
Keeping a Crowd Safe: On the Complexity of
Parameterized Verification
Javier Esparza

Faculty of Computer Science, Technical University of Munich, Germany
esparza@in.tum.de

Abstract
We survey some results on the automatic verification of parameterized programs without iden-
tities. These are systems composed of arbitrarily many components, all of them running exactly
the same finite-state program. We discuss the complexity of deciding that no component reaches
an unsafe state. The note is addressed at theoretical computer scientists in general.

1998 ACM Subject Classification F.1.1 Models of Computation, D.2.4 Software/Program Veri-
fication

Keywords and phrases Parameterized verification, automata theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.1

Category Invited Talk

1 Introduction

Parameterized programs (where “program” is used here in a wide sense) consist of arbitrarily
many instantiations of the same piece of code. We call each of these instantiations a process,
and the set of processes a crowd. Examples include many classical distributed algorithms
(for mutual exclusion, leader election, distributed termination, and other problems), families
of hardware circuits (for instance, a family of carry-look-ahead adders, one for each bitsize),
cache-coherence protocols, telecommunication protocols, replicated multithreaded programs,
algorithms for ad-hoc and vehicular networks, crowdsourcing systems, swarm intelligence
systems, and biological systems at molecular level.

If automatic verification is not your field of expertise, then you may find awkward to
study the complexity of verification problems for parameterized programs. Since Rice’s
theorem shows that any non-trivial question on the behavior of one single while-program is
undecidable, is there any more to say? Actually, yes. Rice’s theorem refers to while-programs
acting on variables over an infinite domain (typically the integers). Since the primary task of
distributed algorithms or cache-coherence protocols is not to compute a function, but solve a
coordination problem, they typically use only boolean variables as semaphores, or variables
ranging between 0 and the number of processes. So for each number N , the set of reachable
configurations of the crowd with N processes is finite, and most verification questions can be
decided by means of an exhaustive search of the configuration space.

However, this brute force technique can only show correctness for a finite number of values
of N . This is not what we usually understand under “proving a parameterized program
correct” , we mean proving that the property holds for all values of N . In other words, the
task consists of proving that each member of an infinite family of systems, each of them
having a finite state space, satisfies a given property. Are questions of this kind always
undecidable?

© Javier Esparza;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

In the way we have formulated the problem, the answer is still negative: yes, all non-trivial
problems are still undecidable. Let us sketch a proof for a simple reachability problem. Given
a Turing machine M and an input x, we can easily construct a little finite-state program
that simulates a tape cell. The program has a boolean variable indicating whether the head
is on the cell or not, a variable storing the current tape symbol, and a third variable storing
the current control state when the head is on the cell (if the head is not on the cell the
value of this variable is irrelevant). A process running the program communicates with its
left and right neighbors by message passing. If M accepts x, then it does so using a finite
number N of tape cells. Therefore, the crowd containing N processes eventually reaches a
configuration in which the value of the control-state variable of a process is a final state of
M . On the contrary, if M does not accept x, then no crowd, however large, ever reaches
such a configuration. So the reachability problem for parameterized programs is undecidable.

But this proof sketch contains the sentence “the program communicates with its left and
right neighbors”. How is this achieved? A communication structure where processes are
organized in an array (like in our simulation of M), in a ring, a tree, or some other shape
is achieved by giving processes an identity, typically a number in the range [1..N ]. This
identifier appears as a parameter i in the code, and so it is not the case that all processes
execute exactly the same code, but the code where the parameter is instantiated with the
process identity. For instance, the instruction “if you’re not the last process in the array,
then send the content of variable x to your right neighbor” is encoded as “if i < N , then
send the content of variable x to process i + 1”. (Observe that, since N also appears on the
code, the processes also know how many they are.)

There are applications where processes have no identities and do not know—or do not care
about—how many they are: for instance, in natural computing processes may be molecules
swimming in a solution. In others applications identities are not needed. A typical example
are cache-coherence protocols, whose purpose is to guarantee the consistency of all cache
lines containing copies of a memory cell. The protocol should guarantee that if a process
updates of a variable in its cache, the other processors mark their cached values as no longer
valid. Since the situation is completely symmetric, and processors are connected by a bus
implementing a broadcast communication primitive, identities are not needed. The same
holds for many multithreaded programs where one only cares about, say, the number of
threads that are still active. Finally, there is an increasing number of applications where
identities are considered harmful. For instance, in vehicular networks cars may communicate
with each other to interchange information about traffic jams. Since cars must necessarily
communicate their positions, identities might allow one to track individual cars. Applications
involving secret voting are another example.

These considerations lead us to our problem, which can be informally, but suggestively,
formulated as follows:

What is the complexity of checking that a (finite, but arbitrarily large)
anonymous crowd will stay safe?

Formally, the input to the problem is a finite automaton A, the template, representing
the finite-state code to be executed by each process, and a state qu of A, the unsafe state,
modelling some kind of error or undesirable situation. The transitions of A correspond
either to internal moves or to communications with the rest of the system. The question to
be answered is whether there exists a number N such that some execution of the system
composed by N identical copies of A reaches a configuration in which at least one of the
processes is in the unsafe state qu. We say that such configurations cover qu, and so the
problem is called the coverability problem.



J. Esparza 3

The complexity of the coverability problem crucially depends on the power of the
communication mechanism between processes. So first we must analyze these mechanisms in
some detail. This is done in Section 2. Section 3 presents the complexity results. Finally,
Section 4 briefly describes some additional work in which the template A is allowed to have
more computational power than that of a finite automaton.

2 How Crowds Communicate

The two main communication paradigms are message-passing (typical of communication
protocols and distributed systems where processes reside in different machines) and commu-
nication through global variables (typical of multithreaded programs). Within each paradigm
there is a number of mechanisms. We informally describe the syntax and operational se-
mantics of the template A for the four mechanisms most commonly found in the literature. In
particular, we give the syntax of the transition labels of A, and describe how a communication
takes place. We assume a finite set V of values which can be communicated.
Broadcast communication. Transition labels: v!!, v??.
We assume that for every state q and every value v the template A has at one transition
q

v??−−−→ q′ for some state q′ (which may be equal to q). In a communication step of the
system all processes make a move. Exactly one of the processes takes a transition labelled
by v!!, with the intended meaning that this process broadcasts the value v to all others;
simultaneously, all other processes take v??-transitions, depending on their current states.
Rendez-vous communication. Transition labels: v!, v?.
In a communication step of the system, exactly two processes make a move: a process takes
a transition labelled by v!, and, simultaneously, another process takes a transition labeled by
v?. The intended meaning is that the first process sends the value v to the second process.
Communication by global store. Transition labels: w(v), r(v).
In this paradigm we assume that all processes in the crowd communicate with a global store.
At every time point the store contains an element of V . In a communication step, exactly
one process makes a move. The process either takes a transition labeled by w(v), which
writes v into the store, or, if the current value of the store is v, it takes a transition labeled
by r(v), meaning that it reads the value v from the store.
Communication by global store with locking. Transition labels: lock, unlock, w(v), r(v).
A process must first obtain a lock on the store before being able to write or read. The
processes keeps the lock until it releases it by means of a transition labeled by unlock. While
in possession of the lock, the process is the only one that can perform reads and writes.

We shall see that the complexity of the coverability problem depends on two parameters
of the communication mechanism:

(1) Who listens when a process speaks ? When a process sends a message, different
mechanisms provide different guarantees on who will receive it, and we can classify them
accordingly:
– Everyone listens. This is the case of broadcast communication.
– At least someone listens. This is obviously the case of rendez-vous, but also of global

store with locking. Indeed, we can easily use a global store with locking to simulate
rendez-vous communication. The store initially contains a special value, say f , standing
for “store is free”. A process wishing to communicate a value v acquires the lock, reads
the content of the store, and, if its value is f , changes it to v and releases the lock. If the

STACS’14



4 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

value is not f , it just releases the lock. A process wishing to receive a value acquires the
lock and reads the store: if its value is f , the process just releases the lock; otherwise, it
copies the value into its local state and releases the lock. This guarantees that the value
will be preserved until someone reads it, and, under a suitable fairness assumption, that
it will eventually read.
However, neither rendez-vous communication nor global store with locking can implement
broadcast. Intuitively, in these paradigms there is no way to detect that a process does
not react to any message.

– No guarantee. This is the case of a global store without locking. A value written by a
process can be overwritten by another process before anyone reads it. Notice that we can
no longer implement rendez-vous using the trick above. Since the store cannot be locked,
two processes P1 and P2 wishing to write values v1, v2 may both read the value f and
proceed to write. If P1 writes immediately before P2, then the value v1 is not read by
anyone.

(2) Can the crowd produce a leader? Loosely speaking, this is the question whether a
perfectly symmetric crowd in which initially all processes are in the same state can be
forced to split into a distinguished process which stays within a special subset of states
of the template, and an arbitrarily large crowd that stays within another subset. More
precisely (but still a bit informally) the question is the following. Is there a template A

with two distinguished states q1, q2 and all processes initially in q1, such that some reachable
configuration has one process in q2, and no reachable configuration has more than one process
on q2?

Broadcast communication and communication through global store with locking can
both easily produce a leader. In the case of broadcast communication, the template with
transitions q1

a!!−−→ q2 and q1
a??−−−→ q3 already does the trick. The process broadcasting the

message moves to q2 and, since all other processes must listen, they all move to q3. In the
case of global store, we choose a template in which all processes initially compete for the
lock; the process that acquires it changes the value of the store to “we have a leader” and
moves to q2.

Rendez-vous communication and communication through a global store without a lock
cannot produce a leader. Intuitively, the reason is that when process makes a move, arbitrarily
many processes follow suit, making exactly the same move immediately after. We will come
back to this point later.

3 The Power of Crowds

We can sort the four communication mechanism of the previous section in order of decreasing
power according to our two criteria:

broadcast communication (everybody must listen, leader can be produced)
global store with locking (somebody must listen, leader can be produced)
rendez-vous communication (somebody must listen, no leader can be produced)
global store without locking (nobody must listen, no leader can be produced)

In this section we show that this informal classification is confirmed by the mathematical
results: the complexity of the coverability problem decreases as we move down through the
list.

Before describing the results, it is important to observe that the complexity of the
coverability problem is related to the crowd’s computational power seen as a nondeterministic



J. Esparza 5

machine. If coverability is hard for a complexity class C, then any problem in C can be
reduced to coverability. Therefore, given an instance of the problem, we can construct a
template A such that a large enough crowd will solve it: a process will reach the state qu,
which now instead of an unsafe state becomes the state at which the process can post the
answer “yes”. So—informally but suggestively—studying the complexity of the coverability
problem amounts to studying the following question:

What is the computational power of a (finite but arbitrarily large) an-
onymous crowd?

In particular, a result proving high complexity of the coverability problem means bad
news for crowd verifiers, but good news for crowd designers, and vice versa.

We are now ready to analyze the complexity of the four communication mechanisms
above.

3.1 Communication by broadcast
Despite the power of broadcast communication, it was proved in [8] by Finkel, Mayr, and
the author that the coverability problem is decidable. So we have:

Anonymous crowds are not Turing powerful, or, conversely, identities are
necessary in order to achieve full Turing power.

The proof is a straightforward application of a more general result of [1] on well-structured
systems (see also [2, 10]). Let us sketch it. The configuration of a crowd with template
A is completely determined by the number of processes at each state of A. So, given a
numbering {q1, . . . , qn} of the states of A, a configuration can be formalized as a vector of Nn.
Assume without loss of generality that qu = q1. We wish to know whether, for some number
N , a crowd of N individuals can reach a configuration (k1, . . . , kn) such that k1 ≥ 1, or,
equivalently, a configuration (k1, . . . , kn) ≥ (1, 0, . . . , 0), where ≥ is defined componentwise.
The set of configurations (k1, . . . , kn) ≥ (1, 0, . . . , 0) is upward closed (with respect to ≤),
i.e., if a configuration c belongs to the set, then so does any other configuration of the form
c + c′, where c′ ∈ Nn and + is defined componentwise.

Given an upward-closed set C of configurations, it is easy to show that its set of immediate
predecessors (i.e., the set of configurations from which some configuration of C can be reached
in one step) is also upward-closed. Indeed, assume we can reach a configuration c ∈ C from
some configuration d by means of the broadcast of a value v. Now, consider a configuration
d + d′. If we perform the same broadcast, then the processes of d move to the same states as
before, yielding again the configuration c, and the processes of d′ move somewhere, yielding
a configuration c′. The result is a configuration c + c′, where addition of configurations
is defined componentwise. Since c ∈ C and C is upward-closed, we have c + c′ ∈ C, and
we are done. So letting C0 be the set of configurations (k1, . . . , kn) ≥ (1, 0, . . . , 0), the
sequence C0, C1, C2, . . ., where Ci+1 is the set of immediate predecessors of Ci, is a sequence
of upward-closed sets.

We now exploit the well-known fact that the order ≥ is a well-quasi-order: every infinite
sequence v1, v2, . . . of elements of Nn contains an infinite ordered subsequence vi1 ≤ vi2 ≤ . . ..
A first easy consequence of the theory of well-quasi-orders is that any upward-closed set
of configurations has finitely many minimal elements with respect to ≤. So, since an
upward-closed set is completely determined by its minimal elements, we can use the minimal
elements as a finite representation of the set. This allows to explicitly construct the sequence

STACS’14



6 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

C0, C1, C2 . . .. A second easy consequence is that this sequence contains two indices i < j

such that Ci ⊇ Cj . So we can stop the construction at Cj , because subsequent steps will
not discover any new configuration. The set

⋃j
k=0 Ck contains all configurations from which

a configuration of C0 can be reached. We can then inspect this set, and check whether is
contains one of the possible initial configurations of a crowd.

So crowds communicating by broadcasts are not Turing powerful. But, how powerful are
they? The answer, due to Schmitz and Schnoebelen [21], is very surprising:

The complexity time of the coverability problem for anonymous crowds
communicating by broadcast grows faster than any primitive recursive
function.

More precisely, the result is that coverability of broadcast protocols is Fω-hard, where Fω

is a class of problems of “Ackermannian complexity” (i.e., whose complexity is bounded by
an Ackermann-like function). In particular, Fω is closed under primitive recursive reductions.
We refer to [21] for a more precise description. In any case, this is one of the most natural
problem with provably non-primitive recursive complexity.

As a summary, we have that crowds communicating by broadcast may not be Turing
powerful, but keeping them under control may quickly exceed any reasonable amount of
computational resources.

3.2 Communication by global store with locking.
Global variables with locking is the natural communication mechanism for multithreaded
programs. The coverability problem for this kind of communication reduces to the coverability
problem of Petri nets, and vice versa, a fact that was already essentially observed by German
and Sistla [13].

The coverability problem for Petri nets was proved to be EXPSPACE-complete already
in the 70s, which yields the following result:

The coverability problem for a crowd communicating by global variables
with locking is EXPSPACE-complete.

EXPSPACE-hardness was proved by Lipton [16] (see also [7]) who showed that a counter
able to count up to 22n can be simulated by a Petri net (or an automaton) of size n2.
Membership in EXPSPACE was proved by Rackoff [19]. He shows that, if the state qu is
coverable, then it is coverable by a sequence of moves of double exponential length in the
size of the template. This yields immediately a NEXPSPACE algorithm, after which we use
NEXPSPACE=EXPSPACE.

Rackoff’s nondeterministic algorithm is not useful in practice. A more practical algorithm
was suggested (some years before Rackoff’s paper) by Karp and Miller [15]. The algorithm
uses the notion of generalized configuration, which for a template with n states is a vector of
dimension n whose elements are either natural numbers of the symbol ω, which intuitively
stands for “arbitrarily many processes”, or “as many process as necessary”. The algorithm
starts at a generalized configuration describing the initial situation: for example, we may have
exactly one process in state q1, and arbitrarily many in state q2, modelled by (1, ω, 0, . . . , 0).
Given a generalized configuration, we construct its successors (that is, the algorithm explores
new configurations in the forward direction, contrary to the algorithm for broadcasts, which
explores backwards). If the template, say, has transitions q1

v!−−→ q3 and q2
v?−−→ q4, then



J. Esparza 7

a rendez-vous can take place, and we can move from (1, ω, 0, . . . , 0) to (0, ω, 1, 1, 0, . . . , 0).
The important point is that this construction can be “accelerated”. For example, if the
template has transitions q1

v!−−→ q1 and q2
v?−−→ q4, then we can move from (1, ω, 0, . . . , 0)

to (1, ω, 0, 1, 0, . . . , 0) (state q2 loses a process, but we apply ω − 1 = ω + 1 = ω) and,
since (1, ω, 0, 1, 0, . . . , 0) ≥ (1, ω, 0, . . . , 0), the rendez-vous can take place again, leading to
(1, ω, 0, 2, 0, . . . , 0), (1, ω, 0, 3, 0, . . . , 0), etc. The algorithm “jumps to the limit”, and moves
directly from (1, ω, 0, . . . , 0) to (1, ω, 0, ω, 0, . . . , 0). Termination of the algorithm follows once
more from a very simple application of the theory of well-quasi-orders.

Karp and Miller’s algorithm has been recently improved in a number of ways: efficient
data structures, construction of a minimal set of generalized configurations, etc. (see e.g.
[18, 22, 12, 20]). However, these improvements do not change its worst-case complexity,
which is surprisingly worse than that of Rackoff’s algorithm: Karp and Miller’s algorithm
can take non-primitive recursive time and space. Recently, this puzzling mismatch has lead
to two beautiful results. First, Bozzelli and Ganty have shown that the backwards algorithm
described above for broadcast systems no longer has non-primitive recursive complexity when
applied to the rendez-vous case. Instead, it runs in double exponential time, much closer
to the lower bound [3]. Geeraerts, Raskin, and Van Begin have proposed another simple
algorithm based on forward exploration [11]. It applies a so-called “Enlarge, Expand, and
Check” algorithmic principle, which constructs a sequence of under- and overapproximations
of the set of reachable generalized configurations.Very recently, Majumdar and Wang have
shown that this algorithm also runs in double exponential time [17].

Early work by Delzanno, Raskin and Van Begin [5] and more recent work by Kaiser,
Kröning and Wahl [14] (see also [6]) has applied these coverability algorithms and other
techniques for the construction of over- and underapproximations, to verify safety of a large
number of multithreaded programs.

3.3 Communication by rendez-vous
Rendez-vous communication is a natural communication model for systems whose processes
“move” in some medium where they occasionally meet and interact. Natural computing
systems in which computing entities are molecules moving in a “soup” are an example.

When studying the complexity of this problem there is a subtle point. As we have seen in
Section 2, a crowd communicating by rendez-vous communication cannot produce a leader.
However, one can set up the system so that the initial configuration already contains one.
For instance, we can choose an initial configuration with exactly one process in state q1, and
arbitrarily many processes in state q2. So we have to examine two cases.

Crowds with an initial leader. In this case we can easily use rendez-vous to simulate global
store with locking. Intuitively, the template is designed so that the leader simulates the
store, and the rest of the crowd only communicates with the leader. Conversely, as we saw
in Section 2, rendez-vous communication can be simulated by a global store with locking,
and so we obtain:

The coverability problem for crowds communicating by rendez-vous and
having an initial leader is EXPSPACE-complete.

Leaderless crowds. This is the case in which all processes are initially in the same state.
In other words, if we assume that this state is q1, then the initial generalized configuration
of the system is (ω, 0, . . . , 0). We can again solve the coverability problem by means of the

STACS’14



8 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

Karp-Miller algorithm. However, it is easy to see that in this special case the algorithm can
only generate new configurations whose components are either ω or 0. Even more, a successor
(k′

1, . . . , k′
n) of a generalized configuration (k1, . . . , kn) necessarily satisfies ki = ω ⇒ k′

i = ω

for every 1 ≤ i ≤ n. Therefore, a sequence of pairwise distinct generalized configurations has
length at most n. We can then easily prove that the coverability problem is NP-complete,
and so much simpler than the case of a leader.

3.4 Communication by global store without locking
Locking mechanisms are easy to implement in a multithreading environment where all
threads are executed on a processor, or on a number of processors physically closed to each
other. They become more problematic for crowdsourcing systems, ad-hoc networks, vehicular
networks or, more generally, any sort of decentralized system where processes may enter or
leave the system at any time. The danger of this setting is obvious: a process may acquire the
lock, and leave the system without returning it, blocking the complete crowd. Additionally,
the locking mechanism is not as easy to implement as in a multithreading environment.

The case of communication by global variables without locking has been recently investig-
ated in [9]. The main finding is that the absence of locking drastically simplifies the task of
controlling the crowd (good news for verifiers), or, equivalently, decreases the computational
power (bad news for designers):

The coverability problem for a crowd communicating by global variables
without locking is NP-complete.

Moreover, in this case the result does not depend on the initial existence of a leader.
Intuitively, in the rendez-vous case the template can be designed so that a process communic-
ates a value to, say, exactly three other processes, which allows the crowd to perform some
arithmetic. In particular, the crowd can store an integer n by putting exactly n processes in
a given state of the template. This is not possible in a global store without a lock, because
the process has no control on how many processes may read a value.

The NP-completeness result is proved with the help of two lemmas. The first lemma
shows that the crowd can be simulated by a system composed of a finite number of simulators,
one for each value of V . The simulator for the value v is an automaton Av that can be easily
constructed from the template A and the value v. So we can construct a finite crowd that
simulates the behavior of any crowd with template A, of any size. This result already shows
that the coverability problem is in PSPACE, but not yet that it belongs to NP. Membership
in NP is proved with the help of a second lemma. Loosely speaking, the lemma states that,
if the unsafe state is reachable, then it can be reached by means of computations of the
simulators that can be guessed in polynomial time.

4 Some Results on Crowds of Infinite-State Processes

So far we have assumed that processes are finite state (i.e., the template is a finite automaton).
If we totally relax this condition (for instance, if we allow processes to be Turing machines),
then the coverability problem becomes of course undecidable: a crowd of one suffices to
achieve Turing power! But we can consider milder extensions of the computational power of
a process.

For broadcast communication and global variables with locking, even very modest ex-
tensions already make the crowd Turing powerful. In particular, this is already the case if



J. Esparza 9

processes can count, i.e., if the template is a finite automaton whose transitions may act on
a counter, increasing or decreasing it by one, or testing it for zero. Two processes suffices to
simulate a two-counter machine, which are known to be Turing powerful. A crowd can select
a leader, who can then select a second leader, and these two leaders can then communicate
with each other, ignoring the messages from the rest of the crowd. The same applies to
rendez-vous if the crowd initially contains a leader.

For global variables without locking, the situation is more interesting. In [9] two extensions
are considered. First, the paper studies the case in which processes are pushdown automata
(since stack can be used as a counter, this includes the counter case). The coverability
problems remains NP-complete for “leaderless crowds” and becomes PSPACE-complete for
crowds with one leader.

The second extension considers the case in which processes are Turing machines that
can only run for polynomial time. This models the situation in which each process has no
restrictions in computational power, but can only contribute a polynomial amount of work
to the crowd. Since the crowd is arbitrarily large, the total amount of work is not bounded,
and so we could hope to be able to show problems far beyond NP. However, the coverability
problem remains NP-complete. Interpreting the result, we conclude that without a locking
mechanism the crowd cannot distribute an arbitrary exponential computation among its
members in such a way that each individual only does a polynomial amount of work.

Acknowledgements. Very special thanks to Pierre Ganty, Jan Křetínský, Michael Lutten-
berger, and Rupak Majumdar for numerous comments on former versions of this note. In
particular, Rupak suggested the final structure.

References
1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidab-

ility theorems for infinite-state systems. In LICS, pages 313–321. IEEE Computer Society,
1996.

2 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic
analysis of programs with well quasi-ordered domains. Inf. Comput., 160(1–2):109–127,
2000.

3 Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability al-
gorithm for vass. In Giorgio Delzanno and Igor Potapov, editors, RP, volume 6945 of
Lecture Notes in Computer Science, pages 96–109. Springer, 2011.

4 Pedro R. D’Argenio and Hernán C. Melgratti, editors. CONCUR 2013 – Concurrency
Theory – 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, August
27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer Science. Springer,
2013.

5 Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Towards the automated
verification of multithreaded java programs. In Joost-Pieter Katoen and Perdita Stevens, ed-
itors, TACAS, volume 2280 of Lecture Notes in Computer Science, pages 173–187. Springer,
2002.

6 Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael Tautschnig, and
Thomas Wahl. Counterexample-guided abstraction refinement for symmetric concurrent
programs. Formal Methods in System Design, 41(1):25–44, 2012.

7 Javier Esparza. Decidability and complexity of petri net problems - an introduction. In
Wolfgang Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 374–428. Springer, 1996.

STACS’14



10 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

8 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Logic in Computer Science, 1999. Proceedings. 14th Symposium on, pages 352–359. IEEE,
1999.

9 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of Lecture Notes in Computer Science, pages 124–140. Springer, 2013.

10 Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001.

11 Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, enlarge, and
check: New algorithms for the coverability problem of wsts. In Kamal Lodaya and Meena
Mahajan, editors, FSTTCS, volume 3328 of Lecture Notes in Computer Science, pages
287–298. Springer, 2004.

12 Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. On the efficient computa-
tion of the minimal coverability set of petri nets. Int. J. Found. Comput. Sci., 21(2):135–165,
2010.

13 Steven M German and A Prasad Sistla. Reasoning about systems with many processes.
Journal of the ACM (JACM), 39(3):675–735, 1992.

14 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Dynamic cutoff detection in para-
meterized concurrent programs. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
CAV, volume 6174 of Lecture Notes in Computer Science, pages 645–659. Springer, 2010.

15 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst.
Sci., 3(2):147–195, 1969.

16 R.J. Lipton. The reachability problem requires exponential space. Technical Report 62,
Yale University, 1976. Available online at http://www.cs.yale.edu/publications/
techreports/tr63.pdf.

17 Rupak Majumdar and Zilong Wang. Expand, enlarge, and check for branching vector
addition systems. In D’Argenio and Melgratti [4], pages 152–166.

18 Artturi Piipponen and Antti Valmari. Constructing minimal coverability sets. In
Parosh Aziz Abdulla and Igor Potapov, editors, RP, volume 8169 of Lecture Notes in
Computer Science, pages 183–195. Springer, 2013.

19 Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci., 6:223–231, 1978.

20 Pierre-Alain Reynier and Frédéric Servais. Minimal coverability set for petri nets: Karp
and miller algorithm with pruning. In Lars Michael Kristensen and Laure Petrucci, editors,
Petri Nets, volume 6709 of Lecture Notes in Computer Science, pages 69–88. Springer, 2011.

21 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In
D’Argenio and Melgratti [4], pages 5–24.

22 Antti Valmari and Henri Hansen. Old and new algorithms for minimal coverability sets.
In Serge Haddad and Lucia Pomello, editors, Petri Nets, volume 7347 of Lecture Notes in
Computer Science, pages 208–227. Springer, 2012.

http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://www.cs.yale.edu/publications/techreports/tr63.pdf

	Introduction
	How Crowds Communicate
	The Power of Crowds
	Communication by broadcast
	Communication by global store with locking.
	Communication by rendez-vous
	Communication by global store without locking

	Some Results on Crowds of Infinite-State Processes

