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Abstract
A fully dynamic approximate distance oracle is a distance reporting data structure that supports
dynamic insert edge and delete edge operations. In this paper we break a longstanding barrier in
the design of fully dynamic all-pairs approximate distance oracles. All previous results for this
model incurred an amortized cost of at least Ω(n) per operation. We present the first construction
that provides constant stretch and o(m) amortized update time. For graphs that are not too
dense (where |E| = O(|V |2−δ) for some δ > 0) we break the O(n) barrier and provide the first
construction with constant stretch and o(n) amortized cost.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Shortest Paths, Dynamic Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.1

1 Introduction

A dynamic distance oracle (DDO), also known as the dynamic all pairs shortest path (APSP),
is a data structure that is capable of efficiently processing an adversarial sequence of delete,
insert and distance query operations. A delete operation deletes a single edge from the
graph. An insert operation adds a single edge to the graph. A query operation receives a
pair of nodes and returns a distance estimation. A dynamic graph is some initial graph G
and a sequence of delete and insert operations. We say that a dynamic algorithm is only
decremental if it handles only delete operations, only incremental if it handles only insert
operations, and fully dynamic if it handles both. A dynamic algorithm is only non-contracting
if it handles both delete and insert but only under the promise that the distances between
any two points never get shorter.

A dynamic approximate distance oracle has stretch k if the returned distance estimate for
every pair of nodes is at least the actual distance between them and at most k times their
actual distance. A single-source dynamic distance oracle (SSDDO) has a fixed source s and
all distance queries must involve the source s.

Even for single-source decremental dynamic distance oracles we do not know of any
non-trivial bounds on worst-case operation costs. So it is natural to consider amortized
costs as the next best measure. The amortized cost of a fully dynamic distance oracle is the
average cost given a sequence of m operations taken over all possible adversarial sequences
and all possible graphs with n vertices that start out with m edges. For a decremental only
DDO we can measure the total cost as the total cost given an arbitrary sequence of m delete
operations taken over all possible graphs with n vertices that start out with m edges. For a
non-contracting DDO and a parameter m we define the total cost as the total cost given an
arbitrary sequence of insert and delete operations such that the initial number of edges plus
the total number of insert operations is at most m, taken over all possible graphs with n
vertices.
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2 Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier

In this paper we consider fully dynamic DDO for undirected unweighted graphs. For exact
distances the best known bound is achieved by Henzinger et al. [12] who obtain amortized
cost1 of O((n1.8+o(1) + m1+o(1))/m). When 2 + ε approximate distances are allowed then
Bernstein [5] obtained Ô(m) amortized cost2. For larger stretch Baswana, Khurana, and
Sarkar [4] obtain, for any k, stretch 4k and Ô(n1+1/k) amortized update cost.

We note that all previous constructions suffer from an inherent amortized cost of O(n)
due to the potential need to run an exact single source shortest path algorithm (e.g. Dijkstra)
on the graph G itself or on a sparser subgraph H. Indeed it seems that O(n) amortized cost
is a natural barrier for all existing approaches, even when allowing super constant stretch.

The main result of this paper is a new construction that circumvents this barrier and
obtains an amortized cost of o(m) and constant stretch. In fact our construction obtains
o(n) amortized update and constant stretch for any graph that is not super-dense (formally
when |E| = o(|V |2)).

I Theorem 1. For any integer k, there exists a fully dynamic DO with amortized ex-
pected update time Õ(m1/2 · n1/k), query time O(k2ρ2), and 2O(kρ) stretch, where ρ =
1 + d logn1−1/k

log (m/n1−1/k)e.

Note that ρ ≤ k and that if m = n1+ε for any constant ε > 0 then ρ = O(1). For any
graph with m = n2−δ, our algorithm breaks the O(n) barrier with only O(1) stretch.

For any large constant stretch and non-super dense graph our result dominates all previous
fully dynamic results. At the extreme, for spare graphs (|E| = O(|V |)) and stretch O(logn)
our amortized cost is o(n 1

2 +δ) for any δ > 0, while [4] require amortized cost Ω(n).
Our result is obtained by combining two new ingredients. The first is an extremely

time-efficient decremental only DDO scheme.

I Theorem 2. For any positive integer k, one can maintain a decremental all-pairs shortest
paths algorithm for a graph G = (V,E) with stretch 2O(ρk) in total update time Õ(mn1/k)
and with O(kρ) time per query, where ρ = (1 + d logn1−1/k

log (m/n1−1/k)e).

This improves on the best known decremental-only dynamic distance oracle of Bernstein
and Roddity [6] (that get total update time Ô(n2+ 2

1+stretch )) whenever m is O(n2−δ). In
particular for sparse graphs with m = n, we get total update time Õ(n1+ 1

k ), whereas all
previously known results had at least Ω(n2) total update time.

The second is a transformation from a decremental only DDO to a fully dynamic DDO
that avoids the Ω(n) worst case insert costs that are present in all previous results. Our
reduction is fairly general, and can use other decremental only DDOs. We note that the idea
of transforming a decremental algorithm into a fully dynamic algorithm was first suggested
by Henzinger and King [11]. In this paper we use this extension in a non-trivial way.

1.1 Related Work
Even and Shiloach, in 1981, presented a decremental SSDDO for undirected, unweighted
graphs with O(n) amortized cost and O(1) query time with stretch 1 (exact distances).
A similar scheme was independently found by Dinitz [10]. Additional generalizations,
optimizations and reductions were studied in [13, 14, 21].

1 As usual, n (respectively, m) is the number of nodes (resp., edges) in the graph.
2 Throughout, the Õ notation suppresses polylogarithmic factors and the Ô notation suppresses

nO(1/
√

log n) factors
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Ausiello et al. [1] presented an incremental DDO for weighted directed graphs with
amortized costO(n3 logn/m) andO(1) query time. Henzinger and King showed a decremental
DDO for weighted directed graphs with amortized cost Õ((n2/t) + n) and O(t) query time.

King [13] presented a fully DDO for unweighted graphs with amortized cost Õ(n2.5) and
O(1) query time. Demetrescu and Italiano [9] presented a fully DDO for directed weighted
graphs with amortized cost Õ(n2.5

√
S), where S is the possible number of different weight

values in the graph.
Demetrescu and Italiano [8], in a major breakthrough devised a fully dynamic exact

DDO for directed general graphs with non negative edge weights, with amortized cost Õ(n2).
Thorup [15] extended the result to negative edge weights and [16] obtained worst case update
time Õ(n2.75).

The dynamic distance oracle problem was also studied when approximated distances are
allowed. Much work was on the incremental-only and decremental-only e.g., [2, 3, 19, 6, 20].
Recently, Henzinger et al. [12] improved the amortized cost of decremental single source
shortest paths (SSSP) for unweighted undirected graphs to O((n1.8+o(1) +m1+o(1))/m).

Fully Dynamic Approximate DDOs for General Graphs: King [13] presented a fully DDO
with amortized cost Õ(n2), O(1) query time and (1 + ε) stretch. Roditty and Zwick [19, 20]
presented a fully DDO for any fixed ε, δ > 0 and every t ≤ m1/2−δ, with expected amortized
cost of Õ(mn/t) and worst case query time of O(t) and (1+ε) stretch. Note that as t ≤ m1/2−δ,
the best amortized cost that can be achieved using this algorithm is Ω(m1/2+δn) > Ω(m).
Later, Bernstein [5] presented fully DDO with O(log log logn) query time, 2 + ε stretch and
Ô(m) amortized cost, where Ô(f(n)) = f(n)nO(1/

√
logn).

Recently, Baswana, Khurana, and Sarkar [4] presented a fully DDO for undirected
unweighted graphs breaking the O(n2) barrier for dense graphs. For an integer parameter k,
the construction of [4] has stretch 4k, Ô(n1+1/k) amortized update cost, and O(log log logn)
query time.

2 Preliminaries and Notation

Our algorithm is randomized and we assume an oblivious adversary (the sequence of insert
and delete operations is determined before the random coins). For simplicity, we describe
how to retrieve an estimation on the distances. Our algorithms can also be easily augmented
to also report paths. For a graph H, let V (H) be the nodes in H and let E(H) be the edges
of H. For an edge (x, y) ∈ E(H), let ω(x, y,H) be the weight of the edge (x, y) in the graph
H. For a graph H and nodes u and v, dist(u, v,H) is the distance between u and v in the
graph H. Similarly, dist(u, S,H) for a graph H, node u and a set of nodes S is the minimum
distance in H from u to a node in S. For a node v, distance ρ and graph H, let B(u, ρ,H)
be the set of nodes at distance at most ρ from u in H. When H = G, we sometimes omit it
and write simply dist(u, v) instead of dist(u, v,G), or B(u, ρ) instead of B(u, ρ,G).

As alluded to earlier, we will often consider distance oracles that work for integer edge-
weighted graphs under both edge insertion and deletion, but only under the promise that for
every pair of vertices, the distance only increases over time. Thus if we ever insert an edge
(u, v), its length will be at least as large as the current shortest path length. We call this the
non-contracting dynamic setting. Dynamic distance oracles for this setting will be useful
subroutine in our algorithms.

APPROX/RANDOM’14



4 Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier

2.1 Existing Decremental SSSP Algorithms

2.1.1 The Decremental SSSP Algorithm of King [13]
Our algorithm uses the decremental SSSP algorithm of King [13] as an ingredient. The
properties of King’s algorithm are summarized in the following theorem.

I Theorem 3. [13] Given a directed graph with positive integer edge weights, a source node
s and a distance d, one can decrementally maintains a shortest path tree T from s up to
distance d in total time O(md). Moreover, given a node v, one can extract in O(1) time
dist(v, s) in case v ∈ T or determine that v /∈ T .

King’s algorithm starts by constructing a shortest path tree T rooted at s. Each time
an edge e = (x, y) is deleted, where x is in the same connected component as s in T \ e, an
attempt is made to find a substitute edge to y that does not increase the distance from s to y.
If such an edge is found then the recovery phase is over. Note that in this case the distances
from s to y and to all nodes in y’s subtree are unchanged. In case no such edge found, the
best edge is chosen, i.e., the edge that connect y on the shortest path possible. The process
is continued recursively on all y’s children. The crucial property of this algorithm is that
it explores the edges of a node v only when the distance from s to v increases. This gives
a total running time of O(md) as the distance from s to a node v may increase at most d
times before exceeding d.

This analysis of the decremental SSSP algorithm of King [13] works in the decremental
only setting but breaks down if we allow edge insertions. Indeed the analysis relies on the
fact that the distance from a node to s can change at most d times before exceeding d, which
is not true if we allow arbitrary edge insertions. However, if the edges have integer weights
and insertions are guaranteed to ensure that the distances do not decrease over time, it is
easy to verify that the analysis of King [13] works as it is. Thus Theorem 3 also holds for
the non-contracting dynamic setting.

2.1.2 The Decremental Algorithm of Roditty and Zwick [20]
Another ingredient in our algorithm is the approximate decremental APSP algorithm of
Roditty and Zwick [20]. Roditty and Zwick [20] showed how to construct a decremental all
pairs shortest path data structure DORZ up to depth d for a given graph H and integer k
such that one can answer any distance query in O(k) time within stretch 2k − 1, and the
total update time is Õ(mn1/kd). More precisely, the dynamic data structure of Roditty and
Zwick can be easily tweaked to either return an estimate within 2k − 1 stretch or determine
that dist(s, t,H) > d, and return infinity in this case. In addition, as in the King’s algorithm
[13], the entire analysis relies on the fact that distances never get shorter and thus also works
in the non-contracting setting.

3 Techniques

In this section we outline the high level ideas of our construction for the fully dynamic APSP
algorithm. Our algorithm consists of two main parts. The first part is a new decremental
APSP algorithm with total update time that can get arbitrarily close to Õ(m), while paying
in the stretch. More precisely, we show for any positive integer k, a decremental APSP
algorithm with total update time of Õ(mn1/k) and with stretch 2O(k2) (and 2O(k) when
m = n1+ε). The second part takes the decremental APSP and augments it to accommodate
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insertion operations. We provide a general framework for obtaining fully dynamic APSP
which can be potentially used with other decremental APSP.

Usually, the hard part in decremental APSP algorithms is in handling long distances. We
introduce a new approach that allows efficient handling of all distances. Loosely speaking,
we maintain k non-contracting dynamic graphs Gi. The graph G0 is simply G and we use
[20] upto depth n1/k on G0 to answer distances upto to n1/k. We then construct a dynamic
non-contracting graph G1, that dynamically maintains the property that every two nodes
whose distance in G is n1/k have a 2-hop path between them in G1. This implies that
distances upto n2/k in G have a path of length O(n1/k) in G1. Hence we use [20] upto
depth n1/k on G1 to answer distances upto to n1/k in G1 which correspond to distances in
G between n1/k to n2/k.

In the same way, we iteratively construct a dynamic non-contracting graph Gi, that
dynamically maintains the property that every two nodes whose distance in G is ni/k have a
2-hop path between them in Gi. This implies that distances upto ni/k in G have a path of
length O(n1/k) in Gi. Hence we use [20] upto depth n1/k on Gi to answer distances upto to
n1/k in Gi which correspond to distances in G between ni/k to n(i+1)/k.

The core difficulty is dynamically maintaining the property that every two nodes whose
distance in G is ni/k have a 2-hop path between them in Gi while keeping Gi sparse. For
example, consider two nodes that start by having two ni/k long paths between them in G
and the 2-hop path maintained in Gi is induced by the first path. Due to edge removals in
G of the first path, we now have to discover and maintain in Gi a new 2-hop path that is
induced by the second ni/k long path between them in G. Observe that this implies that
deleting edges in G may force insert operations of new edges in Gi. In order to control the
total cost of this addition we must do two things (1) guarantee that these edges insertions
are non-contracting (2) bound the total number of edge insertions.

Suppose we want to maintain distances in G1 between every two nodes whose distance
in G is α = n1/k. For simplicity, first assume k = 2. Our solution is roughly as follows:
we sample Õ(

√
n) pivots A and build and maintain a decremental tree T (u) of radius 3α

around each pivot u. We build in G1 an edge u, v of length 1 between any pivot u and
v ∈ T (u) (in this part edges may be dynamically deleted but none are dynamically inserted).
Consider a node w. There are two cases. If dist(w,A) ≤ 2α then there is a nearby pivot that
provides the desired 2-hop property for pairs involving w. Otherwise with high probability
|B(w, 2α)| <

√
n and hence for all x ∈ B(w,α), we have |B(x, α)| <

√
n. So in this case, we

activate w by building and maintaining a decremental tree T (w) of radius α around w. The
main observation is that due to the sparseness condition for activation, for any node y, in the
entire decremental sequence on G, y will belong to at most

√
n trees induced from activated

nodes. This implies that we can bound the total number of edges added to G1 by Õ(n1+1/2).
We still have the problem of guaranteeing that these edges insertions are non-contracting in
G1. The solution is to add in G1 an edge w, v of length 2 between any activated node w and
v ∈ T (w). Just before activating w it must be that (w, v) have a 2-hop path where each hop
has length 1 in G1, and hence choosing length 2 is adequate.

More generally, we maintain k dynamic non-contracting graphs. For each G` we maintain
k subsets A1, . . . , Ak. The set Ai is of size Õ(ni/k). For each w ∈ Ai, we activate w and
build a decremental tree of radius 3k−iα around w roughly when w is “far enough” from all
Aj for all j < i. This allows us to bound the total number of edges added to G` for the set
Ai by Õ(n1+1/k). To maintain the non-contracting property we add in G` an edge w, v of
length 2i between any activated node w ∈ Ai and v ∈ T (w). See section 4 for details.

Our approach for the second part is to take our decremental DDO and augment it to

APPROX/RANDOM’14



6 Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier

accommodate insertion operations. We provide a general framework for obtaining fully
dynamic DO which can be potentially used with other decremental DDOs. At a high level,
our approach is to maintain two sub-components: (1) for delete operations we maintain
a decremental DDO (2) for insert operations we use a sketch-graph data structure that
maintains an approximate distance oracle over all the newly inserted edges. Once sub-
component (2) becomes too large we re-build the two components from scratch and hence
obtaining good amortized guarantees. The key advantage is that our costs are proportional
to the number of newly inserted edges, not the total number of edges in the graph. During a
query we use both components and combine their results to find a low stretch estimation.
We also need to update the sketch-graph appropriately during each delete operation. In
order to get a smaller update time we exploit some additional properties in the construction
of Roditty and Zwick [20].

4 New Decremental Shortest Paths

4.1 The Main Building Block

4.1.1 Properties
In this section we present an algorithm that takes as input three integers k, α, and mr and a
dynamic graph Gr where the graph Gr is guaranteed to satisfy the following properties.
(a) All edge weights in Gr are in {1, 2, . . . , 2k−1} (both the initial edges and the edges that

may be dynamically added).
(b) The graph Gr has the property that distances never decrease over time (but it may

happen that edges are both added and removed over time).
(c) The initial number of edges in Gr plus the total number of edge insertion operation on

Gr is at most mr.
The algorithm outputs a non-contracting dynamic data structure that produces a dynamic

graph Gr+1 with the following properties:
1. The edge weights in Gr+1 are in {1, 2, . . . , 2k−1} (both the initial edges and the edges

that may be dynamically added).
2. Every two nodes at distance at most α in Gr have a two hop path between them in Gr+1

of length at most 2k−1.
3. At any point, the non-contracting data structure maintains:

dist(u, v,Gr)
(3k−1α) ≤ dist(u, v,Gr+1) ≤ 2k−1 ·

(
dist(s, t,Gr)
(α− 2k−1) + 1

)
4. The dynamic non-contracting data structure forGr+1 incurs a total cost of Õ(k3kn1/kαmr).
5. The non-contracting data structure maintains that the graph Gr+1 has the property that

distances never decrease over time (but it may happen that edges are both added and
removed over time).

6. The initial number of edges in Gr+1 plus the total number of edge insertion operation on
Gr+1 is at most Õ(kn1+1/k).

4.1.2 Constructing the Decremental Distance Oracle
We define a sequence of sets A1, . . . , Ak as follows: The set Ak is simply V . For 1 < i ≤ k− 1
set Ai is a sample of V independently at random with probability c logn/n1−i/k (for some
small constant c). Thus the set Ai contains in expectation Õ(ni/k) nodes.
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For each v ∈ Ai we will define a condition under which we activate v and hereafter build
and maintain a decremental SSSP tree T (v) for depth 3k−iα on graph Gr. Loosely speaking,
for every node v in Ai for every i > 1, the algorithm constructs a decremental SSSP tree
T (v) once all the distances dist(v,Aj , Gr) for every 1 ≤ j < i are “sufficiently” large.

We say that a node v ∈ Ai is i-active if the tree T (v) was already constructed, otherwise
it is i-inactive. All nodes in A1 are initially active, namely, for every node v in A1 maintain a
decremental SSSP tree T (v) up to depth 3k−1α on the graph Gr. For every index 1 ≤ i ≤ k−1
and a node u, the algorithm maintains in a heap Hu

i the distances dist(v, u,Gr) for every
v ∈ Ai such that v is i-active and u ∈ T (v). Let Hu

i .min be the minimum in the heap. For
every i > 1 and i-inactive node v ∈ Ai: if the condition Hu

j .min > (3k−j − 3k−i)α for every
j < i holds, then the algorithm constructs and maintains a decremental SSSP tree T (v) up
to depth 3k−iα on the graph Gr. Each time the distance dist(u, v, T (v)) for some u ∈ T (v)
changes, the algorithm updates the relevant heap and checks if u should be activated.

The graph Gr+1 is constructed and maintained as follows. For every node v ∈ Ai and
u ∈ T (v), add an edge between u and v of weight 2i−1. Once a node u is removed from
T (v), remove the corresponding edge from Gr+1. Similarly, once v is i-activated and T (v)
for v ∈ Ai is constructed add all edges (u, v) for every u ∈ T (v) with weight 2i−1. In each
change of Gr, the algorithm first updates all the trees T (v), then adds the relevant edges to
Gr+1, and then removes the relevant edges from Gr+1. Adding the edges before the deletions
ensures that distances are never decrease in Gr+1. This concludes the construction.

Observe that one change in Gr may lead multiple changes in Gr+1 (a removal of an edge
may increase some distances in trees T (v) that may lead to the construction of new trees).

4.1.3 Analysis
The next claim bounds the number of trees T (v) a node u may belong to in the entire run of
the algorithm.

I Claim 4. W.h.p. every node u belongs to at most Õ(k · n1/k) trees T (v) in the entire run
of the algorithm.

Proof. There are Õ(n1/k) nodes in A1 in expectation, therefore u may belong to Õ(n1/k)
trees T (v) such that v ∈ A1.

We claim that u belongs to a tree T (v) for v ∈ Ai and i > 1, only if dist(u,Ai−1, Gr) >
3k−iα. To see this, assume that dist(u,Ai−1, Gr) ≤ 3k−iα. Assume, towards contradiction,
that u ∈ T (v) for some v ∈ Ai. Recall that the depth of T (v) is 3k−iα. We get that
dist(v,Ai−1, Gr) ≤ dist(v, u,Gr) + dist(u,Ai−1, Gr) ≤ (3k−i + 3k−i)α ≤ 2 · 3k−iα. Hence
there is a node w ∈ Ai−1 such that dist(v, w,Gr) ≤ 2 · 3k−iα.

We need to consider two cases. The first case is when w is (i− 1)-active and the second
case is when w is (i− 1)-inactive. Consider the case where w is (i− 1)-active. The tree T (w)
is constructed up to depth 3k−(i−1)α = 3k−i+1α. As dist(v, w,Gr) ≤ (2 · 3k−i)α < 3k−i+1α

we have v ∈ T (w). Note that in this case,

Hv
i−1.min ≤ dist(v, w,Gr)

≤ 2 · 3k−iα
= (3k−i+1 − 3k−i)α
= (3k−(i−1) − 3k−i)α.

Hence, by definition, the tree T (v) was not supposed to be constructed yet, which is a
contradiction.

APPROX/RANDOM’14



8 Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier

Consider now the second case, where w is (i − 1)-inactive. The node w is (i − 1)-
inactive only if there is a j-active node z ∈ Aj for some j < i− 1 such that w ∈ T (z) and
dist(w, z,Gr) ≤ (3k−j − 3k−(i−1))α.

It follows that

dist(v, z,Gr) ≤ dist(v, w,Gr) + dist(w, z,Gr)
≤ (2 · 3k−i)α+ (3k−j − 3k−(i−1))α
= (2 · 3k−i + 3k−j − 3k−i+1)α
= (2 · 3k−i + 3k−j − 3 · 3k−i)α
= (3k−j − 3k−i)α.

Note that v ∈ T (z). It follows that, Hv
j .min ≤ dist(v, z,Gr) ≤ (3k−j − 3k−i)α. Hence, by

definition, the tree T (v) was not supposed to be constructed yet, which is a contradiction.
It follows that, dist(u,Ai−1, Gr) > 3k−iα. Hence, by applying Chernoff’s bound 3 we get

that w.h.p. |B(u, 3k−iα)| ≤ n1−(i−1)/k. The set Ai contains every node independently at
random with probability c logn/n1−i/k. Hence in expectation we have |B(u, 3k−iα) ∩Ai| ≤
c logn/n1−i/k · n1−(i−1)/k = Õ(n1/k), as required. J

We next show that Gr+1 satisfies the desired properties.

I Lemma 5. Suppose that the input dynamic graph Gr satisfies properties (a)-(c). Then the
graph Gr+1 satisfies properties 1–6.

Proof. It is not hard to verify property (1), that all edges in Gr+1 are of weight in
{1, 2, . . . , 2k−1}.

We now prove property (2), that is, for every two nodes u and v such that dist(u, v,Gr) ≤
α, there is a path between u and v in Gr+1 of at most two hop and of length at most 2k−1.
To see this, recall that Ak = V . If v is k-active then the tree T (v) is constructed up
to depth α and as dist(u, v,Gr) ≤ α we have u ∈ T (v). Therefore, by construction
the graph Gr+1 contains the edge (u, v) of weight 2k−1, as required. So assume now v

is k-inactive. By construction if v is k-inactive then there is an index j < k and a j-
active node w ∈ Aj such that v ∈ T (w) and dist(v, w,Gr) ≤ (3k−j − 1)α. Note that
dist(u,w,Gr) ≤ dist(u, v,Gr) + dist(v, w,Gr) ≤ α + (3k−j − 1)α ≤ 3k−jα. As the tree
T (w) contains all nodes at distance in Gr at most 3k−jα from w, we get that u ∈ T (w). By
construction, the graph Gr+1 contains both edges (w, v) and (w, u), both of weight 2j−1.
Hence Gr+1 has a two hop path between u and v of length 2j ≤ 2k−1, as required.

To see property (3) consider two nodes u and v. We need to show dist(u, v,Gr)/(3k−1α) ≤
dist(u, v,Gr+1) ≤ 2k−1(dist(s, t,Gr)/α+ 1).

Let us first show the first inequality, that is, dist(u, v,Gr)/(3k−1α) ≤ dist(u, v,Gr+1).
Let P (u, v,Gr+1) be the shortest path between u and v in Gr+1. Let (x, y) be an edge on
P (u, v,Gr+1). Recall that by construction as (x, y) is an edge in Gr+1 then there is an index
i such that x ∈ Ai, and y ∈ T (x), or y ∈ Ai, and x ∈ T (y). Assume w.l.o.g. that x ∈ Ai and
y ∈ T (x).

3 Note that the claim needs to hold w.h.p. for every considered graph during the entire running of the
algorithm, note however that as there are at most mr ≤ n2 deletions and therefore at most n2 considered
graphs. Hence by setting the constant c to be large enough we can show that the claim holds w.h.p. for
every considered graph.
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Note that dist(x, y,Gr+1) = 2i−1 and that dist(x, y,Gr) ≤ 3k−iα. We get

dist(x, y,Gr) ≤ 3k−iα
= 3k−iα/2i−1 · 2i−1

= 3k−iα/2i−1 · dist(x, y,Gr+1)
≤ 3k−1α · dist(x, y,Gr+1).

Hence, dist(x, y,Gr)/(3k−1α) ≤ dist(x, y,Gr+1). It follows that

dist(u, v,Gr+1) =
∑

(x,y)∈P (u,v,Gr+1)

ω(x, y,Gr+1)

≥
∑

(x,y)∈P (u,v,Gr+1)

dist(x, y,Gr)/(3k−1α)

≥ dist(u, v,Gr)/(3k−1α),

as required.
We now turn to prove the second inequality, namely, dist(u, v,Gr+1) ≤ 2k−1(dist(u, v,Gr)/

(α−2k−1)+1). Consider the shortest path P (u, v,Gr) between u and v in Gr. Let x0 = u and
let xi be the furthest away node on P (u, v,Gr) from xi−1 such that dist(u, v,Gr) ≤ α. As the
maximum edge weight in Gr is 2k−1 it is not hard to verify that dist(xi−1, xi, Gr) < α−2k−1.
In addition, by property (2) we have that xi−1 and xi are connected by a two hop path of
length at most 2k−1.

Hence, u and v are connected by a path in Gr+1 of length at most ddist(u, v,Gr)/(α−
2k−1)e · 2k−1. Therefore,

dist(u, v,Gr+1) ≤ ddist(u, v,Gr)/(α− 2k−1)e · 2k−1

≤ (dist(u, v,Gr)/(α− 2k−1) + 1) · 2k−1.

We get that, dist(u, v,Gr)/(3k−1α) ≤ dist(u, v,Gr+1) ≤ (dist(s, t,Gr)/(α−2k−1)+1)·2k−1.
Let us turn to prove property (4). By claim 4 all nodes belong to Õ(kn1/k) trees. Each

tree is maintained up to depth 3k−1α (or less). Let degr(u) be the degree of u in Gr. Consider
a tree T (v), the total time for maintaining T (v) is

∑
u∈T (v)

3k−1α degr(u). Thus for all trees∑
v∈V,u∈T (v)

3k−1α degr(u) = Õ(k3k−1n1/kαmr).

We now turn to property (5), that is, edges may be added to Gr+1 but distances are
only increasing. We need to show that when we add an edge (u, v) with weight ω(u, v)
then dist(u, v,Gr+1) ≤ ω(u, v). Recall that an edge (u, v) is added to Gr+1 when the
tree T (v) for some v ∈ Ai is constructed. The tree T (v) is constructed once the distances
Hu
j .min > (3k−j−3k−i)α for every j < i. Namely, just before this change we had Hu

j .min ≤
(3k−j − 3k−i)α for some j < i. It follows that there exists a node w ∈ Aj such that
dist(v, w,Gr) = (3k−j − 3k−i)α. Note that dist(v, u,Gr) ≤ 3k−iα. Hence dist(u,w,Gr) ≤
dist(u, v,Gr) + dist(v, w,Gr) ≤ 3k−iα+ (3k−j − 3k−i)α = 3k−jα. It follows that u ∈ T (w).
We get that the edges (u,w) and (w, v) existed in Gr+1 just before this change. In addition,
ω(u,w) = 2j−1 ≤ 2i−1 and ω(w, v) = 2j−1 ≤ 2i−1. The algorithm adds an edge (u, v) with
ω(u, v) = 2i. It is not hard to see that the distance (u, v) did not decrease by adding the
edge (u, v).

Property (6), i.e., that the total number of edges in Gr+1 is Õ(kn1+1/k) easily follows
from the fact that every node belong to Õ(kn1/k) trees. J

APPROX/RANDOM’14
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4.2 The Main Decremental Construction
In this section we show our decremental algorithm.

Construction. Let us start with describing the construction. Set G0 = G. Construct G1
using the data structure from the previous section on G0 with α1 = n1/k and k. For every
1 < i ≤ ρ, construct and maintain Gi using the data structure from the previous section on
Gi−1 with αi = 2kd m

n1−1/k e and k. (The reason for considering different α’s for the different
levels if to achieve a better stretch for not super sparse graphs). For every 0 ≤ i ≤ ρ construct
the data structure DOiRZ of Roditty and Zwick [20] up to distances αi on the graph Gi. The
concludes the construction.

Answering a Distance Query. The algorithm for answering distance query given two nodes
s and t is as follows. Find the first i such that DOiRZ returns an estimation on dist(s, t),
i.e., the first i such that s and t are at distance at most 2αi from one another in Gi. Let
µ0 = 1 and µi = α1 · αi−1

2 · 3i(k−1) for i > 0. Return µiDOiRZ(s, t).
It is not hard to see that the query time is O(k · ρ) as the algorithm invokes the Roditty

and Zwick [20] query algorithm at most ρ times, where each distance query of Roditty and
Zwick [20] takes O(k) time.

Analysis. The next auxiliary claim shows that every two nodes whose distance in G is at
most α1(α2/2k)i−1 are connected by a path of at most two hop in Gi.
I Claim 6. Every two nodes u and v such that dist(u, v,G) ≤ α1(α2/2k)i−1 are connected
in Gi by a path of at most 2-hop.

Proof. We prove it by induction on i. For i = 1, the proof follows by property (2) on G1.
Assume correctness for every j such that 1 ≤ j < i and consider i. Consider two nodes u
and v such that dist(u, v,G) ≤ α1(α2/2k)i−1.

Consider the shortest path P (u, v) between u and v in G. Let u = x0 and xr = v for
r = ddist(u, v,G)/(α1(α2/2k)i−2)e. For 1 ≤ ` < r, let x` be the next node on the path
P (u, v) (closer to v) such that dist(x`−1, x`) = α1(α2/2k)i−2.

By the induction hypothesis x` and x`+1 are connected by a two-hop path in Gi−1. As
the weights in Gi−1 are at most 2k−1. We get that the length of the path between u and v
in Gi−1 is at most

dist(u, v,Gi−1) ≤ 2kddist(u, v,G)/(α1(α2/2k)i−2)e
≤ 2kdα1(α2/2k)i−1/(α1(α2/2k)i−2)e
≤ 2kd2km/n1−1/k/2ke
= 2km/n1−1/k

= α2

By property (2) we have that u and v are connected by a two-hop path in Gi. J

I Claim 7. Let i be the minimal index such that DOiRZ returns an estimation on dist(s, t).
If i > 0, then dist(s, t,G) ≥ α1(α2/2k)i−1.

Proof. It is not hard to see by Claim 6 that if dist(s, t,G) ≤ α1(α2/2k)i−1 then there is
2α2/2k hop paths from s to t in Gi−1, namely, dist(s, t,Gi−1) ≤ α2. Therefore by construc-
tion DOi−1

RZ is supposed to return an estimate on dist(s, t). It follows that dist(s, t,G) ≥
α1(α2/2k)i−1. J



I. Abraham, S. Chechik, and K. Talwar 11

The next lemma bounds the stretch of the algorithm.

I Lemma 8. The distance ˆdist(s, t) returned by the algorithm satisfies dist(s, t) ≤ ˆdist(s, t) ≤
k(2k − 1)6ρkdist(s, t).

Proof. Let i be the minimal index such that DOiRZ returns an estimation on dist(s, t). If i =
0, then ˆdist(s, t) = DO0

RZ(s, t). Note that dist(s, t,G) ≤ DO0
RZ(s, t) ≤ (2k − 1)dist(s, t,G)

and we are done. So assume i > 0.
Let us first prove the first direction, that is, dist(s, t) ≤ ˆdist(s, t). By applying property

(3) recursively we have dist(s, t,Gi) ≥ dist(s, t,G0)/(3i·(k−1)α1α
i−1
2 ). We get,

ˆdist(s, t) = α1 · αi−1
2 · 3i(k−1) ·DOiRZ(s, t)

≥ α1 · αi−1
2 · 3i(k−1) · dist(s, t,Gi)

≥ α1 · αi−1
2 · 3i(k−1) · dist(u, v,G0)/(3i·(k−1)α1α

i−1
2 )

= dist(u, v,G0).

We are left to show the other direction, that is, ˆdist(s, t) ≤ k(2k − 1)6ρkdist(s, t,G0).
Recall that α1, α2 > 2k. By property (3) and straightforward calculations we have the

following.

dist(s, t,Gi) ≤ 2k−1(dist(s, t,Gi−1)/(α2 − 2k−1) + 1)
= 2k−1dist(s, t,Gi−1)/(α2 − 2k−1) + 2k−1

≤ 2i(k−1)dist(s, t,G0)/((α2 − 2k−1)i−1 · (α1 − 2k−1)) + i · 2k−1

≤ 2i(k−1)dist(s, t,G0)/((α2/2)i−1 · (α1/2)) + i · 2k−1

≤ 2ikdist(s, t,G0)/((α2)i−1 · (α1)) + i · 2k−1.

By Claim 7 we have dist(s, t,G) ≥ α1(α2/2k)i−1. Hence,

ˆdist(s, t) = α1 · αi−1
2 · 3i(k−1) ·DOiRZ(s, t)

≤ α1 · αi−1
2 · 3i(k−1) · (2k − 1)dist(s, t,Gi)

≤ α1 · αi−1
2 · 3i(k−1) · (2k − 1)(2ikdist(s, t,G0)/((α2)i−1 · (α1)) + i · 2k−1)

≤ (2k − 1)6ikdist(s, t,G0) + iα1 · αi−1
2 · 3i(k−1) · (2k − 1) · 2k−1

≤ (2k − 1)6ikdist(s, t,G0) + i · 3i(k−1) · (2k − 1) · 2k−1 · dist(s, t,G0)
≤ k(2k − 1)6ikdist(s, t,G0).

as required. J

We conclude the following.

I Theorem 9. For any positive integer k, one can maintain a decremental all-pairs shortest
paths algorithm for a given graph G = (V,E) with stretch 2O(ρk) in total update time Õ(mn1/k)
and with O(kρ) time per query, where ρ = (1 + d logn1−1/k

log (m/n1−1/k)e)

APPROX/RANDOM’14
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5 Fully Dynamic Approximate All-Pairs Shortest Paths

Our fully dynamic data structure will maintain the decremental data structure from the last
section, along with an auxiliary data structure to “remember” the insertions. To prevent this
second data structure from becoming too large, we will periodically rebuilid the complete data
structure (i.e. both the decremental part and the auxiliary part). Throughout, G = (V,E) is
the updated graph, namely, the graph after all the updates that have occurred so far. Let D
be the set of deletions and U be the set of insertions since the data structure was last rebuilt.
Let Ĝ be the graph when the data structure was last rebuilt. Let GD be the graph obtained
by deleting the set of edges D from Ĝ.

The main idea of our fully dynamic algorithm is the following: We maintain two data
structures, the first is a decremental distance oracle Dec and the second is an auxiliary
distance oracle M whose goal is to handle edge insertions. More specifically, the decremental
distance oracle is capable of answering approximate distance queries in the graph GD, and
the sketch distance oracle is capable of answering approximate distance queries in the graph
G, but only between nodes in V (U), where V (U) is the set of all nodes incident to some
edge in U .

In addition, for every node v ∈ V , we ensure a simple access to some “close” nodes
in V (U), called the pivots of v. To answer distance queries between a pair of nodes s
and t, the algorithm computes for every two pivots p(s) of s and p(t) of t the distance
Dec(s, p(s)) +M(p(s), p(t)) + Dec(p(t), t) and returns the minimum over all pairs of pivots,
where Dec(u, v) is the distance returned by invoking the query algorithm of Dec on (u, v). Let
P (s, t,G) be the shortest path from s to t in G. If the path P (s, t,G) does not contain edges
that were inserted since the data structure was last constructed then Dec(s, t) gives a good
estimation on dist(s, t,G). Otherwise, we show that there must be nodes p(s), p(t) ∈ V (U)
such that Dec(s, p(s)) +M(p(s), p(t)) + Dec(p(t), t) is a good estimation on dist(s, t,G).

When the sketch distance oracle becomes too “large” we simply construct the data
structure from scratch.

An important advantage of our scheme is that it is quite general. One can plug in it any
decremental and sketch distance oracles.

5.1 Fully Dynamic APSP Beyond O(n)

We show a fully dynamic APSP algorithm with amortized update time Õ(m1/2 · n1/k) with
2O(kρ) stretch. Note that ρ ≤ k and that if m = n1+ε for constant ε then ρ = O(1). For any
graph with m = n2−δ for some constant δ > 0, our algorithm can break the O(n) barrier
with only O(1) stretch.

We use the decremental distance oracle Dec from Section 4 to get our fully dynamic
APSP. In order to get a fast query time we do not treat Dec as a black box, but rather
exploit some additional properties in the construction of Roditty and Zwick [19, 20]. As
mentioned earlier in our decremental distance oracle Dec on each graph Gi our algorithm
invokes the Roditty and Zwick [19, 20] decremental algorithm. Roditty and Zwick showed
how to maintain the Thorup-Zwick distance oracle decrementally for distances smaller than
d with total update time O(dmn1/k). Let us first outline the construction of Thorup-Zwick
distance oracle [18]. We will then see how to exploit some properties in the Thorup-Zwick
distance oracle [18] in order to get our efficient fully dynamic algorithm.
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5.1.1 The Static Distance Oracle of Thorup and Zwick
We outline the construction of the Thorup-Zwick distance oracle [18]. For a given pos-
itive integer k, construct the sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 as follows: The i-
th level Ai is constructed by sampling the vertices of Ai−1 independently at random
with probability n−1/k for 1 ≤ i ≤ k − 1. The set Ak is set to be the empty set.
Next, for every vertex v, define the bunch of v as follows B(v) =

⋃k−1
i=0 Bi(v), where

Bi(v) = {u ∈ Ai \Ai+1 | dist(v, u) < dist(v,Ai+1)} ∪ {pi(v)}. The pivot pi(v) is the closest
vertex to v in Ai (break ties arbitrarily).

The Thorup-Zwick Data Structure: For every vertex v store B(v) and for every vertex
w ∈ B(v) store dist(w, v). In addition, for every vertex v and every index i where 1 ≤ i ≤ k−1
store pi(v) and dist(v, pi(v)).

The Thorup-Zwick Query Algorithm: Let i be the first index such that either pi(s) ∈ B(t)
or pi(t) ∈ B(s). Assume w.l.o.g. that pi(s) ∈ B(t). Return dist(s, pi(s)) + dist(pi(s), t).

It was shown in [18] that for every j ≤ i, dist(s, pj(s)) ≤ (j−1)dist(s, t) and dist(t, pj(s)) ≤
jdist(s, t). Similarly for every j ≤ i, dist(t, pj(t)) ≤ (j − 1)dist(s, t) and dist(s, pj(t)) ≤
jdist(s, t). Combining it with the fact that i ≤ k − 1, we get the 2k − 1 stretch.

In our case, in order to get fast query we will sometime have only access to the pivots of
s. It was shown in [17] that even if we check only the pivots of s and take the first i such
that pi(s) ∈ B(t) then dist(s, pi(s)) + dist(pi(s), t) ≤ (4k − 3)dist(s, t).

In addition, Thorup and Zwick showed that the expected size of the bunch is O(k · n1/k).
Finally, Thorup and Zwick showed that in the static case constructing their data structure
can be done in time Õ(m · n1/k) time.

5.1.2 Our Fully Dynamic All-Pairs Shortest Paths
As mentioned earlier, we use the decremental distance oracle Dec from Section 4. In our
decremental distance oracle Dec on each graph Gi our algorithm invokes the Roditty and
Zwick [19, 20] decremental distance oracle. For each i and a node v, let Bi(v) be the bunch of v
in DOiRZ and let pij(v) be the j’th pivot of v in DOiRZ . Recall that our decremental algorithm
Dec returns µi ·DOiRZ(s, t) for the first i such that DOiRZ returns an estimation on dist(s, t).
In addition, we have that either DOiRZ(s, t) = DOiRZ(s, pii1(s)) +DOiRZ(pii1(s), t) for some
1 ≤ i1 ≤ k − 1 or DOiRZ(s, t) = DOiRZ(s, pii2(t)) +DOiRZ(pii2(t), t) for some 1 ≤ i2 ≤ k − 1.
Moreover, for nodes x, y such that x ∈ Bi(y) we have DOiRZ(x, y) = dist(x, y,Gi).

After m1/2 insertions we reconstruct the data structure from scratch. Our data structure
contains two main parts Dec and an auxiliary distance oracle M . In addition, we maintain
the set U containing all the edges that were added since the last time the data structure was
constructed.

(Re)Construction: Construct Dec as described in Section 4 and an empty set U .

Deletion Operation for an Edge e: We do the following two steps.
1. Invoke the deletion operation of Dec for the edge e, and
2. Renew the data structure M as follows: Construct a graph H, initially set to be empty.

Add the set of nodes V (U) to H. For every node v ∈ V (U) and 1 ≤ i ≤ ρ, add Bi(v)
to H. Add edges from v to every node x in Bi(v), set the weight of the edge to be
µiDO

i
RZ(x, v) = µidist(x, v,Gi). In addition add the set of edges U to H. Compute the

Thorup-Zwick distance oracle DOTZ,H on H with parameter k. Store DOTZ,H .

APPROX/RANDOM’14
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Insertion Operation for an Edge e = (x,y): Add the edge to U . If |U | ≥ m1/2 then
reconstruct the data structure. Otherwise, renew the data structure M (as explained in the
deletion operation).

Query Operation Given Two Nodes s and t: Let DOTZ,H(x, y) be the distance estimate
returned by the Thprup-Zwick query algorithm on x and y, if either x /∈ V (H) or y /∈ V (H)
then we just set DOTZ,H(x, y) =∞.

Return the minimum distance between Dec(s, t) and the minimum

min{µi1DO
i1
RZ(s, pi1j1

(s)) +DOTZ,H(pi1j1
(s), pi2j2

(s)) + µi2DO
i2
RZ(t, pi2j2

(t)) |

1 ≤ j1, j2 ≤ k − 1, 1 ≤ i1, i2 ≤ ρ}.

Analysis: We now turn to the analysis. The key lemma that we present next, bounds the
stretch of our dynamic distance oracle.

I Lemma 10. Consider two nodes s and t, the distance ˆdist(s, t) returned by the query
algorithm satisfies, dist(s, t,G) ≤ ˆdist(s, t) ≤ 2O(kρ)dist(s, t,G).

Proof. By the same analysis as in Lemma 8 we can show that all edges e = (w, v) ∈ E(H),
satisfy, ω(w, v,H) ≥ dist(w, v,G) (where ω(x, y,H ′) for nodes x, y and subgraphs H ′ is
the weight of the edge (x, y) in H ′). Similarly, µi1DO

i1
RZ(s, pi1j1

(s)) ≥ dist(s, pi1j1
(s)) and

µi2DO
i2
RZ(t, pi2j2

(t)) ≥ dist(t, pi2j2
(t)) for every 1 ≤ j1, j2 ≤ k − 1, 1 ≤ i1, i2 ≤ ρ. It thus easily

follows that ˆdist(s, t) ≥ dist(s, t,G). It remains to prove that ˆdist(s, t) ≤ 2O(kρ)dist(s, t,G).
We consider two cases. First suppose that the shortest path P (s, t,G) does not contain

any edge in U . Note that in this case dist(s, t,G) = dist(s, t,GD), note also that Dec(s, t) ≤
2O(kρ)dist(s, t,G) and we are done.

The second case is when P (s, t,G) contains at least one edge in U . Let {ei = (xi, yi) |
1 ≤ i ≤ r} be the edges in U that appear in P (s, t), where the edge ei−1 appears before the
edge ei (namely, the edge ei−1 is closer to s in P (s, t) than ei). In addition, assume also
that xi appears before yi in P (s, t) (namely, xi is closer to s in P (s, t,G) than yi) for every
1 ≤ i ≤ r. Note also that dist(yi, xi+1, G) = dist(yi, xi+1, GD).

Let ` be the first index such that DO`RZ returns an estimate of dist(yi, xi+1). Recall
that either DO`RZ = dist(yi, p`j1

(yi), G`) + dist(p`j1
(yi), xi+1, G`) for some j1 or DO`RZ =

dist(yi, p`j2
(xi+1), G`) + dist(p`j2

(xi+1), xi+1, G`) for some j2. Assume w.l.o.g. that
DO`RZ(yi, xi+1) = dist(yi, p`j1

(yi), G`) + dist(p`j1
(yi), xi+1, G`) for some j1. Recall that

by the Thorup-Zwick analysis we have p`j1
(yi) ∈ B(xi+1). Thus by construction the edges

(yi, p`j1
(yi)), (p`j1

(yi), xi+1) appear inH, with weights µ`dist(yi, p`j1
(yi), G`) and µ`dist(p`j1

(yi),
xi+1, G`). Thus the graph H contains a path from yi to xi+1 of length µ`dist(yi, p`j1

(yi), G`)+
µidist(p`j1

(yi), xi+1, G`) = µ`DO
`
RZ(yi, xi+1). By the analysis of the decremental algorithm,

we have dist(yi, xi+1, H) ≤ µ`DO
`
RZ(yi, xi+1) ≤ 2O(kρ)dist(yi, xi+1, G). It follows that

dist(x1, yr, H) ≤ 2O(kρ)dist(x1, yr, G).
Similarly, let i1 be the first index such thatDOi1RZ returns an estimate of dist(s, x1). Let j1

be the first index such that pi1j1
(s) ∈ Bi1(x1). Recall that by the analysis of the Thorup-Zwick

we have, dist(s, pi1j1
(s), Gi1) + dist(pi1j1

(s), x1, Gi1) ≤ (4k− 3)dist(s, x1, Gi1). By similar ana-
lysis of Lemma 8 we have µi1DO

i1
RZ(s, x1) = µi1(dist(s, pi1j1

(s), Gi1)+dist(pi1j1
(s), x1, Gi1)) =

µi1(DOi1RZ(s, pi1j1
(s)) + DOi1RZ(pi1j1

(s), x1)) ≤ 2O(kρ)dist(s, x1, G). Note also that the edge
(pi1j1

(s), x1) exists in H of weight µi1DO
i1
RZ(pi1j1

(s), x1).
Similarly, we have indices i2 and j2 such that µi2DO

i2
RZ(yr, t) = µi2(DOi2RZ(t, pi2j2

(t)) +
DOi2RZ(pi2j2

(t), yr)). Note also that the edge (pi2j2
(t), yr) exists in H of weight µi2DO

i2
RZ(pi2j2

(t),
yr).
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It is not hard to verify now that by concatenating all these paths together with the edges
ei = (xi, yi), we have, dist(pi1j1

(s), pi2j2
(t), H) ≤ 2O(kρ)(dist(pi1j1

(s), x1, G) + dist(x1, yr, G) +
dist(yr, pi2j2

(t)). It follows,

DOTZ,H(pi1j1
(s), pi2j2

(t)) ≤ (2k − 1)dist(pi1j1
(s), pi2j2

(t), H)

≤ 2O(kρ)dist(pi1j1
(s), pi2j2

(t), G).

Hence, we get that,
ˆdist(s, t) = min{µi1DO

i1
RZ(s, pi1j1

(s)) +DOTZ,H(pi1j1
(s), pi2j2

(s)) + µi2DO
i2
RZ(t, pi2j2

(t)) |
1 ≤ j1, j2 ≤ k − 1, 1 ≤ i1, i2 ≤ ρ}

≤ µi1DO
i1
RZ(s, pi1j1

(s)) + (2k − 1)dist(pi1j1
(s), pi2j2

(s), H) + µi2DO
i2
RZ(t, pi2j2

(t))

≤ 2O(kρ)dist(s, t,G)

J

The next lemma bounds the update time.

I Lemma 11. The amortized time for a single update is Õ(m1/2 · n2/k).

Proof. The graph H contains Õ(|U | ·n1/k) edges and can be constructed in time Õ(|U | ·n1/k)
given the DORZ data structures. Constructing DOTZ,H on H takes Õ(|U | · n1/k · n1/k).
Recall that after m1/2 updates the data structure is being reconstructed so that |U | ≤ m1/2.
Thus the time to construct DOTZ,H in each update step is Õ(m1/2 · n2/k).

The total update time of constructing the decremental data structure Dec is Õ(mn1/k).
This should be amortized over the m1/2 updates until Dec is being reconstructed again. We
get that the amortized per update for maintaining Dec is Õ(m1/2n1/k). It is not hard to see
now that the amortized update time is Õ(m1/2 · n2/k).

The lemma follows. J

The next lemma bounds the query time.

I Lemma 12. The query time is O((kρ)2).

Proof. Recall that the query algorithm returns the minimum distance between Dec(s, t)
and the minimum

min{µi1DO
i1
RZ(s, pi1j1

(s)) +DOTZ,H(pi1j1
(s), pi2j2

(s)) + µi2DO
i2
RZ(t, pi2j2

(t)) |

1 ≤ j1, j2 ≤ k − 1, 1 ≤ i1, i2 ≤ ρ}.

Computing Dec(s, t) takes O(kρ) time. Computing µi1DO
i1
RZ(s, pi1j1

(s)) for 1 ≤ j1 ≤ k−1
and 1 ≤ i1 ≤ ρ takes O(1) (the algorithm stores DOi1RZ(s, pi1j1

(s)) = dist(s, pi1j1
(s), Gi1)).

Thus computing all DOi1RZ(s, pi1j1
(s)) for 1 ≤ j1 ≤ k − 1 and 1 ≤ i1 ≤ ρ takes O(kρ) time.

Similarly, computing all DOi2RZ(t, pi2j2
(2)) for 1 ≤ j2 ≤ k− 1 and 1 ≤ i2 ≤ ρ takes O(kρ) time.

In addition, Thorup and Zwick query algorithm is O(k). It was shown in [7] how to
reduce the query time to constant (while keeping the rest of the parameters the same). Thus,
computing DOTZ,H(x, y) for two nodes x, y can be done in O(1) time.

It is not hard to see now that finding the minimum takes O(k2ρ2) time. J

By maintaining this data structure for setting k′ = bk/2c we can get update time
Õ(m1/2 · n1/k). This will increase the logarithm of the stretch by only an O(1) factor, and
the query time goes up by O(1). This proves Theorem 1.

APPROX/RANDOM’14
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