Fi : {∅}[M/x1] . . . [M/xn][Fm+1/xm+1] . . . [Fi−1/xi−1]→ P(M) \ {∅}

such thatM |=X θ ∧χ when X := [M/x1] . . . [M/xn][Fm+1/xm+1] . . . [Fm+n/xm+n]. Let Fi,
for 2 ≤ i ≤ m, be the constant function mapping each assignment to M . Then

X = {∅}[M/x1][F2/x2] . . . [Fm+n/xm+n].

ClearlyM |=X

∧
2≤i≤m(x1 ⊆ xi ∧ x1 . . . xi−1⊥xi), and henceM |= φ′.

For the other direction, assume that M |= φ′. Then there are, for 2 ≤ i ≤ m + n,
functions

Fi : {∅}[M/x1][F2/x2] . . . [Fi−1/xi−1]→ P(M) \ {∅}

such thatM |=X

∧
2≤i≤m(x1 ⊆ xi ∧ x1 . . . xi−1⊥xi) when

X := {∅}[M/x1][F2/x2] . . . [Fm+n/xm+n].

Define, for 2 ≤ i ≤ m,
Xi := {∅}[M/x1][F2/x2] . . . [Fi/xi]

and
Yi := {∅}[M/x1][M/x2] . . . [M/xi].

It suffices to show that Xi = Yi for 2 ≤ i ≤ m.
First let us prove the claim for i = 2. Let s ∈ Y2. It suffices to show that s ∈ X2. By

Proposition 7, M |=X2 x1 ⊆ x2 ∧ x1⊥x2. Let s′ ∈ X2 be such that s′(x1) = s(x2). Since
M |=X2 x1 ⊆ x2, we can find a t ∈ X2 such that t(x2) = s′(x1). Now let t′ ∈ X2 be such
that t′(x1) = s(x1). BecauseM |=X2 x1⊥x2, we can find a t′′ ∈ X2 such that t′′(x1) = t′(x1)
and t′′(x2) = t(x2). Then t′′ = s which concludes the claim for i = 2.

The induction step is proved analogously. This concludes the claim and the proof. J

Let us now prove our second claim.

I Theorem 40. FO(⊥)(2∀) = FO(=(. . .),⊥c,⊆).

Proof. Let φ ∈ FO(=(. . .),⊥c,⊆). Again, we can assume that φ is of the form ∀~xψ, where
~x = x1 . . . xn and ψ is of the form ∃~yθ for θ quantifier-free and in FO(⊥). Let now p, q be
two variables not occurring in φ. We state that φ is equivalent to

φ∗ = ∀p∀q∃~x
((

p = q →
n∧
i=1

xi = p

)
∧
n−1∧
i=1

(x1 . . . xi⊥xi+1) ∧ ψ
)
.

Indeed, letM be a model and X = {∅}[M/p][M/q], and let the tuple of (nondeterministic)
choice functions ~U for ~x be such that

~U(s) =
{

(m, . . . ,m) if s(p) = s(q) = m;
Mn otherwise
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and let Y = X[~U/~x]. It is obvious that M |=Y (p = q →
∧n
i=1 xi = p); and M |=Y ψ,

because Y (~x) = Mn and p, q do not occur in ψ. Finally, it is also true that Y satisfies
all independence atoms x1 . . . xi⊥xi+1, since Y (x1 . . . xixi+1) = M i+1 (assuming that our
model contains two distinct elements). ThereforeM |= φ∗, as required.

Conversely, supposeM |= φ∗ when there exists a ~U such that, for Y = {∅}[M/pq][~U/~x],
M |=Y (p = q →

∧n
i=1 xi = p)∧

∧n−1
i=1 (x1 . . . xi⊥xi+1)∧ψ. We will show that Y (x1 . . . xn) is

Mn, that is, that all possible tuples m1 . . .mn of elements of our models are possible values
for x1 . . . xn in Y .

First of all, let us observe that for all m ∈M there exists a hm ∈ Y such that hm(xi) = m

for all i. Indeed, we can find a sm ∈ X such that sm(p) = sm(q) = m and then pick an
arbitrary hm ∈ sm[~U/~x] ⊆ Y . Since M |=Y p = q →

∧
i xi = p, we have at once that

hm(xi) = hm(p) = m, as required.
Now we prove, by induction on i = 1 . . . n, that there exists a hi ∈ Y such that

hi(x1 . . . xi) = m1 . . .mi.
Base Case: Let h1 be hm1 ∈ Y . Then hm1(x1) = m1, as required.
Induction Case: Suppose that hi(x1 . . . xi) = m1 . . .mi, and consider hmi+1 . As we saw,

hmi+1 ∈ Y and hmi+1(xi+1) = mi+1. But M |=Y x1 . . . xi⊥xi+1; and therefore there
exists a hi+1 ∈ Y with hi+1(x1 . . . xi) = hi(x1 . . . xi) = m1 . . .mi and hi+1(xi+1) =
hmi+1(xi+1) = mi+1. Hence, hi+1(x1 . . . xi+1) = m1 . . .mi+1.

In particular, this implies that hn(x1 . . . xn) = m1 . . .mn; and since we started from an
arbitrary choice of m1 . . .mn, we can conclude that Y (~x) = M |~x|. But then the restriction
of Y to ~x is precisely {∅}[M/~x]; and sinceM |=Y ψ, by locality we have thatM |= ∀~xψ, as
required. J

Conclusion

In this paper, we examined the expressive power of fragments of inclusion and independence
logic obtained by restricting the arity of non first-order atoms or the number of universal
quantifiers. For the first kind of restriction, we adapted and extended the hierarchy theorems
of [7] to this new setting; but for the second kind of restriction, we showed that the hierarchy
collapses at a very low level if our logic contains at least pure independence atoms.

A question which is still open is whether the fragments FO(⊆)(k∀) of inclusion logic give
rise to an infinite expressivity hierarchy. Another issue that requires further investigation is
to which degree our results can be adapted to the case of strict semantics. The exact nature
of the relationship between strict and lax semantics is a matter which is of no small interest
for the further development of the area, and a comparison of the properties of our fragments
in these two settings might prove itself of great value.
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5 Appendix

This secrtion contains the proof omitted in the main part of the paper.

I Theorem 13. For all modelsM and teams X

M |=X=(~x, y)⇔M |=X ∀~z∃w((~z = ~x→ w = y) ∧ ~xy⊥~zw).

Proof. Suppose first that M |=X=(~x, y). Then there exists a function f : M |~x| → M

such that f(s(~x)) = s(y) for all s ∈ X. Then for Y = X[M/~z], define the choice function
H : Y → P(M) \ {∅} so that

H(s) = {f(s(~z))}
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for all s ∈ Y , and let Z = Y [H/w]. If we can verify that M |=Z ~z = ~x → w = y and
that M |=Z ~xy⊥~zw, the left-to-right direction of our proof is done. Now, if h ∈ Z then
h(w) = f(h(~z)) and h(y) = f(h(~x)), and thereforeM |=Z ~z = ~x→ w = y. Furthermore, for
h, h′ ∈ Z, we have that h′′ = h[h′(~z)/~z][h′(w)/w] ∈ Z, since our choice of w depends only on
~z, and thereforeM |=Z ~xy⊥~zw.

Conversely, suppose that there exists a function H : X[M/~z] → P(M)\{∅} such that,
for Z = X[M/~z][H/w], M |=Z ~z = ~x → w = y ∧ ~xy⊥~zw. Now let s, s′ ∈ X be such that
s(~x) = s′(~x) = ~m, let a = s(y) and let b = s′(y): we need to prove that a = b.

Take h ∈ s[~m/~z][H/w] ⊆ Z: since M |=Z ~z = ~x → w = y, we must have that
h(w) = s(y) = a. Similarly, for h′ ∈ s′[~m/~z][H/w] ⊆ Z, we must have that h′(w) = s′(y) = b.
But M |=Z ~xy⊥~zw, so there exists a h′′ ∈ Z such that h′′(~xy) = h(~xy) = ~ma and
h′′(~zw) = h′(~zw) = ~mb. Since, again, M |=Z ~z = ~x → w = y, the only possibility is that
a = b, as required. J

I Lemma 14. Let φ, ψ ∈ FO(=(. . .),⊥c,⊆) and let x be a variable not occurring free in ψ.
Then the following equivalences hold:
1. ∃xφ ∧ ψ ≡ ∃x(φ ∧ ψ),
2. ∃xφ ∨ ψ ≡ ∃x(φ ∨ ψ),
3. ∀xφ ∧ ψ ≡ ∀x(φ ∧ ψ),
4. ∀xφ ∨ ψ ≡ ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)) where a and b are new variables.

Proof. The cases 1, 2 and 3 are proved as in Lemma 12 in [16]. We prove number 4. By
Proposition 7 it is enough to prove the equivalence for teams X with Dom(X) = Fr(∀xφ∨ψ).

Assume first that M |=X ∀xφ ∨ ψ and x does not occur free in ψ. Then there are
Y ∪ Z = X such that M |=Y [M/x] φ and M |=Z ψ. Let 0, 1 ∈ M be distinct. We extend
each s ∈ X with a 7→ 0 and b 7→ 0, for s ∈ Y , and with a 7→ 0 and b 7→ 1, for s ∈ Z, and we
let X ′ consist of these extended assignments. So each s ∈ X has either one or two extensions
in X ′. Let Y ′ := {s ∈ X ′[M/x] | s(a) = s(b)} and Z ′ := {s ∈ X ′[M/x] | s(a) 6= s(b)}. Then
by Proposition 7, M |=Y ′ φ ∧ a = b and M |=Z′ ψ ∧ a 6= b. Hence M |=X′[M/x] (φ ∧ a =
b) ∨ (ψ ∧ a 6= b), and we conclude thatM |=X ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)).

Assume then thatM |=X ∃a∃b∀x((φ ∧ a = b) ∨ (ψ ∧ a 6= b)). Let Fa : X → P(M) and
Fb : X[Fa/a] → P(M) be such that if X ′ := X[Fa/a][Fb/b][M/x], then M |=X′ (φ ∧ a =
b) ∨ (ψ ∧ a 6= b). Let Y ′ ∪ Z ′ = X ′ be such thatM |=Y ′ φ ∧ a = b andM |=Z′ ψ ∧ a 6= b.
Let Y := Y ′ � Dom(X) and Z := Z ′ � Dom(X). Then Y [M/x] = Y ′ � (Dom(X) ∪ {x}), and
thus by Proposition 7M |=Y [M/x] φ. Also by Proposition 7M |=Z ψ. Since Y ∪ Z = X, we
conclude thatM |= ∀xφ ∨ ψ. J

I Theorem 25. For each natural number n there is a sentence φ ∈ FO(⊆) such that for all
modelsM and teams X where X 6= ∅ and the variables in Dom(X) do not appear in φ,

M |=X φ if and only if |X| ≥ n.

Proof. Let n be a natural number. We may assume that n ≥ 2 because in the case n = 1 we
can just choose φ := >. Let ~xi, for 0 ≤ i ≤ n− 1, list variables xi,0, . . . , xi,l where l =log(n).
Let

φ := ∃~x0 . . . ∃~xn−1(
∧

0≤i≤n−1
~xi ⊆ ~x0 ∧

∧
0≤i<j≤n−1

~xi 6= ~xj)

where
~xi 6= ~xj :=

∨
0≤k≤l

xi,k 6= xj,k.
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Now φ is as wanted:
Assume first thatM |=X φ. Then there are, for 0 ≤ i ≤ n− 1, functions

Fi : X[F0/~x0] . . . [Fi−1/~xi−1]→M l+1

such that

M |=X′

∧
0≤i≤n−1

~xi ⊆ ~x0 ∧
∧

0≤i<j≤n−1
~xi 6= ~xj (41)

when X ′ := X[F0/~x0] . . . [Fn−1/~xn−1]. Let s ∈ X ′ be some arbitrary assignment. From (41)
it follows that X ′ must include assignments si, for 0 ≤ i ≤ n− 1, such that si(~x0) = s(~xi).
Also from (41) it follows that s(~xi) 6= s(~xj), for 0 ≤ i < j ≤ n− 1. Thus the assignments si
are distinct and therefore |X ′| ≥ n. Because existential quantification of new variables in
strict semantics preserves the cardinality of a team we deduce that X ≥ n.

Suppose then X ≥ n. By the assumption n ≥ 2, and thus we may deduce that |M | ≥ 2.
Let 0 and 1 be two different members of M , and let i be the binary representation (of length
l + 1) of i, for 0 ≤ i ≤ n− 1, in terms of these 0 and 1. Choose then n different assignments
s0, . . . , sn−1 from X. We define, for 0 ≤ i ≤ n− 1, Fi : X[F0/~x0] . . . [Fi−1/~xi−1]→M l+1 as
follows:

Fi(s) :=
{
j + i if s � Dom(X) = sj , for 0 ≤ j ≤ n− 1,
i otherwise

where j + i is mod n. By the assumption, the variables in Dom(X) are not listed in
~x0 . . . ~xn−1, and thus the functions Fi are consistent with the definition of existential quan-
tification for strict semantics. Without the assumption it could be the case that differ-
ent si and sj would collapse into one assignment in the quantification procedure. Let
X ′ := X[F0/~x0] . . . [Fn−1/~xn−1]. Then sj , for 0 ≤ j ≤ n− 1, is extended in X ′ to

sj(j/~x~0)(j + 1/~x1) . . . (j − 2/~xn−2)(j − 1/~xn−1),

and each t ∈ X \ {sj | 0 ≤ j ≤ n− 1} is extended in X ′ analogously to s0. So for each s ∈ X ′
and 0 ≤ i < j ≤ n− 1 it holds that s(~xi) 6= s(~xj). Also

{s(~x0) | s ∈ X ′} = {i | 0 ≤ i ≤ n− 1} =
⋃

0≤i≤n−1
{s(~xi) | s ∈ X ′},

and thus

M |=X′

∧
0≤i≤n−1

~xi ⊆ ~x0 ∧
∧

0≤i<j≤n−1
~xi 6= ~xj

which concludes the proof. J

I Lemma 28. Let ~b⊥~a~c be an independence atom where ~a, ~b and ~c are tuples of variables.
If ~b0 lists the variables in ~b−~a∪~c, ~c0 lists the variables in ~c−~a∪~b, and ~d lists the variables
in ~b ∩ ~c− ~a, then

~b⊥~a~c ≡ ~b0⊥~a ~c0 ∧
∧
d∈~d

=(~a, d).

Proof. Assume that M |=X
~b⊥~a~c. Then clearly ~b0⊥~a ~c0. For

∧
d∈~d =(~a, d), let d ∈ ~d and

s, s′ ∈ X be such that s(~a) = s′(~a). Then by the assumption there is s′′ ∈ X such that
s′′(~a~b~c) = s(~a~b)s′(~c). Because d is listed in both ~b and ~c, it follows that s(d) = s′(d).

CSL’13
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Suppose then M |=X
~b0⊥~a ~c0 ∧

∧
d∈~d =(~a, d). Let s, s′ ∈ X be such that s(~a) = s′(~a).

By the assumption there is s′′ ∈ X such that s′′(~a~b0~c0) = s(~a~b0)s′(~c0). We want to show
that s′′(~a~b~c) = s(~a~b)s′(~c). Consider first variables x listed in ~b−~b0. If x is listed in ~a, then
s′′(x) = s(x) as wanted. Assume that x is listed in ~c−~a. Then x ∈ ~d, and thus s′′(x) = s(x)
follows from s′′(~a) = s(~a).

For variables x is listed in ~c−~c0 the proof of s′′(x) = s′(x) is analogous because s(~a) = s′(~a).
This concludes the proof. J
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