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Abstract
We present a core programming language that supports writing well-founded structurally recurs-
ive functions using simultaneous pattern matching on contextual LF objects and contexts. The
main technical tool is a coverage checking algorithm that also generates valid recursive calls.
To establish consistency, we define a call-by-value small-step semantics and prove that every
well-typed program terminates using a reducibility semantics. Based on the presented methodo-
logy we have implemented a totality checker as part of the programming and proof environment
Beluga where it can be used to establish that a total Beluga program corresponds to a proof.
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1 Introduction

Mechanizing formal systems and their proofs play an important role in establishing trust
in formal developments. A key question in this endeavor is how to represent variables and
assumptions to which the logical framework LF [8], a dependently typed lambda-calculus,
provides an elegant and simple answer: both can be represented uniformly using LF’s function
space, modelling binders in the object language using binders in LF. This kind of encoding is
typically referred to as higher-order abstract syntax (HOAS) and provides a general uniform
treatment of syntax, rules and proofs.

While the elegance of higher-order abstract syntax encodings is widely acknowledged, it
has been challenging to reason inductively about LF specifications and formulate well-founded
recursion principles. HOAS specifications are not inductive in the standard sense. As we
recursively traverse higher-order abstract syntax trees, we extend our context of assumptions,
and our LF object does not remain closed. To tackle this problem, Pientka and collaborators
[11, 4] propose to pair LF objects together with the context in which they are meaningful.
This notion is then internalized as a contextual type [Ψ.A] which is inhabited by terms M
of type A in the context Ψ [9]. Contextual objects are then embedded into a computation
language which supports general recursion and pattern matching on contexts and contextual
objects. Beluga, a programming environment based on these ideas [13], facilitates the use
of HOAS for non-trivial applications such as normalization-by-evaluation [4] and a type-
preserving compiler including closure conversion and hoisting [3]. However, nothing in this
work enforces or guarantees that a given program is total.
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274 Well-Founded Recursion over Contextual Objects

In this paper, we develop a core functional language for reasoning inductively about
context and contextual objects. One can think of this core language as the target of a Beluga
program: elaboration may use type reconstruction to infer implicit indices [6] and generate
valid well-founded recursive calls that can be made in the body of the function. Type checking
will guarantee that we are manipulating well-typed objects and, in addition, that a given set
of cases is covering and the given recursive calls are well-founded. To establish consistency,
we define a call-by-value small-step semantics for our core language and prove that every
well-typed program terminates, using Tait’s method of logical relations. Thus, we justify the
interpretation of well-founded recursive programs in our core language as inductive proofs.
Based on our theoretical work, we have implemented a totality checker for Beluga.

Our approach is however more general: our core language can be viewed as a language for
first-order logic proofs by structural induction over a given domain. The domain must only
provide answers to three domain-specific questions: (1) how to unify objects in the domain,
(2) how to split on a domain object and (3) how to justify that a domain object is smaller
according to some measure. The answer to the first and second question allows us to justify
that the given program is covering, while the third allows us to guarantee termination. For
the domain of contextual LF presented in this paper, we rely on higher-order unification [2]
for (1), and our splitting algorithm (2) and subterm ordering (3) builds on previous work
[5, 10]. As a consequence, our work highlights that reasoning about HOAS representations
via contextual types can be easily accommodated in a first-order theory. In fact, it is a
rather straightforward extension of how we reason inductively about simple domains such as
natural numbers or lists.

The remainder of the paper is organized as follows. We first present the general idea
of writing and verifying programs to be total in Sec. 2 and then describe in more detail
the foundation of our core programming language which includes well-founded recursion
principles and simultaneous pattern matching in Sec. 3. The operational semantics together
with basic properties such as type safety is given in Sec. 4. In Sec. 5, we review contextual
LF [4], define a well-founded measure on contextual objects and contexts, and define the
splitting algorithm. Subsequently we describe the generation of valid well-founded recursive
calls generically, and prove normalization (Sec. 7). We conclude with a discussion of related
work, current status and future research directions. Due to space constraints, proofs have
been omitted.

2 General Idea

2.1 Example 1: Equality on Natural Numbers

To explain the basic idea of how we write inductive proofs as recursive programs, we consider
first a very simple example: reasoning about structural equality on natural numbers (see
Listing 1). We encode natural numbers and equality on them in the logical framework LF.

Listing 1 Encoding of an Inductive Proof as a Recursive Function.
nat : type. eq : nat → nat → type.
z : nat. eq_z : eq z z.
s : nat → nat. eq_s : eq M N → eq (s M) (s N).
.
ref : Π M:nat. [eq M M] = Λ M ⇒ rec-case M of
| ref z ⇒ [eq_z]
| M’:nat ; ref M’:[eq M’ M’]. ref (s M’) ⇒ let D = ref M’ in [eq_s M’ M’ D];
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The free variables M and N in the definition of eq_s are implicitly quantified at the outside.
Program ref proves reflexivity of eq: for all M:nat we can derive eq M M. Following type-
theoretic notation, we write Π for universal quantification; we embed LF objects which denote
base predicates via [ ]. Abstraction over LF object M is written Λ M ⇒ in our language.
Using rec-case, we prove inductively that for all M there is a derivation for [eq M M]. There
are two cases to consider: ref z describes the base case where M is zero and the goal refines to
[eq z z]. In this case, the proof is simply [eq_z]. In the step case, written as ref (s M’), we
also list explicitly the other assumptions: the type of M’ and the induction hypothesis written
as ref M’:[eq M’ M’]. To establish that [eq (s M’) (s M’)], we first obtain a derivation D
of eq M’ M’ by induction hypothesis and then extend it to a derivation [eq_s M’ M’ D] of
[eq (s M’) (s M’)]. We highlight in green redundant information which can be inferred
automatically. In the pattern, it is the typing (here: M’:nat) of the pattern variables [12, 6]
and the listing of the induction hypotheses. The dot “.” separates these assumptions from
the main pattern. For clarity, we choose to write the pattern as a simultaneous pattern match
and make the name of the function explicit; in practice, we only write the main pattern
which is left in black, and all other arguments are inferred.

2.2 Example 2: Intrinsically Typed Terms

Next, we encode intrinsically typed λ-terms. This example does exploit the power of LF.

tp : type. tm : tp → type.
bool : tp. lam : (tm A → tm B) → tm (arr A B).
arr : tp → tp → tp. app : tm (arr A B) → tm A → tm B.

We define base types such as bool and function types, written as arr T S, and represent
simply-typed lambda-terms using the constructors lam and app. In particular, we model the
binding in the lambda-calculus (our object language) via HOAS, using the LF function space.
For example, the identity function is represented as lam λx.x and function composition as
lam λg. lam λf. lam λx. app (f (app g x)). As we traverse λ-abstractions we record the
variables we are encountering in a context φ : cxt. Its shape is given by a schema declaration
schema ctx = tm A stating that it contains only variable bindings of type tm A for some A.
To reason about typing derivations, we package the term (or type) together with its context,
forming a contextual object (or contextual type, resp.). For example, we write φ ` tm A for
an object of type tm A in the context φ. Such contextual types are embedded into logical
statements as [φ ` tm A]. When the context φ is empty, we may drop the turnstile and
simply write [tm A].

Counting constructors: Induction on (contextual) LF object

As an example, we consider counting constructors in a term. This corresponds to defining
the overall size of a typing derivation. We recursively analyze terms M of type tm A in the
context φ. In the variable case, written as count φ B (φ ` p ... ), we simply return zero. The
pattern variable p stands for a variable from the context φ. We explicitly associate it with the
identity substitution, written as ... , to use p which has declared type φ ` tm B in the context
φ. Not writing the identity substitution would enforce that the pattern variable does not
depend on φ and forces the type of p to be [` tm B]. While it is certainly legitimate to use p
in the context φ, since the empty substitution maps variables from the empty context to φ,
the type of p is empty; since the context is empty, there are no variables of the type [` tm B].
Hence writing (φ ` p) would describe an empty pattern. In contrast, types described by
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276 Well-Founded Recursion over Contextual Objects

Listing 2 Counting constructors.
count: Π φ:ctx. Π A:tp. Π M:(φ ` tm A) . [ nat] =
Λ φ ⇒ Λ A ⇒ Λ M ⇒ rec-case M of
| B:tp, p:(φ ` tm B); . count φ B (φ ` p ... ) ⇒ [ z ] % Variable Case
| B:tp,C:tp,M:(φ,x:tm B ` tm C) ; % Abstraction Case

count (φ,x:tm B) C (φ,x:tm B ` M ... x) : [nat]. % IH
count φ (arr B C) (φ ` lam B C λx. M ... x) ⇒
let X = count (φ,x:tm B) C (φ,x:tm B ` M ... x) in [ s X ]

| B:tp,C:tp,M:(φ ` tm (arr B C)), N:(φ ` tm B) ; % Application Case
count φ (arr B C) (φ ` M ... ):[nat], % IH1
count φ B (φ ` N ... ):[nat]. % IH2
count φ C (φ ` app B C (M ... ) (N ... )) ⇒
let X = count φ (arr B C) (φ ` M ... ) in
let Y = count φ B (φ ` N ... ) in add (s X) Y

Listing 3 Computing length of a context.
length = Π φ:ctx. [nat] =
Λ φ ⇒ rec-case φ of
| . count ∅ ⇒ [ z ]
| ψ:ctx, A:tp ; count ψ : [nat] . count (ψ, x:tm A) ⇒ let X = count ψ in [ s X ]

meta-variables A or B, for example, are always closed and can be instantiated with any closed
object of type tp and we do not associate them with an identity substitution.

In the case for lambda-abstractions, count φ (arr B C) (φ ` lam λx.M ... x), we not only
list the type of each of the variables occurring in the pattern, but also the induction hypothesis,
count (φ,x:tm B) C (φ,x:tm B ` M ... x):[nat]. Although the context grows, the term itself
is smaller. In the body of the case, we use the induction hypothesis to determine the size X
of M ... x in the context φ, x:tm B and then increment it.

The case for application, count φ C (φ ` app B C (M ... )(N ... )), is similar. We again list
all the types of variables occurring in the pattern as well as the two induction hypotheses. In
the body, we determine the size X of (φ `M ... ) and the size Y of (φ `N ... ) and then add them.

Computing the length of a context: Induction on the context

As we have the power to abstract and manipulate contexts as first-class objects, we also can
reason inductively about them. Contexts are similar to lists and we distinguish between the
empty context, written here as ∅, and a context consisting of at least one element, written as
ψ, x:tm A. In the latter case, we can appeal to the induction hypothesis on ψ (see Listing 3).

3 Core language with well-founded recursion

In this section, we present the core of Beluga’s computational language which allows the
manipulation of contextual LF objects by means of higher-order functions and primitive
recursion. In our presentation of the computation language we keep however our domain
abstract simply referring to U , the type of a domain object, and C, the object of a given
domain. In fact, our computational language is parametric in the actual domain. To
guarantee totality of a program, the domain needs to provide answers for two main questions:
1) how to split on a domain type U and 2) how to determine whether a domain object C is
smaller according to some domain-specific measure. We also need to know how to unify two
terms and determine when two terms in our domain are equal. In terms of proof-theoretical
strength, the language is comparable to Gödel’s T or Heyting Arithmetic where the objects
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of study are natural numbers. However in our case, U will stand for a (contextual) LF type
and C describes a (contextual) LF object.

Types I, τ ::= [U ] | τ1 → τ2 | ΠX:U.τ
Expressions e ::= y | [C] | fn y:τ ⇒ e | e1 e2 | ΛX:U ⇒ e | e C

| let X = e1 in e2 | rec−caseIC of
−→
b

Branches b ::= ∆;−→r . r ⇒ e

Assumptions r ::= f
−→
C C

Contexts Γ ::= · | Γ, y:τ | Γ, r : τ
Meta Context ∆ ::= · | ∆, X:U

We distinguish between computation variables, simply referred to as variables and written
using lower-case letter y; variables that are bound by Π-types and Λ-abstraction are referred
to as meta-variables and written using upper-case letter X. Meta-variables occur inside a
domain object. For example we saw earlier the object (ψ ` app B C (M ... )(N ... )). Here, ψ, B,
C, M, and N are referred to as meta-variables.

There are three forms of computation-level types τ . The base type [U ] is introduced
by wrapping a contextual object C inside a box; an object of type [U ] is eliminated by
a let-expression effectively unboxing a domain object. The non-dependent function space
τ1 → τ2 is introduced by function abstraction fn y:τ1 ⇒ e and eliminated by application e1 e2;
finally, the dependent function type ΠX:U.τ which corresponds to universal quantification in
predicate logic is introduced by abstraction ΛX:U ⇒ e over meta-variables X and eliminated
by application to a meta objects C written as eC. The type annotations on both abstractions
ensure that every expression has a unique type. Note that we can index computation-level
types τ only by meta objects (but this includes LF contexts!), not by arbitrary computation-
level objects. Thus, the resulting logic is just first-order, although the proofs we can write
correspond to higher-order functional programs manipulating HOAS objects.

Our language supports pattern matching on a meta-object C using rec−case-expressions.
Note that one cannot match on a computational object e directly; instead one can bind an
expression of type [U ] to a meta variable X using let and then match on X. We annotate
the recursor rec−case with the type of the inductive invariant Π∆0.τ0 which the recursion
satisfies. Since we are working in a dependently-typed setting, it is not sufficient to simply
state the type U of the scrutinee. Instead, we generalize over the index variables occurring
in the scrutinee, since they may be refined during pattern matching. Hence, ∆0 is ∆1, X0:U0
where ∆1 exactly describes the free meta-variables occurring in U0. The intention is that
we induct on objects of type U0 which may depend on ∆1. ∆0 must therefore contain at
least one declaration. We also give the return type τ0 of the recursor, since it might also
depend on ∆0 and might be refined during pattern matching. This is analogous to Coq’s
match_as_in_return_with_end construct.

One might ask whether this form of inductive invariant is too restrictive, since it seems
not to capture, e.g., Π∆0.(τ → ΠX:U0.τ

′). While allowing more general invariants does
not pose any fundamental issues, we simply note here that the above type is isomorphic to
Π(∆0, X:U0). τ → τ ′ which is treated by our calculus. Forcing all quantifiers at the outside
simplifies our theoretical development; however, our implementation is more flexible.

A branch bi is expressed as ∆i;−→ri . ri0 ⇒ ei. As shown in the examples, we explicitly list
all pattern variables (i.e. meta-variables) occurring in the pattern in ∆i. In practice, they
often can be inferred (see for example [12]). We also list all valid well-founded recursive calls
−→ri , i.e. rik, . . . , ri1, for pattern ri0. In practice, they can be also derived dynamically while
we check that a given pattern ri0 is covering and we give an algorithm in Section 6.
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278 Well-Founded Recursion over Contextual Objects

∆; Γ ` e : τ : Computation e has type τ
Γ(y) = τ

∆; Γ ` y : τ

Γ(r) = τ r = r′

∆; Γ ` r′ : τ

∆ ` C : U
∆; Γ ` [C] : [U ]

∆; Γ ` e1 : τ2 → τ ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ
∆; Γ ` e : ΠX:U.τ ∆ ` C : U

∆; Γ ` e C : [[C/X]]τ

∆; Γ, y:τ1 ` e : τ2

∆; Γ ` fn y:τ1 ⇒ e : τ1 → τ2

∆, X:U ; Γ ` e : τ
∆; Γ ` ΛX:U ⇒ e : ΠX:U.τ

∆; Γ ` e1 : [U ] ∆, X:U ; Γ ` e2 : τ
∆; Γ ` let X = e1 in e2 : τ

I = Π∆1.ΠX0:U0.τ0 ∆ ` C : [[θ]]U0 ∆ ` θ : ∆1 bi : I (for all i)
−→
b covers I

∆; Γ ` rec−caseI C of
−→
b : [[θ, C/X]]τ0

b : I : Branch b satisfies the invariant I

for all 0 ≤ j ≤ k . ∆ `I rj : τj ∆ ; rk:τk, . . . , r1:τ1 ` e : τ0

(∆; rk . . . r1 . r0 ⇒ e) : I

∆ `I r : τ ′ and ∆ ` −→C : I > τ ′ : Assumption r/pattern spine −→C has type τ ′ given I

∆ ` −→C : I > τ ′

∆ `I f
−→
C : τ ′

∆ ` C : U ∆ ` −→C : [[C/X]]τ > τ ′

∆ ` C −→C : ΠX:U.τ > τ ′
∆ ` C : U

∆ ` C : ΠY :U.τ > [[C/Y ]]τ

Figure 1 Type system for dependently-typed functional computation language.

The identifier f in assumptions r denotes the local function that is essentially introduced
by rec−case; this notation is inspired by primitive recursion in Tutch [1]. Currently, it just
improves the readability of call patterns; however, it is vital for extensions to nested recursion.

3.1 Computation-level Type System
In the typing judgement (Fig. 1), we distinguish between the context ∆ for meta-variables
from our index domain and the context Γ which includes declarations of computation-level
variables. We will tacitly rename bound variables, and maintain that contexts declare no
variable more than once. Moreover, we require the usual conditions on bound variables. For
example in the rule for Λ-abstraction the meta-variable X must be new and cannot already
occur in the context ∆. This can always be achieved via α-renaming. Similarly, in the rule
for function abstraction, the variable y must be new and cannot already occur in Γ. We have
two variable rules to look up a computation-level variable y and an induction hypothesis r.
To verify that the induction hypothesis r′ has type τ and its use is valid, we simply check
whether there exists r : τ in Γ where r = r′. For now it suffices to think of = as syntactically
equivalent.

The most interesting rule is the one for recursion: given the invariant I = Π∆1.ΠX:U0.τ0
the expression rec−caseI C of ~b is well-typed under three conditions: First, the meta-object
C we are recursing over has some type U and moreover, U is an instance of the type specified
in the invariant, i.e. ∆0 = ∆1, X0:U0 and U = [[θ]]U0 for some meta-substitution θ with
domain ∆1. Secondly, all branches bi are well-typed with respect to the given invariant
Π∆0.τ0. Finally, ~b must cover the meta-context ∆0, i.e., it must be a complete, non-redundant
set of patterns covering ∆0, and all recursive calls are well-founded. Since the coverage check
is domain specific, we leave it abstract for now and return to it when we consider (contextual)
LF as one possible domain (see Sec. 5).

Note that we drop the meta-context ∆ and the computation context Γ when we proceed
to check that all branches satisfy the specified invariant. Dropping ∆ is fine, since we require
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(fnx:τ ⇒ e) v −→ [v/x]e (ΛX:U ⇒ e) C −→ [[C/X]]e let X = [C] in e −→ [[C/X]]e

∃unique (∆.rk, . . . , r1.r0 ⇒ e) ∈ ~b where rj = f
−→
Cj Cj0 such that ` C .= C00/θ

rec−caseI C of ~b −→ [[θ]][ (rec−caseI Ck0 of ~b)/rk, . . . , (rec−caseI C10 of ~b)/r1 ]e

Figure 2 Small-step semantics e −→ e′.

the invariant Π∆0.τ0 to be closed. One might object to dropping Γ; indeed this could be
generalized to keeping those assumptions from Γ which do not depend on ∆ and generalizing
the allowed type of inductive invariant (see our earlier remark).

For a branch b = ∆;~r.r0 ⇒ e to be well-typed with respect to a given invariant I, we
check the call pattern r0 and each recursive call rj against the invariant and synthesize target
types τj (j ≥ 0). We then continue checking the body e against τ0, i.e., the target type of
the call pattern r0, populating the computation context with the recursive calls ~r at their
types ~τ . A pattern / recursive call rj = f

−→
Cj intuitively corresponds to the given inductive

invariant I = Π∆1.ΠX0:U0.τ0, if the spine −→C matches the specified types in ∆1, X0:U0 and
it has intuitively the type [[Cjn/Xn, . . . , Cj0/X0]]τ0 which we denote with τ ′j .

More generally, we write ∆ ` θ : ∆0 for a well-typed simultaneous substitution where
∆0 is the domain and ∆ is the range of the substitution. It can be inductively defined (see
below) and the standard substitution lemmas hold (see for example [4]).

∆ ` · : ·
∆ ` θ : ∆0 ∆ ` C : [[θ]]U

∆ ` θ, C/X : ∆0, X : U

4 Operational Semantics

Fig. 2 specifies the call-by-value (cbv) one-step reduction relation e −→ e′; we have omitted
the usual congruence rules for cbv. Reduction is deterministic and does not get stuck on closed
terms, due to completeness of pattern matching in rec−case. To reduce (rec−caseI C of ~b)
we find the branch (∆.rk, . . . , r1.r0 ⇒ e) ∈ ~b such that the principal argument C00 of its
clause head r0 = f

−→
C0 C00 matches C under meta substitution θ. The reduct is the body

e under θ where we additionally replace each place holder rj of a recursive call by the
actual recursive invocation (rec−caseτ [[θ]]Cj0 of ~b). The object Cj0 in fact just denotes the
meta-variable on which we are recursing. We also apply θ to the body e. In the rule, we
have lifted out θ. Values v in our language are boxed meta objects [C], functions fnx:τ ⇒ e,
and ΛX:U.e.

I Theorem 1 (Subject reduction). If ·; · ` e : τ and e −→ e′, then ·; · ` e′ : τ .

Proof. By induction on e −→ e′. J

I Theorem 2 (Progress). If ·; · ` e : τ then either e is a value or e −→ e′.

Proof. By induction on ·; · ` e : τ . J

5 Contextual LF: Background, Measure, Splitting

If we choose as our domain natural numbers or lists, it may be obvious how to define splitting
together with a measure that describes when an object is smaller. Our interest however is to

TLCA’15
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use the contextual logical framework LF [9] as a general domain language. Contextual LF
extends the logical framework LF [8] by packaging an LF objects M of type A together with
the context Ψ in which it is meaningful. This allows us to represent rich syntactic structures
such as open terms and derivation trees that depend on hypotheses. The core language
introduced in Sec. 3 then allows us to implement well-founded recursive programs over these
rich abstract syntax trees that correspond to proofs by structural induction.

5.1 Contextual LF
We briefly review contextual LF here. As usual we consider only objects in η-long β-normal
form, since these are the only meaningful objects in LF. Further, we concentrate on charac-
terizing well-typed terms; spelling out kinds and kinding rules for types is straightforward.

LF Base Types P,Q ::= c · S
LF Types A,B ::= P | Πx:A.B
Heads H ::= c | x | p[σ]
Neutral Terms R ::= H · S | u[σ]
Spines S ::= nil |M S

Normal Terms M,N ::= R | λx.M
Substitutions σ ::= · | idψ | σ,M | σ;H
Variable Substitutions π ::= · | idψ | σ;x
LF Contexts Ψ,Φ ::= · | ψ | Ψ, x:A

Normal terms are either lambda-abstractions or neutral terms which are defined using a
spine representation to give us direct access to the head of a neutral term. Normal objects
may contain ordinary bound variables x which are used to represent object-level binders and
are bound by λ-abstraction or in a context Ψ. Contextual LF extends LF by allowing two
kinds of contextual variables: the meta-variable u has type (Ψ.P ) and stands for a general
LF object that has type P and may use the variables declared in Ψ; the parameter variable
p has type #(Ψ.A) and stands for an LF variable object of type A in the context Ψ.

Contextual variables are associated with a postponed substitution σ which is applied as
soon as we instantiate it. More precisely, a meta-variable u stands for a contextual object
Ψ̂.R where Ψ̂ describes the ordinary bound variables which may occur in R. This allows us
to rename the free variables occurring in R when necessary. The parameter variable p stands
for a contextual object Ψ̂.H where H must be either an ordinary bound variable from Ψ̂ or
another parameter variable.

In the simultaneous substitutions σ, we do not make the domain explicit. Rather we
think of a substitution together with its domain Ψ and the i-th element in σ corresponds to
the i-th declaration in Ψ. We have two different ways of building a substitution entry: either
by using a normal term M or a variable x. Note that a variable x is only a normal term M

if it is of base type. However, as we push a substitution σ through a λ-abstraction λx.M , we
need to extend σ with x. The resulting substitution σ, x may not be well-formed, since x
may not be of base type and in fact we do not know its type. Hence, we allow substitutions
not only to be extended with normal terms M but also with variables x; in the latter case we
write σ;x. Expression idψ denotes the identity substitution with domain ψ while · describes
the empty substitution.

Application of a substitution σ to an LF normal form B, written as [σ]B, is hereditary
[20] and produces in turn a normal form by removing generated redexes on the fly, possibly
triggering further hereditary substitutions.
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∆; Ψ ` H ⇒ A Synthesize type A for head H
Ψ(x) = A

∆; Ψ ` x⇒ A

Σ(c) = A

∆; Ψ ` c⇒ A

∆(p) = #Φ.A ∆; Ψ ` σ ⇐ Φ
∆; Ψ ` p[σ]⇒ [σ]A

∆; Ψ ` S : A > P Check spine S against A with target P

∆; Ψ ` nil : P > P

∆; Ψ `M ⇐ A ∆; Ψ ` S : [M/x]B > P

∆; Ψ `M S : Πx:A.B > P

∆; Ψ `M ⇐ A Check normal object M against type A

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ A→ B

∆(u) = Φ.P ∆; Ψ ` σ ⇐ Φ Q = [σ]P
∆; Ψ ` u[σ]⇐ Q

∆; Ψ ` H ⇒ A ∆; Ψ ` S : A > P

∆; Ψ ` H · S ⇐ P

∆; Ψ ` σ ⇐ Φ Check substitution σ against domain Φ

∆; Ψ ` · ⇐ · ∆; (ψ,Ψ0) ` idψ ⇐ ψ

∆; Ψ ` σ ⇐ Φ ∆; Ψ `M ⇐ [σ]A
∆; Ψ ` (σ,M)⇐ (Φ, x:A)

∆; Ψ ` σ ⇐ Φ ∆; Ψ ` H ⇒ B B = [σ]A
∆; Ψ ` (σ;H)⇐ (Φ, x:A)

Figure 3 Bi-directional typing for contextual LF.

An LF context Ψ is either a list of bound variable declarations −−−→x : A or a context variable
ψ followed by such a list. We write Ψ0 for contexts that do not start with a context variable.
We write Ψ,Φ0 or sometimes Ψ,Φ for the extension of context Ψ by the variable declarations
of Φ0 or Φ, resp. The operation id(Ψ) that generates an identity substitution for a given
context Ψ is defined inductively as follows: id(·) = ·, id(ψ) = idψ, and id(Ψ, x:A) = id(Ψ);x.

We summarize the bi-directional type system for contextual LF in Fig. 3. LF objects may
depend on variables declared in the context Ψ and a fixed meta-context ∆ which contains
contextual variables such as meta-variables u, parameter variables p, and context variables
ψ. All typing judgments have access to both contexts and a fixed well-typed signature Σ
where we store constants c together with their types and kinds.

5.2 Meta-level Terms and Typing Rules
We lift contextual LF objects to meta-objects to have a uniform definition of all meta-objects.
We also define context schemas G that classify contexts.

Context Schemas G ::= ∃Φ0.B | G+ ∃Φ0.B

Meta Types U, V ::= Ψ.P | G | #Ψ.A Meta Objects C,D ::= Ψ̂.R | Ψ

A consequence of the uniform treatment of meta-terms is that the design of the computation
language is modular and parametrized over meta-terms and meta-types. This has two main
advantages: First, we can in principle easily extend meta-terms and meta-types without
affecting the computation language; second, it will be key to a modular, clean design.

The above definition gives rise to a compact treatment of meta-context ∆. A meta-
variable X can denote a meta-variable u, a parameter variable p, or a context variable ψ.
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Meta substitution C/X can represent Ψ̂.R/u, or Ψ/ψ, or Ψ̂.x/p, or Ψ̂.p′[π]/p (where π is
a variable substitution so that p[π] always produces a variable). A meta declaration X:U
can stand for u : Ψ.P , or p : #Ψ.A, or ψ : G. Intuitively, as soon as we replace u with Ψ̂.R
in u[σ], we apply the substitution σ to R hereditarily. The simultaneous meta-substitution,
written as [[θ]], is a straightforward extension of the single substitution. For a full definition
of meta-substitutions, see [9, 4]. We summarize the typing rules for meta-objects below.

∆ ` C : U Check meta-object C against meta-type U ∆; Ψ ` R⇐ P

∆ ` Ψ̂.R : Ψ.P

∆ ` · : G
∆(ψ) = G

∆ ` ψ : G
∆ ` Ψ : G ∃Φ0.B ∈ G ∆; Ψ ` σ ⇐ Φ0 [σ]B = B′

∆ ` Ψ, x:B′ : G

We write Ψ̂ for a list of variables obtained by erasing the types from the context Ψ. We
have omitted the rules for parameter types #Ψ.A because they are not important for the
further development. Intuitively an object R has type #Ψ.A if R is either a concrete variable
x of type A in the context Ψ or a parameter variable p of type A in the context Ψ. This can
be generalized to account for re-ordering of variables allowing the parameter variable p to
have some type A′ in the context Ψ′ s.t. there exists a permutation substitution π on the
variables such that Ψ ` π : Ψ′ and A = [π]A′.

5.3 Well-founded Structural Subterm Order
There are two key ingredients to guarantee that a given function is total: we need to ensure
that all the recursive calls are on smaller arguments according to a well-founded order and
the function covers all possible cases. We define here a well-founded structural subterm order
on contexts and contextual objects similar to the subterm relations for LF objects[10]. For
simplicity, we only consider here non-mutual recursive type families; those can be incorporated
using the notion of subordination [19].

We first define an ordering on contexts: Ψ � Φ , read as “context Ψ is a subcontext of
Φ”, shall hold if all declarations of Ψ are also present in the context Φ, i.e., Ψ ⊆ Φ. The
strict relation Ψ ≺ Φ , read as “context Ψ is strictly smaller than context Φ” holds if Ψ � Φ
but Ψ is strictly shorter than Φ.

Further, we define three relations on contextual objects Ψ̂.M : a strict subterm relation
≺, an equivalence relation ≡, and an auxiliary relation �.

Ψ̂ ⊆ Φ̂ or Φ̂ ⊆ Ψ̂ π is a variable subst. s.t. M = [π]N
Ψ̂.M ≡ Φ̂.N

Ψ̂.M � Φ̂.Ni for some 1 ≤ i ≤ n
Ψ̂.M ≺ Φ̂. h ·N1 . . . Nn nil

Ψ̂.M ≺ Φ̂.N
Ψ̂.M � Φ̂.N

Ψ̂.M ≡ Φ̂.N
Ψ̂.M � Φ̂.N

Ψ̂.M � Φ̂, x.N
Ψ̂.M � Φ̂.λx.N

Ψ̂.M is a strict subterm of Φ̂.N if M is a proper subterm of N modulo α-renaming and
weakening. Two terms Ψ̂.M and Φ̂.N are structurally equivalent, if they describe the same
term modulo α-renaming and possible weakening. To allow mutual recursive definitions and
richer subterm relationships, we can incorporate subordination information and generalize
the variable substitution π (see for example [10] for such a generalization). Using the defined
subterm order, we can easily verify that the recursive calls in the examples are structurally
smaller.

The given subterm relation is well-founded. We define the measure ||Ψ|| of a ground
context Ψ0 or its erasure Ψ̂0 as its length |Ψ|. The measure ||Ψ̂.M || of a contextual object
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Ψ̂.M , is the measure ||M || of M . The latter is defined inductively by:

||h ·M1 . . .Mn nil|| = 1 + max(||M1||, . . . , ||Mn||)
||λx.M || = ||M ||

I Theorem 3 (Order on contextual objects is well-founded ). Let θ be a grounding meta-
substitution.
1. If C ≺ C ′ then ||[[θ]]C|| < ||[[θ]]C ′||.
2. If C ≡ C ′ then ||[[θ]]C|| = ||[[θ]]C ′||.
3. If C � C ′ then ||[[θ]]C|| ≤ ||[[θ]]C ′||.

5.4 Case Splitting
Our language allows pattern matching and recursion over contextual objects. For well-formed
recursors (rec−caseI C of ~b) with invariant I = Π∆.ΠX:U.τ , branches ~b need to cover all
different cases for the argument C of type U . We only take the shape of U into account
and generate the unique complete set U∆`U of non-overlapping shallow patterns by splitting
meta-variable X of type U .

If U = Ψ.P is a base type, then intuitively the set U∆`U contains all neutral terms
R = H · S where H is a constructor c, a concrete variable x from Ψ or a parameter variable
p[idψ] denoting a variable from the context variable ψ, and S is a most general spine s.t. the
type of R is an instance of P in the context Ψ. We note that when considering only closed
terms it suffices to consider only terms with H = c. However, when considering terms with
respect to a context Ψ, we must generate additional cases covering the scenario where H is a
variable – either a concrete variable x if x:A is in Ψ or a parameter variable if the context is
described abstractly using a context variable ψ.

If U denotes a context schema G, we generate all shallow context patterns of type G.
This includes the empty context and a context extended with a declaration formed by Ψ, x:A.

From U∆`U we generate the complete minimal set C = {∆i; rik, . . . , ri1.ri0 | 1 ≤ i ≤ n} of
possible, non-overlapping cases where the i-th branch shall have the well-founded recursive
calls rik, . . . , ri1 for the case ri0. For the given branches ~b to be covering, each element in C
must correspond to one branch bi.

Splitting on a Contextual Type

Following [5, 17], the patterns R of type Ψ.P are computed by brute force: We first synthesize
a set H∆;Ψ of all possible heads together with their type: constants c ∈ Σ, variables x ∈ Ψ,
and parameter variables if Ψ starts with a context variable ψ.

H∆;Ψ = {(∆; Ψ ` c : A) | (c:A) ∈ Σ}

∪ {(∆; Ψ ` x : A) | (x:A) ∈ Ψ}

∪ {(∆,−−→X:U, p:#(ψ.B′); Ψ ` p[idψ] : B′) | Ψ = ψ,Ψ0 and ψ:G ∈ ∆ and ∃−−→x:A.B∈G
and genMV (ψ.Ai) = (Xi:Ui, Mi) for all i, and B′ = [

−−→
M/x]B }

See Fig. 4. Using a head H of type A from the set H∆;Ψ, we then generate, if possible,
the most general pattern H · S whose target type is unifiable with P in the context Ψ. We
describe unification using the judgment ∆; Ψ ` Q + P / (∆′ , θ) . If unification succeeds
then [[θ]]Q = [[θ]]P and ∆′ ` θ : ∆.
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genMV (Ψ.A) = (X:U,M) Generation of a lowered meta variable

genMV (Ψ.Π−−→x:A.P ) = (u : (Ψ,−−→x:A.P ), λ~x.u[id(Ψ,−−→x:A)]) for a fresh meta variable u

∆; Ψ ` R : A⇐ P/(∆′, θ, R0) Extending R:A to most general normal term R0 : [[θ]]P .

∆; Ψ ` Q + P / (∆0, θ)
∆; Ψ ` R : Q⇐ P / (∆0 , θ , [[θ]]R)

genMV (Ψ.A) = (X:U, M) ∆, X:U ; Ψ ` R M : [M/x]B ⇐ P / (∆0, θ, R
′)

∆; Ψ ` R : Πx:A.B ⇐ P / (∆0, θ, R
′)

Figure 4 Generation of most general normal objects and call patterns.

∆; Ψ ` R : A⇐ P / (∆′, θ, R0) describes the generation of a normal pattern where all
the elements on the left side of / are inputs and the right side is the output, which satisfies
∆′ ` θ : ∆ and ∆′; [[θ]]Ψ ` R⇒ [[θ]]A and ∆′; [[θ]]Ψ ` R0 ⇐ [[θ]]P . To generate a normal term
R0 of the expected base type, we start with head H : A. As we recursively analyze A, we
generate all the arguments H is applied to until we reach an atomic type Q. If Q unifies with
the expected type P , then generating a most general neutral term with head H succeeds.

U∆`Ψ.P = { (∆′′ ` Φ̂.R : Φ.Q) | (∆′; Ψ ` H : A) ∈ H∆;Ψ and
∆′; Ψ ` H : A⇐ P / (∆′′, θ, R) and Φ = [[θ]]Ψ and Q = [[θ]]P}

Splitting on a Context Schema

Spitting a context variable of schema G generates the empty context and the non-empty
contexts (φ, x:B′) for each possible form of context entry ∃Φ0.B ∈ G.

U∆`G = { (∆ ` · : G) }
∪ { (∆, φ:G,−−→X:U ` (φ, x:[

−−→
M/x]B) : G) | φ a fresh context variable and

for any ∃−−−→x : A.B ∈ G . genMV (ψ.Ai) = (Xi:Ui,Mi) for all i}

I Theorem 4 (Splitting on meta-types). The set U∆`U of meta-objects generated is non-
redundant and complete.

Proof. U∆`G is obviously non-redundant. U∆`Ψ.P is non-redundant since all generated
neutral terms have distinct heads. Completeness is proven by cases. J

6 Generation of Call Patterns and Coverage

Next, we explain the generation of call patterns, i.e. well-founded recursive calls as well as
the actual call pattern being considered.

I Definition 5 (Generation of call patterns). Given the invariant I = Π(∆1, X0:U0).τ0 where
∆1 = Xn:Un, . . . , X1:U1, the set C of call patterns (∆i ; rik:τik, . . . , ri1:τi1 . ri0) is generated
as follows:

For each meta-object ∆i ` Ci0 : Vi in U∆0`U0 , we generate using unification, if possible,
a call pattern ri0 = f Cin . . . Ci1 Ci0 s.t. τi0 = [[Cin/Xn, . . . , Ci1/X1, Ci0/X0]]τ0 and
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∆i ` ri0 : τi0. This may fail if Vi is not an instance of the scrutinee type U0; then, the
case Ci0 is impossible.
Further, for all 1 ≤ j ≤ k, ∆i = Yk:Vk, . . . , Y1:V1, we generate a recursive call
rij = f Cjn . . . Cj1 Yj s.t. τij = [[Cjn/Xn, . . . , Cj1/X1, Yj/X0]]τ0 and ∆i ` rij : τij , if
Yj ≺ Ci0. This may also fail, if Vi is not an instance with U0; in this case Vi does not
give rise to recursive call.

I Theorem 6 (Pattern generation). The set C of call patterns generated is non-redundant
and complete and the recursive calls are well-founded.

Proof. Using Theorem 4 and the properties of unification. J

I Definition 7 (Coverage). We say ~b covers I iff for every ∆i ; −−→ri:τi . ri0 ∈ C where C is
the set of call patterns given I, we have one corresponding ∆i ; −−→ri:τi . ri0 ⇒ ei ∈ ~b and vice
versa.

7 Termination

We now prove that every well-typed closed program e terminates (halts) by a standard
reducibility argument; closely related is [21]. The set Rτ of reducible closed programs
·; · ` e : τ is defined by induction on the size of τ .

Contextual Type R[U ] = {e | ·; · ` e : [U ] and e halts}
Function Type Rτ ′→τ = {e | ·; · ` e : τ ′ → τ and e halts and ∀e′ ∈ Rτ ′ . e e′ ∈ Rτ}
Dependent Type RΠX:U.τ = {e | ·; · ` e : ΠX:U.τ and

e halts and ∀Cs.t.· ` C : U. e C ∈ R[[C/X]]τ}
Context RΓ = {η | ·; · ` η : Γ and η(x) ∈ Rτ for all (x:τ) ∈ Γ}

For the size of τ all meta types U shall be disregarded, thus, the size is invariant under
meta substitution C/X. We also note that since reduction e −→ e′ is deterministic, e halts
if and only if e′ halts.

I Lemma 8 (Expansion closure).
1. If ·; · ` e : τ and e −→ e′ and e′ ∈ Rτ , then e ∈ Rτ .
2. If ·; · ` e : τ and e −→∗ e′ and e′ ∈ Rτ , then e ∈ Rτ .

Proof. The first statement, by induction on the size of type τ . The second statement,
inductively on −→∗. J

I Lemma 9 (Fundamental Lemma).
If ∆; Γ ` e : τ and grounding substitution θ s.t. · ` θ : ∆ and η ∈ R[[θ]]Γ then [η][[θ]]e ∈ R[[θ]]τ .

Proof. By induction on ∆; Γ ` e : τ . In the interesting case of recursion rec−case, we make
essential use of coverage and structural descent in the recursive calls. J

I Theorem 10 (Termination). If ·; · ` e : τ then e halts.

Proof. Taking the empty meta-context ∆ and empty computation-level context Γ, we obtain
e ∈ Rτ by the fundamental lemma, which implies that e halts by definition of τ . J
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8 Related Work

Our work is most closely related to [16] where the authors propose a modal lambda-calculus
with iteration to reason about closed HOAS objects. In their work the modal type � describes
closed LF objects. Our work extends this line to allow open LF objects and define functions
by pattern matching and well-founded recursion.

Similar to our approach, Schürmann [15] presents a meta-logicM2 for reasoning about
LF specifications and describes the generation of splits and well-formed recursive calls.
However,M2 does not support higher-order computations. Moreover, the foundation lacks
first-class contexts, but all assumptions live in an ambient context. This makes it less direct
to justify reasoning with assumptions, but maybe more importantly complicates establishing
meta-theoretic results such as proving normalization.

Establishing well-founded induction principles to support reasoning about higher-order
abstract syntax specifications has been challenging and a number of alternative approaches
have been proposed. These approaches have led to new reasoning logics – either based on
nominal set theory [14] or on nominal proof theory [7]. Proving consistency of these theories
in the presence of induction is often significantly more complicated [18]. Our work shows that
reasoning about HOAS representations can be supported using first-order logic by modelling
HOAS objects as contextual objects. As a consequence, we can directly take advantage
of established proof and mechanization techniques. This also opens up the possibility of
supporting contextual reasoning as a domain in other systems.

9 Conclusion

We have developed a core language with structural recursion for implementing total functions
about LF specification. We describe a sound coverage algorithm which, in addition to
verifying that there exists a branch for all possible contexts and contextual objects, also
generates and verifies valid primitive recursive calls. To establish consistency of our core
language we prove termination using reducibility semantics.

Our framework can be extended to handle mutual recursive functions: By annotating a
given rec−case-expression with a list of invariants using the subordination relation, we can
generate well-founded recursive calls matching each of the invariants. Based on these ideas,
we have implemented a totality checker in Beluga. We also added reasoning principles for
inductive types [4] that follow well-trodden paths; we must ensure that our inductive type
satisfies the positivity restriction and define generation of patterns for them.

Our language not only serves as a core programming language but can be interpreted by
the Curry-Howard isomorphism as a proof language for interactively developing proofs about
LF specifications. In the future, we plan to implement and design such a proof engine and to
generalize our work to allow lexicographic orderings and general well-founded recursion.
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