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Abstract
The sensitivity of a Boolean function f is the maximum, over all inputs x, of the number of
sensitive coordinates of x (namely the number of Hamming neighbors of x with different f -value).
The well-known sensitivity conjecture of Nisan (see also Nisan and Szegedy) states that every
sensitivity-s Boolean function can be computed by a polynomial over the reals of degree poly(s).
The best known upper bounds on degree, however, are exponential rather than polynomial in s.

Our main result is an approximate version of the conjecture: every Boolean function with
sensitivity s can be ε-approximated (in `2) by a polynomial whose degree is s ·polylog(1/ε). This
is the first improvement on the folklore bound of s/ε. We prove this via a new “switching lemma
for low-sensitivity functions” which establishes that a random restriction of a low-sensitivity
function is very likely to have low decision tree depth. This is analogous to the well-known
switching lemma for AC0 circuits.

Our proof analyzes the combinatorial structure of the graph Gf of sensitive edges of a Boolean
function f . Understanding the structure of this graph is of independent interest as a means of
understanding Boolean functions. We propose several new complexity measures for Boolean
functions based on this graph, including tree sensitivity and component dimension, which may
be viewed as relaxations of worst-case sensitivity, and we introduce some new techniques, such
as proper walks and shifting, to analyze these measures. We use these notions to show that the
graph of a function of full degree must be sufficiently complex, and that random restrictions of
low-sensitivity functions are unlikely to lead to such complex graphs.

We postulate a robust analogue of the sensitivity conjecture: if most inputs to a Boolean
function f have low sensitivity, then most of the Fourier mass of f is concentrated on small
subsets. We prove a lower bound on tree sensitivity in terms of decision tree depth, and show
that a polynomial strengthening of this lower bound implies the robust conjecture. We feel that
studying the graph Gf is interesting in its own right, and we hope that some of the notions and
techniques we introduce in this work will be of use in its further study.
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1 Introduction

The smoothness of a continuous function captures how gradually it changes locally (according
to the metric of the underlying space). For Boolean functions on {0, 1}n, a natural analog is
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13:2 Degree and Sensitivity: Tails of Two Distributions

sensitivity, capturing how many neighbors of a point have different function values. More
formally, the sensitivity of f : {0, 1}n → {±1} at input x ∈ {0, 1}n, written s(f, x), is the
number of neighbors y of x in the Hamming cube {0, 1}n such that f(y) 6= f(x). The max
sensitivity of f , written s(f) and often referred to simply as the “sensitivity of f”, is defined
as s(f) = maxx∈{0,1}n s(f, x). Hence we have 0 ≤ s(f) ≤ n for every f : {0, 1}n → {±1};
while not crucial, it may be helpful to consider this parameter as “low” when e.g. either
s(f) ≤ (logn)O(1) or s(f) ≤ no(1) (note that both these notions of “low” are robust up to
polynomial factors).

A well known conjecture, sometimes referred to as the “sensitivity conjecture,” states that
every smooth Boolean function is computed by a low degree real polynomial, specifically of
degree polynomial in its sensitivity. This conjecture was first posed in the form of a question
by Nisan [20] and Nisan and Szegedy [19] but is now (we feel) widely believed to be true:

I Conjecture 1.1 ([20, 19]). There exists a constant c such that every Boolean function f is
computed by a polynomial of degree deg(f) ≤ s(f)c.

Despite significant effort ([17, 1, 2, 3, 4]) the best upper bound on degree in terms
of sensitivity is exponential. Recently several consequences of Conjecture 1.1, e.g. that
every f has a formula of depth at most poly(s(f)), have been unconditionally established
in [11]. Nisan and Szegedy proved the converse, that every Boolean function satisfies
s(f) = O(deg(f)2).

In this work, we make progress on Conjecture 1.1 by showing that functions with low max
sensitivity are very well approximated (in `2) by low-degree polynomials. We exponentially
improve the folklore O(s/ε) degree bound (which follows from average sensitivity and Markov’s
inequality) by replacing the 1/ε error dependence with poly log(1/ε). The following is our
main result:1

I Theorem 1.2. For any Boolean function f : {0, 1}n → {±1} and any ε > 0, there exists a
polynomial p : {0, 1}n → R with deg(p) ≤ O(s(f) · (log(1/ε))3) such that Ex∈{0,1}n [|p(x)−
f(x)|2] ≤ ε.

En route to proving this result, we make two related contributions which we believe are
interesting in themselves:

Formulating a robust variant of the sensitivity conjecture (which would generalize Theo-
rem 1.2).
Defining and analyzing some natural graph-theoretic complexity measures, essential to
our proof and which we believe may hold the key to progress on the original and robust
sensitivity conjectures.

1.1 A robust variant of the sensitivity conjecture
A remarkable series of developments, starting with [20], showed that real polynomial degree
is an extremely versatile complexity measure: it is polynomially related to many other
complexity measures for Boolean functions, including PRAM complexity, block sensitivity,
certificate complexity, deterministic/randomized/quantum decision tree depth, and approxi-
mating polynomial degree (see [6, 15] for details on many of these relationships). Arguably
the one natural complexity measure that has defied inclusion in this equivalence class is

1 In a subsequent version of this work [12] the exponent “3” in Theorem 1.2 is improved to 1, and it is
shown that any further improvement to an exponent strictly less than 1 implies Conjecture 1.1.
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sensitivity. Thus, there are many equivalent formulations of Conjecture 1.1; indeed, Nisan’s
original formulation was in terms of sensitivity versus block sensitivity [20].

Even though progress on it has been slow, over the years Conjecture 1.1 has become a
well-known open question in the study of Boolean functions. It is natural to ask why this is
an important question: will a better understanding of sensitivity lead to new insights into
Boolean functions that have eluded us so far? Is sensitivity qualitatively different from the
other concrete complexity measures that we already understand?

We believe that the answer is yes, and in this paper we make the case that Conjecture 1.1 is
just the (extremal) tip of the iceberg: it hints at deep connections between the combinatorial
structure of a Boolean function f , as captured by the graph Gf of its sensitive edges in the
hypercube, and the analytic structure, as captured by its Fourier expansion. This connection
is already the subject of some of the key results in the analysis of Boolean functions, such as
[16, 9], as well as important open problems like the “entropy-influence” conjecture [10] and
its many consequences.

Given any Boolean function f , we conjecture a connection between the distribution of
the sensitivity of a random vertex in {0, 1}n and the distribution of f ’s Fourier mass. This
conjecture, which is an important motivation for the study in this paper, is stated informally
below:

Robust Sensitivity Conjecture (Informal Statement): If most inputs to a Boolean func-
tion f have low sensitivity, then most of the Fourier mass of f is concentrated on small
subsets.

Replacing both occurrences of most by all we recover Conjecture 1.1, and hence the
statement may be viewed as a robust formulation of the sensitivity conjecture. Theorem 1.2
corresponds to replacing the first most by all. There are natural classes of functions which
do not have low max sensitivity, but for which most vertices have low sensitivity; the robust
sensitivity conjecture is relevant to these functions while the original sensitivity conjecture is
not. (A prominent example of such a class is AC0, for which the results of [18] establish a
weak version of the assumption (that most inputs have low sensitivity) and the results of
[18, 26] establish a strong version of the conclusion (Fourier concentration).)

In order to formulate a precise statement, for a given Boolean function f : {0, 1}n → {±1}
we consider the random experiment which samples from the following two distributions:
1. The Sensitivity distribution: sample a uniform random vertex x ∈ {0, 1}n and let

s = s(f,x).
2. The Fourier distribution: sample a subset T ⊂ [n] with probability f̂(T)2 and let d = |T|.

We conjecture a close relation between the kth moments of these random variables:

I Conjecture 1.3 (Robust Sensitivity Conjecture). For all Boolean functions f and for all
integers k ≥ 1, there is a constant ak such that E[dk] ≤ ak E[sk].

The key here is that there is no dependence on n. To see the connection with the informal
statement above, if a function has low sensitivity for most x ∈ {0, 1}n, then it must have
bounded kth sensitivity moments for fairly large k; in such a case, Conjecture 1.3 implies a
strong Fourier concentration bound by Markov’s inequality. The classical Fourier expansion for
average sensitivity tells us that when k = 1, E[s] = E[d]. It is also known that E[s2] = E[d2]
(see e.g. [7, Lemma 3.5]), but equality does not hold for k ≥ 3. Conjecture 1.3 states that if
we allow constant factors depending on k, then one direction still holds.

It is clear that Conjecture 1.3 (with ak a not-too-rapidly-growing function of k) is
a strengthening of our Theorem 1.2. To see its relation to Conjecture 1.1 observe that
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Conjecture 1.1 implies that for k →∞, E[dk] ≤ ak(E[sk])b for constants a, b. On the other
hand, via Markov’s inequality, Conjecture 1.3 only guarantees Fourier concentration rather
than small degree for functions with small sensitivity. Thus the robust version Conjecture 1.3
seems incomparable to Conjecture 1.1.

It is possible that the reverse direction of the robust conjecture also holds: for every k
there exists a′k such that E[sk] ≤ a′k E[dk]; settling this is an intriguing open question. We
note that the Nisan-Szegedy result that s(f) ≤ O(deg(f)2) implies that as k →∞ we have
E[sk] ≤ Ck E[dk]2 for some constant C.

Both our proof of Theorem 1.2, and our attempts at Conjecture 1.3, follow the same
general path. We apply random restrictions, which reduces these statements to analyzing
some natural new graph-theoretic complexity measures of Boolean functions. These measures
are relaxations of sensitivity: they look for occurrences of various subgraphs in the sensitivity
graph, rather than just high degree vertices. We establish (and conjecture) connections
between different graph-theoretic measures and decision tree depth (see Theorem 5.4, which
relates decision tree depth and the length of “proper walks”, and Conjecture 4.10, which
conjectures a relation between “tree sensitivity” and decision tree depth). These connections
respectively enable the proof of Theorem 1.2 and provide a simple sufficient condition implying
Conjecture 1.3, which suffices to prove the conjecture for k = 3 and 4. We elaborate on this
in the next subsection. We believe that these new complexity measures are interesting and
important in their own right, and that understanding them better may lead to progress on
Conjecture 1.1.

1.2 Random restrictions and graph-theoretic complexity measures
In this subsection we give a high level description of our new complexity measures and
perspectives on the sensitivity graph and of how we use them to approach Conjecture 1.3 and
prove Theorem 1.2. As both have the same conclusion, namely strong Fourier concentration,
we describe both approaches together until they diverge. This leads to analyzing two different
graph parameters (as we shall see, the stronger assumption of Theorem 1.2 allows the use of
a weaker graph parameter that we can better control).

First we give a precise definition of the sensitivity graph: to every Boolean function f we
associate a graph Gf whose vertex set is {0, 1}n and whose edge set E consists of all edges
(x, y) of the hypercube that have f(x) 6= f(y). Each edge is labelled by the coordinate in [n]
at which x and y differ. The degree of vertex x is exactly s(f, x), and the maximum degree
of Gf is s(f).

The starting point of our approach is to reinterpret the moments of the degree and
sensitivity distributions of f in terms of its random restrictions. Let Rk,n denote the
distribution over random restrictions that leave exactly k of the n variables unset and set the
rest uniformly at random. We first show, in Section 3, that the kth moment of the sensitivity
distribution controls the probability that a random restriction fρ of f , where ρ← Rk,n, has
full sensitivity (Theorem 3.1). Similarly, moments of the Fourier distribution capture the
event that fρ has full degree (Theorem 3.2).2

Random restrictions under sensitivity moment bounds

Via Theorems 3.1 and 3.2, Conjecture 1.3 may be rephrased as saying that if a function f
has low sensitivity moments, then a random restriction fρ is unlikely to have full degree. An

2 We note that Tal has proved a result of a similar flavor; [25, Theorem 3.2] states that strong Fourier
concentration of f implies that random restrictions of f are unlikely to have high degree.
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intuition supporting this statement is that the sensitivity graphs of functions with full degree
should be “complex” (under some suitable complexity measure), whereas the graph of fρ is
unlikely to be “complex” if f has low sensitivity moments. More precisely, the fact that Gf
has no (or few) vertices of high degree suggests that structures with many sensitive edges in
distinct directions will not survive a random restriction.

Some evidence for this intuition is given by Theorem 3.1, which tells us that if f has low
sensitivity moments then fρ is unlikely to have full sensitivity. If full degree implied full
sensitivity then we would be done, but this is false as witnessed e.g. by the three-variable
majority function and by composed variants of it. (Conjecture 1.1 asserts that the gap
between degree and sensitivity is at most polynomial, but of course we do not want to invoke
the conjecture!) This leads us in Section 4 to consider our first relaxation of sensitivity, which
we call tree-sensitivity. To motivate this notion, note that a vertex with sensitivity k is simply
a star with k edges in the sensitivity graph. We relax the star requirement and consider
all sensitive trees: trees of sensitive edges (i.e. edges in Gf ) where every edge belongs to a
distinct coordinate direction (as is the case, of course, for a star). Analogous to the usual
notion of sensitivity, the tree sensitivity of f at x is the size of the largest sensitive tree
containing x, and the tree sensitivity of f is the maximum tree sensitivity of f at any vertex.

Theorem 4.11 shows that the sensitivity moments of f control the probability that fρ
has full tree sensitivity. Its proof crucially uses a result by Sidorenko [24] on counting
homomorphisms to trees. Theorem 4.11 would immediately imply Conjecture 1.3 if every
function of degree k must have tree sensitivity k. (This is easily verified for k = 3, 4, which,
as alluded to in the previous subsection, gives Conjecture 1.3 for those values of k.) The
best we can prove, though, is a tree sensitivity lower bound of Ω(

√
k) (Theorem 4.9); the

proof uses notions of maximality and “shifting” of sensitive trees that we believe may find
further application in the study of tree sensitivity. We conjecture that full degree does imply
full tree sensitivity, implying Conjecture 1.3. This is a rare example where having a precise
bound between the two complexity measures (rather than a polynomial relationship) seems
to be important.

Random restrictions under a max sensitivity bound

Next, we aim to prove unconditional moment bounds on the Fourier distribution of functions
with low max sensitivity, and thereby obtain Theorem 1.2. Towards this goal, in Section 5 we
relax the notion of tree sensitivity and study certain walks in the Boolean hypercube that we
call proper walks: these are walks such that every time a coordinate direction is explored for
the first time, it is along a sensitive edge. We show in Theorem 5.4 that having full decision
tree depth implies the existence of a very short (length O(n)) proper walk containing sensitive
edges along every coordinate. In Lemma 5.6, we analyze random restrictions to show that
such a structure is unlikely to survive in the remaining subcube of unrestricted variables.
This may be viewed as a “switching lemma for low-sensitivity functions”, which again may be
independently interesting (note that strictly speaking this result is not about switching from
a DNF to a CNF or vice versa, but rather it upper bounds the probability that a restricted
function has large decision tree depth, in the spirit of standard “switching lemmas”). It yields
Theorem 1.2 via a rather straightforward argument. The analysis requires an upper bound
on the maximum sensitivity because we do not know an analogue of Sidorenko’s theorem for
proper walks.

CCC 2016
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1.3 Some high-level perspective

An important goal of this work is to motivate a better understanding of the combinatorial
structure of the sensitivity graph Gf associated with a Boolean function. In our proofs
other notions suggest themselves beyond tree sensitivity and proper walks, most notably
the component dimension of the graph, which may be viewed as a further relaxation of
sensitivity. Better relating these measures to decision tree depths, as well as to each other,
remains intriguing, and in our view promising, for making progress on Conjecture 1.1 and
Conjecture 1.3 and for better understanding Boolean functions in general. We hope that
some of the notions and techniques we introduce in this work will be of use to this goal.

Another high level perspective relates to “switching lemmas”. As mentioned above, we
prove here a new result of this kind, showing that under random restrictions low sensitivity
functions have low decision tree depth with high probability. The classical switching lemma
shows the same for small width DNF (or CNF) formulas (and hence for AC0 circuits as
well). Our proof is quite different than the standard proofs, as it is essentially based on the
combinatorial parameters of the sensitivity graph. Let us relate the assumptions of both
switching lemmas. On the one hand, by the sensitivity Conjecture 1.1 (which we can’t use,
and want to prove), low sensitivity should imply low degree and hence low decision tree
depth and small DNF width. On the other hand, small DNF width (indeed small, shallow
circuits) imply (by [18]) low average sensitivity, which is roughly the assumption of the
robust sensitivity Conjecture 1.3. As it turns out, we can use our combinatorial proof of our
switching lemma to derive a somewhat weaker form of the original switching lemma, and
also show that the same combinatorial assumption (relating tree sensitivity to decision tree
depth) which implies Conjecture 1.3 would yield a nearly tight form of the original switching
lemma. This lends further motivation to the study of these graph parameters.

Another conjecture formalizing the maxim that low sensitivity implies Fourier concentra-
tion is the celebrated Entropy-Influence conjecture of Freidgut and Kalai [10] which posits
the existance of a universal constant C such that H(T) ≤ C E[s] where H(.) denotes the
entropy function of a random variable.3 The conjecture states that functions with low
sensitivity on average (measured by E[s] = E[d]) have their Fourier spectrum concentrated
on a few coefficients, so that the entropy of the Fourier distribution is low. However, unlike
in Conjecture 1.3 the degree of those coefficients does not enter the picture.

Organization

We present some standard preliminaries and notation in Section 2. Section 3 proves The-
orems 3.1 and 3.2 which show that degree and sensitivity moments govern the degree
and sensitivity respectively of random restrictions. In Section 4 we study tree sensitivity.
Section 4.1 relates it to other complexity measures, while Section 4.2 shows how the tree
sensitivity of a random restriction is governed by sensitivity moments. We explore some
consequences of these results in Section 4.3. Section 5 studies proper walks, and shows how
to construct short proper walks. In Section 5.1, we use proper walks to analyze random
restrictions of low-sensitivity functions and prove Theorem 1.2. Section 5 uses results from
Section 4.1 but is independent of the rest of Section 4.

3 Recall that the entropy H(T) of the random variable T is H(T) =
∑

T ⊆[n] Pr[T = T ] log2
1

Pr[T=T ] .
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2 Preliminaries

The Fourier distribution. Let f : {0, 1}n → {±1} be a Boolean function. We define the
usual inner product on the space of such functions by 〈f, g〉 = Ex←{0,1}n [f(x)g(x)]. For
S ⊆ [n] the parity function χS is χS(x) = (−1)

∑
i∈S

xi . The Fourier expansion of f is
given by f(x) =

∑
S⊂[n] f̂(S)χS(x), where f̂(S) = 〈f, χS〉. By Parseval’s identity we have∑

S⊆[n] f̂(S)2 = 1. This allows us to view any Boolean function f as inducing a probability
distribution Df on subsets S ⊆ [n], given by PrR←Df

[R = S] = f̂(S)2. We refer to this
as the Fourier distribution. We define supp(f) ⊆ 2[n] as supp(f) = {S ⊆ [n] : f̂(S)2 6= 0}.
The Fourier expansion of f can be viewed as expressing S as a multilinear polynomial in
x1, . . . , xn, so that deg(f) = maxS∈supp(f) |S|. Viewing Df as a probability distribution on
2[n], we define the following quantities which we refer to as “influence moments” of f :

Ik[f ] = E
R←Df

[
|R|k

]
=
∑
S

f̂(S)2|S|k, (1)

Ik[f ] = E
R←Df

[
k−1∏
i=0

(|R| − i)
]

=
∑
|S|≥k

f̂(S)2
k−1∏
i=0

(|S| − i). (2)

We write degε(f) to denote the minimum k such that
∑
S⊆[n];|S|≥k f̂(S)2 ≤ ε. It is

well known that degε(f) ≤ k implies the existence of a degree k polynomial g such that
Ex[(f(x)− g(x))2] ≤ ε; g is obtained by truncating the Fourier expansion of f to level k.

The sensitivity distribution. We use d(·, ·) to denote Hamming distance on {0, 1}n. The n-
dimensional hypercubeHn is the graph with vertex set V = {0, 1}n and {x, y} ∈ E if d(x, y) =
1. For x ∈ {0, 1}n, let N(x) denote its neighborhood in Hn. As described in Section 1, the
sensitivity of a function f at point x is defined as s(f, x) = |{y ∈ N(x) : f(x) 6= f(y)}|,
and the (worst-case) sensitivity of f , denoted s(f), is defined as s(f) = maxx∈{0,1}n s(f, x).
Analogous to (1) and (2), we define the quantities sk(f) and sk(f) which we refer to as
“sensitivity moments” of f :

sk(f) = E
x←{0,1}n

[
s(f,x)k

]
, sk(f) = E

x←{0,1}n

[
k−1∏
i=0

(s(f,x)− i)
]
. (3)

With this notation, we can restate Conjecture 1.3 (with a small modification) as

I Conjecture (Conjecture 1.3 restated). For every k, there exists constants ak, bk such that
Ik(f) ≤ aksk(f) + bk.

The reason for the additive constant bk is that for all non-negative integers x, we have∏k−1
i=0 (x− i) ≤ xk ≤ ek

∏k−1
i=0 (x− i) + kk. Hence allowing the additive factor lets us freely

interchange Ik with Ik and sk with sk in the statement of the Conjecture. We note that
I1[f ] = I1[f ] = s1(f) = s1(f), and as stated earlier it is not difficult to show that I2[f ] = s2(f)
(see e.g. Lemma 3.5 of [7]). However, in general Ik(f) 6= sk(f) for k ≥ 3 (as witnessed, for
example, by the AND function).

Some other complexity measures. We define dim(f) to be the number of variables that f
depends on and dt(f) to be the smallest depth of a deterministic decision tree computing
f . In particular f : {0, 1}n → {±1} has dim(f) = n iff f is sensitive to every co-ordinate,
and has dt(f) = n iff f is evasive. It is easy to see that deg(f) ≤ dt(f) ≤ dim(f) and
s(f) ≤ dt(f).

CCC 2016
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3 Random restrictions and moments of degree and sensitivity

We write Rk,n to denote the set of all restrictions that leave exactly k variables live (unset)
out of n. A restriction ρ ∈ Rk,n is viewed as a string in {0, 1, ?}n where ρi = ? for exactly the
k live variables. We denote the set of live variables by L(ρ), and we use fρ : {0, 1}L(ρ) → {±1}
to denote the resulting restricted function. We use C(ρ) ⊆ {0, 1}n to denote the subcube
consisting of all possible assignments to variables in L(ρ). We sometimes refer to “a random
restriction ρ← Rk,n” to indicate that ρ is selected uniformly at random from Rk,n.

A random restriction ρ ← Rk,n can be chosen by first picking a set K ⊂ [n] of k co-
ordinates to set to ? and then picking ρK̄ ∈ {0, 1}[n]\K uniformly at random. Often we will
pick both x ∈ {0, 1}n and K ⊂ [n] of size k independently and uniformly at random. This is
equivalent to sampling a random restriction ρ and a random point y within the subcube
C(ρ).

The following two theorems show that Ik[f ] captures the degree of fρ, whereas sk(f)
captures its sensitivity.

I Theorem 3.1. Let f : {0, 1}n → {±1}, ρ← Rk,n, and 1 ≤ j ≤ k. Then

sj(f)
nj

≈ sj(f)∏j−1
i=0 (n− i)

≤ Pr
ρ←Rk,n

[s(fρ) ≥ j] ≤
2ksj(f)

(
k
j

)∏j−1
i=0 (n− i)

≈
2ksj(f)

(
k
j

)
nj

. (4)

Proof. Consider the bipartite graph in which the vertices X on the left are all j-edge stars S
in Gf , the vertices Y on the right are all restrictions ρ ∈ Rk,n, and an edge connects S and
ρ if the star S lies in the subcube C(ρ) specified by the restriction ρ. The desired probability
Prρ∈Rk,n

[s(fρ) ≥ j] is the fraction of nodes in Y that are incident to at least one edge.
The number of nodes on the left is equal to

|X| =
∑

x∈{0,1}n

(
s(f, x)
j

)
= 2nsj(f)

j! .

The degree of each node S on the left is exactly
(
n−j
k−j
)
, since if S is adjacent to ρ then j

of the k elements of L(ρ) must correspond to the j edge coordinates of S and the other
k − j elements of L(ρ) can be any of the n− j remaining coordinates (note that the non-?
coordinates of ρ are completely determined by S). On the right, a restriction ρ ∈ Rk,n is
specified by a set L(ρ) of k live co-ordinates where ρi = ?, and a value ρi ∈ {0, 1} for the
other coordinates, so |Y | = |Rk,n| =

(
n
k

)
2n−k. We thus have

Pr
ρ←Rk,n

[s(fρ) ≥ j] ≤ total # of edges into Y
|Y |

=

(
2ns

j(f)
j!

)
·
(
n−j
k−j
)(

n
k

)
2n−k

=
2ksj(f)

(
k
j

)∏j−1
i=0 (n− i)

.

For the lower bound, in order for S to lie in C(ρ) the root of S must belong to C(ρ) (2k
choices) and all edges of S must correspond to elements of L(ρ) (

(
k
j

)
choices), so the maximum

degree of any ρ ∈ Y is 2k
(
k
j

)
. Hence we have

Pr
ρ←Rk,n

[s(fρ) ≥ j] ≥
(total # of edges into Y )
(max degree of any ρ ∈ Y )

|Y |
=

(
2ns

(j)(f)
j!

)
·
(
n−j
k−j
)

2k
(
k
j

)
·
(
n
k

)
2n−k

= sj(f)∏j−1
i=0 (n− i)

.

J
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I Theorem 3.2. 4 Let f : {0, 1}n → {±1} and ρ← Rk,n. Then

Ik(f)
nk

≈ Ik(f)∏k−1
i=0 (n− i)

≤ Pr
ρ←Rk,n

[deg(fρ) = k] ≤ 22k−2 Ik(f)∏k−1
i=0 (n− i)

≈ 22k−2 Ik(f)
nk

. (5)

Proof. We first fix K ⊆ [n] and consider the restricted function fρ that results from a
random choice of y = ρK̄ ∈ {0, 1}[n]\K . The degree k Fourier coefficient of fρ equals f̂ρ(K)
and is given by

f̂ρ(K) =
∑

S⊂[n]\K

f̂(S ∪K)χS(y).

Hence we have

E
y

[f̂ρ(K)2] =
∑

S⊂[n]\K

f̂(S ∪K)2,

and hence over a random choice of K, we have

E
ρ

[f̂ρ(K)2] =
∑
S⊂[n]

E
ρ

[1(K ⊆ S)]f̂(S)2 =
∑
S⊂[n]

∏k−1
i=0 (|S| − i)∏k−1
i=0 (n− i)

f̂(S)2 = Ik[f ]∏k−1
i=0 (n− i)

. (6)

Note that deg(fρ) = k iff f̂ρ(K)2 6= 0. Further, when it is non-zero f̂ρ(K)2 lies in the
range [2−(2k−2), 1], since a non-zero Fourier coefficient in a k-variable Boolean function has
magnitude at least 2−k+1. Hence we have

2−2k+2 Pr
ρ

[f̂ρ(K)2 6= 0] ≤ E
ρ

[f̂ρ(K)2] ≤ Pr
ρ

[f̂ρ(K)2 6= 0] (7)

which gives the desired bound when plugged into Equation (6). J

Conjecture 1.3 revisited: An easy adaptation of the Theorem 3.2 argument gives bounds
on Prρ←Rk,n

[deg(fρ) ≥ j]. Given these bounds, Conjecture 1.3 implies that for any j ≤ k,

Pr
ρ←Rk,n

[deg(fρ) ≥ j] ≤ ak Pr
ρ←Rk,n

[s(fρ) ≥ j] + on(1).

Indeed, by specifying the on(1) term, we can get a reformulation of Conjecture 1.3. This
formulation has an intuitive interpretation: gap examples exhibiting low sensitivity but high
degree are not robust to random restrictions. Currently, we do not know how to upper bound
deg(f) by a polynomial in s(f), indeed we do know of functions f where deg(f) ≥ s(f)2.
But the Conjecture implies that if we hit any function f with a random restriction, the
probability that the restriction has large degree can be bounded by the probability that it
has large sensitivity. Thus the conjecture predicts that these gaps do not survive random
restrictions in a rather strong sense.

Implications for AC0: For functions with small AC0 circuits, a sequence of celebrated
results culminating in the work of Håstad [14] gives upper bounds on Pr[dt(fρ) ≥ j]. Since
Pr[dt(fρ) ≥ j] ≥ Pr[deg(fρ) ≥ j], we can plug these bounds into Theorem 3.2 to get upper

4 The upper bound in the following theorem is essentially equivalent to Theorem 3.2 of [25], while the
lower bound is analogous to [18]. The only difference is in the family of restrictions.

CCC 2016



13:10 Degree and Sensitivity: Tails of Two Distributions

bounds on the Fourier moments, and derive a statement analogous to [18, Lemma 7], [26,
Theorem 1.1] on the Fourier concentration of functions in AC0.

Similarly Pr[dt(fρ) ≥ j] ≥ Pr[s(fρ) ≥ j], so via this approach Theorem 3.1 gives upper
bounds on the sensitivity moments, and hence sensitivity tail bounds for functions computed
by small AC0 circuits. This can be viewed as an extension of [18, Lemma 12], which bounds
the average sensitivity (first moment) of such functions. For depth 2 circuits, such tail bounds
are implied by the satisfiability coding lemma [21], but we believe these are the first such
bounds for depth 3 and higher. As this is not the focus of our current work, we leave the
details to the interested reader.

4 Tree sensitivity

In this section we study the occurrence of trees of various types in the sensitivity graph
Gf , by defining a complexity measure called tree sensitivity. We study its relation to other
complexity measures like decision tree depth.

I Definition 4.1. A set S ⊆ {0, 1}n induces a sensitive tree T in Gf if (i) the points in S
induce the (non-trivial) tree T in the Boolean hypercube; (ii) every edge induced by S is a
sensitive edge for f , i.e. belongs to E(Gf ); and (iii) each induced edge belongs to a distinct
co-ordinate direction.

Given a fixed function f , a sensitive tree T is completely specified by the set V (T ) of its
vertices. We can think of each edge e ∈ E(T ) as being labelled by the coordinate `(e) ∈ [n]
along which f is sensitive, so every edge has a distinct label. Let `(T ) denote the set of
all edge labels that occur in T . We refer to |`(T )| as the size of T , and observe that it lies
in {1, . . . , n}. We note that |V (T )| = |`(T )| + 1 by the tree property. Further, any two
vertices in V (T ) differ on a subset of coordinates in `(T ). Hence the set V (T ) lies in a
subcube spanned by coordinates in `(T ), and all points in V (T ) agree on all the coordinates
in `(T ) def= [n] \ `(T ).

I Definition 4.2. For x ∈ {0, 1}n, the tree-sensitivity of f at x, denoted ts(f, x), is the
maximum of |`(T )| over all sensitive trees T such that x ∈ V (T ). We define the tree-sensitivity
of f as ts(f) = maxx∈{0,1}n ts(f, x).

Note that a vertex and all its sensitive neighbors induce a sensitive tree (which is a star).
Thus one can view tree-sensitivity as a generalization of sensitivity, and hence we have that
ts(f) ≥ s(f). Lemma A.1 will show that ts(f) can in fact be exponentially larger than both
s(f) and dt(f) (the decision tree depth of f), and thus it cannot be upper bounded by
some polynomial in standard measures like decision tree depth, degree, or block sensitivity.
However, Theorem 4.9, which we prove in the next subsection, gives a polynomial lower
bound.

4.1 Tree sensitivity and decision tree depth
A sensitive tree T is maximal if there does not exist any sensitive tree T ′ with V (T ) ( V (T ′).
In this subsection we study maximal sensitive trees using a “shifting” technique, introduce
the notion of an “orchard” (a highly symmetric configuration of isomorphic sensitive trees
that have been shifted in all possible ways along their insensitive coordinates), and use these
notions to prove Theorem 4.9, which lower bounds tree sensitivity by square root of decision
tree depth.
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The support of a vector v ∈ {0, 1}n, denoted supp(v), is the set {i ∈ [n] : vi = 1}.
For x, v ∈ {0, 1}n, x ⊕ v denotes the coordinatewise xor. Given a set S ⊆ {0, 1}n, let
S ⊕ v = {x⊕ v : x ∈ S}.

I Definition 4.3. Let v be a vector supported on `(T ) where T is a sensitive tree in Gf . We
say that T can be shifted by v if f(x) = f(x⊕ v) for all x ∈ V (T ).

If T can be shifted by v then V (T )⊕ v also induces a sensitive tree which we denote by
T ⊕ v. Mapping x to x⊕ v gives an isomorphism between T and T ⊕ v which preserves both
adjacency and edge labels, and in particular we have `(T ⊕ v) = `(T ).

We have the following characterization of maximality (both directions follow easily from
the definitions of maximality and of shifting by the unit basis vector ei):

I Lemma 4.4. A sensitive tree T is maximal if and only if it can be shifted by ei for all
i ∈ `(T ) (equivalently, if none of the vertices in V (T ) is sensitive to any coordinate in `(T )).

The notion of maximality allows for a “win-win” analysis of sensitive trees: for each
co-ordinate i ∈ `(T ), we can either increase the size of the tree by adding an edge in direction
i, or we can shift by ei to get an isomorphic copy of the tree. Repeating this naturally leads
to the following definition.

I Definition 4.5. Let T be a sensitive tree that can be shifted by every v supported on `(T ).
We refer to the set of all such trees F = {T ⊕ v} as an orchard, and we say that T belongs
to the orchard F .

An orchard guarantees the existence of 2n−`(T ) trees that are isomorphic to T in Gf . It
is a priori unclear that orchards exist in Gf . The following simple but key lemma proves
their existence.

I Lemma 4.6. Let T be a sensitive tree. Either T belongs to an orchard, or there exists a
shift T ⊕ v of T which is not maximal.

Proof. Assume the tree T does not belong to an orchard. Pick the smallest weight vector
v′ supported on `(T ) such that T cannot be shifted by v′ (if there is more than one such
vector any one will do). Since T can trivially be shifted by 0n, we have wt(v′) ≥ 1. Pick any
co-ordinate i ∈ supp(v′), and let v = v′ ⊕ ei so that wt(v) = wt(v′)− 1. By our choice of v′,
T can be shifted by v, but not by v′ = v ⊕ ei. This implies that there exists x ∈ V (T ) so
that f(x) = f(x⊕ v) 6= f(x⊕ v′), hence T ⊕ v is not maximal. J

This lemma directly implies the existence of orchards for every Gf :

I Corollary 4.7. Every sensitive tree T where |`(T )| = ts(f) belongs to an orchard.

The lemma also gives the following intersection property for orchards. Since any two
trees in an orchard F are isomorphic, we can define `(F ) = `(T ) to be the set of edge labels
for any tree T ∈ F .

I Lemma 4.8. Let F1 and F2 be orchards. Then `(F1) ∩ `(F2) 6= ∅.

Proof. Assume for contradiction that `(F1) and `(F2) are disjoint. We choose trees T1 ∈ F1
and T2 ∈ F2, and x ∈ V (T1), y ∈ V (T2) such that f(x) = 1 and f(y) = −1. Now define
z ∈ {0, 1}n where zi equals xi if i ∈ `(T1) and zi equals yi otherwise. Since z agrees with
x on `(T1) = `(F1), it can be obtained by shifting x by z ⊕ x which is supported on `(T1).
Since T1 belongs to an orchard, we get f(z) = f(x) = 1. However, we also have that zi = yi
for all i ∈ `(T2). Hence by similar reasoning, f(z) = f(y) = −1, which is a contradiction. J
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We use this intersection property to lower bound tree sensitivity in terms of decision tree
depth, via an argument similar to other upper bounds on dt(f) (such as the well known
[5, 27, 13] quadratic upper bound on dt(f) in terms of certificate complexity).

I Theorem 4.9. For any Boolean function f : {0, 1}n → {±1}, we have ts(f) ≥
√

2 dt(f)−1.

Proof. We construct a decision tree for f by iterating the following step until we are left
with a constant function at each leaf: at the current node in the decision tree, pick the largest
sensitive tree T in the (restricted) function and read all the variables in `(T ).

Let k be the largest number of iterations before we terminate, taken over all paths in the
decision tree. Fix a path that achieves k iterations and let fi be the restriction of f that is
obtained, at the end of the i-th iteration (and let f0 = f). We claim that ts(fi) ≤ ts(f)− i.
Note that if fi is not constant then ts(fi) ≥ 1, hence this claim implies that k ≤ ts(f).

It suffices to prove the case i = 1, since we can then apply the same argument repeatedly.
Consider all trees in f0 = f of size ts(f). Each of them occurs in an orchard by Corollary 4.7
and by Lemma 4.8 any two of them share at least one variable. Hence when we read all the
variables in some tree T , we restrict at least one variable in every tree of size ts(f), reducing
the size by at least 1. The size of the other trees cannot increase after restriction, since Gf1

is an induced subgraph of Gf . Hence all the sensitive trees in f1 have size at most ts(f)− 1.
It follows that overall we can bound the depth of the resulting decision tree by

dt(f) ≤
k∑
i=1

ts(fi−1) ≤
k∑
i=1

(ts(f)− (i− 1)) ≤ ts(f)(ts(f) + 1)
2 . J

It is natural to ask whether ts(f) is polynomially related to dt(f) and other standard
complexity measures. Lemma A.1 in Appendix A gives an example of a function on n

variables where dt(f) = log(n+ 1) whereas ts(f) = n. In the other direction, it is likely that
the bound in Theorem 4.9 can be improved further. We conjecture that the following bound
should hold:

I Conjecture 4.10. For any Boolean function f : {0, 1}n → {±1}, we have ts(f) ≥ dt(f).

In addition to being a natural question by itself, we will show in Section 4.3 that Conjecture
4.10 would have interesting consequences via the switching lemma in Section 4.2.

4.2 Tree Sensitivity under Random Restrictions
In this subsection we show that the probability of a random restriction of f having large tree
sensitivity is both upper and lower bounded by suitable sensitivity moments of f .

I Theorem 4.11. Let f : {0, 1}n → {±1}, ρ ∼ Rk,n and 1 ≤ j ≤ k. Then we have

sj(f)
nj

≈ sj(f)∏j−1
i=0 (n− i)

≤ Pr
ρ∈Rk,n

[ts(fρ) ≥ j] ≤ (2k)2ksj(f)∏j−1
i=0 (n− i)

≈ (2k)2ksj(f)
nj

.

The lower bound follows from the fact that ts(f) ≥ s(f) and Theorem 3.1. The key
ingedient in the upper bound is Sidorenko’s theorem [24], which bounds the number of
homomorphisms from a graph G to a tree T with j edges in terms of the jth degree moment
of G. For a formal statement of Sidorenko’s theorems, we refer the reader to [24, 8]. Below,
we state the result we will use in our language. We also present an elegant proof due to
Yuval Peres which seems considerably simpler than the known proofs of Sidorenko’s theorem
(though the lemma follows directly from that theorem).
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I Lemma 4.12 ([22]). Let Sj denote the set of sensitive trees of size j in Gf . Then we have
that

|Sj | ≤ j!
∑

x∈{0,1}n

s(f, x)j .

Proof. We consider the set T of all rooted unlabelled trees with j edges. For each tree
t ∈ T we define a labelling of its vertices as follows: each tree t ∈ T has the vertex set
V = {0, . . . , j} where 0 is the root. The adjacency structure is specified by a parent function
pt : {1, . . . , j} → {0, . . . , j − 1} where pt(i) < i is the parent of vertex i. The tree t is
completely specified by the function pt, and hence |T | ≤ j!. For a given t ∈ T , let S(t)
denote the set of sensitive trees T ∈ Gf whose adjacency structure is given by t.

For conciseness let us write stot(f) to denote
∑
x∈{0,1}n s(f, x). Let D denote the distri-

bution on {0, 1}n where

Pr
D

[x] = s(f, x)
stot(f) .

Note that D is supported only on vertices where s(f, x) ≥ 1. Further D is a stationary
distribution for the simple random walk on Gf : if we sample a vertex from D and then walk
to a random neighbor, it is also distributed according to D.

Fix a tree t ∈ T and consider a random walk on Gf which is the following vector
X = (X0, . . . ,Xj) of random variables:

We sample X0 from {0, 1}n according to D.
For i ≥ 1, let Xi be a a random neighbor of Xi′ in Gf where i′ = pt(i) < i.

Note that every Xi is distributed according to D. The vector X = (X0, . . . ,Xj) is such that
(Xi,Xpt(i)) ∈ E(Gf ), but it might contain repeated vertices and edge labels (indeed, this
proof bounds the number of homomorphisms from Gf to t).

A vector x = (x0, . . . , xj) ∈ ({0, 1}n)j+1 will be sampled with probability

Pr[X = x] = Pr[X0 = x]
j∏
i=1

Pr[Xi = xi|X0, . . . ,Xi−1]

= s(f, x0)∑
x∈{0,1}n s(f, x)

j−1∏
i=0

1
s(f, xi)

= 1∑
x∈{0,1}n s(f, x)

j−1∏
i=1

1
s(f, xi)

.

Clearly S(t) lies in the support of X, hence

|S(t)| ≤ supp(X)

≤ E
X

[
1

Pr[X = x]

]

≤ E
X

 ∑
x∈{0,1}n

s(f, x)
j−1∏
i=1

s(f,Xi)


= stot(f)E

X

[
j−1∏
i=1

s(f,Xi)
]

≤ stot(f) E
Y∼D

[
s(f,Y)j−1] (8)
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where the last inequality holds since the Xi’s are identically distributed and each s(f,Xi) is
non-negative (or can be derived via the AM-GM inequality). We bound the moment under
D as follows:

E
Y∼D

[
s(f,Y)j−1] ≤ ∑

y∈{0,1}n

Pr[Y = y]s(f, y)j−1

=
∑

y∈{0,1}n

s(f, y)
stot(f)s(f, y)j−1

=
∑
y∈{0,1}n s(f, y)j

stot(f) .

Plugging this back into Equation (8) gives

|S(t)| ≤
∑

y∈{0,1}n

s(f, y)j

Summing over all possibilities for t, we get

|Sj | ≤
∑
t∈T
|S(t)| ≤ j!

∑
y∈{0,1}n

s(f, y)j .

One can save a factor of (j + 1), since there are j + 1 ways to root each tree in Sj . J

Theorem 4.11 now follows from an argument similar to Theorem 3.1.

Proof of Theorem 4.11. The lower bound follows from (the lower bound in) Theorem 3.1
and the observation that ts(fρ) ≥ s(fρ). We now prove the upper bound.

Similar to Theorem 3.1, consider the bipartite graph where the LHS is the set Sj of all
sensitive trees T of size j in Gf , the RHS is the set Rk,n of all restrictions ρ, and (T, ρ) is
an edge if the tree T lies in the subcube C(ρ) specified by the restriction ρ. The desired
probability Prρ∈Rk,n

[ts(fρ) ≥ j] is the fraction of nodes in Rk,n that are incident to at least
one edge.

We first bound the degree of each vertex on the left. To have T lying in C(ρ),
The edge labels of T must be live variables for ρ.
The values ρi for the fixed coordinates i ∈ [n] \ L(ρ) must be consistent with the values
in V (T ).

The only choice is of the (k − j) remaining live coordinates. Hence T ∈ C(ρ) for at most(
n−j
k−j
)
values of ρ corresponding to choices of the remaining live variables.

The number of vertices in Sj is bounded using Lemma 4.12 by |Sj | ≤ j!
∑
x∈{0,1}n s(f, x)j

= j!2nsj(f), so the total number of edges is at most
(
n−j
k−j
)
2nj!sj(f). A restriction ρ ∈ Rk,n

is specified by a set L(ρ) of k live co-ordinates where ρi = ?, and a value ρi ∈ {0, 1} for the
other coordinates, and hence |Rk,n| =

(
n
k

)
2n−k. Recall that ts(fρ) ≥ j iff C(ρ) contains some

tree from Sj . Hence the fraction of restrictions ρ that have an edge incident to them is

Pr
ρ∈Rk,n

[ts(fρ) ≥ j] ≤
(
n−j
k−j
)
2nj!sj(f)(
n
k

)
2n−k

≤ kj2ksj(f)(
n
j

) . J

4.3 Applications
By combining Theorems 4.9 and 4.11, we get upper and lower bounds on the probability that
a random restriction of a function has large decision tree depth in terms of its sensitivity
moments.
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I Corollary 4.13. Let f : {0, 1}n → {±1}, ρ ∼ Rk,n and 1 ≤ j ≤ k. Then

sj(f)
nj

≈ sj(f)∏j−1
i=0 (n− i)

≤ Pr
ρ∈Rk,n

[dt(fρ) ≥ j] ≤ (2k)2ks
√

2j(f)∏√2j−2
i=0 (n− i)

≈ (2k)2ks
√

2j(f)
n
√

2j−1 .

Note that the denominator in the lower bound is nΩ(j) but for the upper bound, it is
nΩ(
√
j). This quadratic gap comes from Theorem 4.9. However, if Conjecture 4.10 stating

that ts(f) ≥ dt(f) were true, it would imply the following sharper upper bound.

I Corollary 4.14. Let f : {0, 1}n → {±1}, ρ ∼ Rk,n and 1 ≤ j ≤ k. If Conjecture 4.10
holds, then

Pr
ρ∈Rk,n

[dt(fρ) ≥ j] ≤ (2k)2ksj(f)∏j−1
i=0 (n− i)

≈ (2k)2ksj(f)
nj

.

The dependence on n here matches that in the lower bound of Corollary 4.13. Conjec-
ture 1.3 follows from this as an easy consequence (indeed showing ts(f) ≥ deg(f) rather than
Conjecture 4.10 suffices):

I Corollary 4.15. Conjecture 4.10 implies Conjecture 1.3.

Proof. We will prove that Ik(f) ≤ (2k)2ksk(f). Let ρ← Rk,n and consider the event that
deg(fρ) = k. By Theorem 3.2, we can lower bound this probability in terms of the Fourier
moments of f as

Ik(f)∏k−1
i=0 (n− i)

≤ Pr
ρ←Rk,n

[deg(fρ) = k].

To upper bound it, by Corollary 4.14, if Conjecture 4.10 holds, then we have

Pr
ρ∈Rk,n

[deg(fρ) ≥ k] ≤ Pr
ρ∈Rk,n

[dt(fρ) ≥ k] ≤ (2k)2ksk(f)∏k−1
i=0 (n− i)

.

The claim follows by comparing the upper and lower bounds. J

For k = 3, 4, it is an easy exercise to verify that dt(fρ) = k implies ts(fρ) = k. This
implies that Conjecture 1.3 holds for k = 3, 4.

We conclude this section with an application to the class of width-w DNF formulas.
In Section 3 we showed how the switching lemma implies sensitivity moment bounds for
DNFs (and AC0). Here we show the converse, how a version of the switching lemma can be
derived using sensitivity moment bounds. The Satisfiability Coding Lemma of [21] implies
the following moment bounds for DNFs:

I Lemma 4.16. [21] There exists a constant c such that if f has a width-w DNF formula,
then sk(f) ≤ (ckw)k.

([21] proved tail bounds on the sensitivity of small-width DNFs from which a simple calculation
leads to the above moment bound. We refer the reader to [12] for more details, and for an
example showing the tightness of this bound.)

If Conjecture 4.10 holds, plugging these bounds into Corollary 4.14 gives that for any
width-w DNF f , there exists c′, c′′ > 0 such that

Pr
ρ∈Rk,n

[dt(fρ) ≥ k] ≤ (c′k)3kwk∏k−1
i=0 (n− i)

≈
(
c′′k3w

n

)k
.
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This nearly matches the bound one gets from Håstad’s switching lemma (with k3 in place of
k). Thus proving Conjecture 4.10 would give a combinatorial proof of the switching lemma
for DNFs which seems very different from the known proofs of Håstad [14] and Razborov
[23].

5 Proper Walks

Since sj(f) ≤ (s(f))j for all j, one can trivially bound the sensitivity moments of a function in
terms of its max sensitivity. Hence Corollaries 4.14 and 4.15 show that under Conjecture 4.10,
low sensitivity functions simplify under random restrictions. In this section we prove this
unconditionally. The key ingredient is a relaxation of sensitive trees that we call proper walks.

A walk W in the n-dimensional Boolean cube is a sequence of vertices (w0, w1, . . . , wt)
such that wi and wi+1 are at Hamming distance precisely 1. We allow walk to backtrack
and visit vertices more than once. We say that t is the length of such a walk.

Let `(W ) ⊆ [n] denote the set of coordinates that are flipped by walk W . We define
k = |`(W )| to be the dimension of the walk. We order the coordinates in `(W ) as `1, . . . , `k
according to the order in which they are first flipped. For each `i ∈ `(W ), let xi denote the
first vertex in W at which we flip coordinate i.

I Definition 5.1. A walk W is a proper walk for a Boolean function f : {0, 1}n → {±1} if
for each `i ∈ `(W ), the vertex xi is sensitive to `i.

Thus a walk is proper for f if the first edge flipped along a new coordinate direction is
always sensitive. This implies that while walking from xi to xi+1, we are only allowed to flip
a subset of the coordinates {`1, . . . , `i}, hence supp(xi ⊕ xi+1) ⊆ {`1, . . . , `i}. Hence if there
is a proper walk of dimension k then there is one of length at most k(k+ 1)/2, by choosing a
shortest path between xi and xi+1 for each i.

In studying proper walks, it is natural to try to maximize the dimension and minimize the
length. We first focus on the former. The following lemma states that the obvious necessary
condition for the existence of an n-dimensional walk is in fact also sufficient:

I Lemma 5.2. Every Boolean function f : {0, 1}n → {±1} that depends on all n coordinates
has a proper walk of dimension n.

Proof. Pick `1 ∈ [n] arbitrarily and let x1 be any vertex in {0, 1}n which is sensitive
to coordinate `1. Let 1 ≤ i ≤ n. Inductively we assume we have picked coordinates
L = {`1, . . . , `i} and points X = {x1, . . . , xi} so that for every j ≤ i,
1. xj is sensitive to `j .
2. For j ≥ 2, supp(xj−1 ⊕ xj) ⊆ {`1, . . . , `j−1}.
If we visit x1, . . . , xi in that order and walk from each xj to xj+1 along a shortest path, the
resulting walk is a proper walk for f . Let C be the subcube that spans the dimensions in L
and contains X.

Case 1: Some vertex in C is sensitive to a coordinate outside of L. Name this vertex xi+1
and the sensitive co-ordinate `i+1, and add them to X and L repectively. Note that xi⊕xi+1
is indeed supported on {`1, . . . , `i}, so both conditions (1) and (2) are met.

Case 2: No vertex in C is sensitive to a coordinate outside L. So for any co-ordinate j 6∈ L,
we have f(x) = f(x⊕ ej). But this means that the set of points X ⊕ ej and co-ordinates L
also satify the inductive hypothesis (specifically conditions (1) and (2) above).
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Let d denote the Hamming distance from C to the closest vertex which is sensitive to
some coordinate outside L. Let z denote one such closest vertex to C (there could be many)
and pick any coordinate j in which z differs from the closest point in C. If we replace X
by X ⊕ ej , the Hamming distance to z has decreased to d− 1. We can repeat this till the
Hamming distance drops to 0, which puts us in Case (1). J

Given this result, it is natural to try to find full dimensional walks of the smallest possible
length. The length of the walk constructed above is bounded by

∑n
i=1(i − 1) ≤ n2/2.

Lemma A.2 in Appendix A gives an example showing that this is tight up to constants. So
while we cannot improve the bound in general, we are interested in the case of functions with
large decision tree complexity, where the following observation suggests that better bounds
should be possible.

I Lemma 5.3. If ts(f) = n, then f has a proper walk of dimension n and length 2n− 1.

The proof is by doing a pre-order traversal of a sensitive tree of dimension n. Thus if
Conjecture 4.10 were true, it would imply that functions requiring full decision tree depth
have proper walks of length O(n). We now give an unconditional proof of this result (we will
use it as an essential ingredient in our “switching lemma” later).

I Theorem 5.4. If dt(f) = n, then f has a proper walk of dimension n and length at most
3n.

Proof. The proof is by induction on n. The base case n = 2 is trivial since in this case there
exists a proper walk of length 2. Assume the claim holds for all n′ < n. Let f be a function
where dt(f) = n. If ts(f) = n we are done by Lemma 5.3, so we assume that ts(f) = m < n.
By Corollary 4.7, there is an orchard {T ⊕ v} of sensitive trees where dim(T ) = m. Assume
by relabeling that `(T ) = {1, . . . ,m}.

Since dt(f) = n, there exists a setting t1, . . . , tm of variables in [m] such that the restriction
f ′ = f |x1=t1,...,xm=tm on n′ = n −m variables satisfies dt(f ′) = n −m. By the inductive
hypothesis, there exists a proper walk in f ′ of dimension n−m and length 3(n−m) in the
subcube x1 = t1, . . . , xm = tm which starts at some vertex s′ = (t1, . . . , tm, s′m+1, . . . , s

′
n)

and ends at some vertex t′ = (t1, . . . , tm, t′m+1, . . . , t
′
n), which flips all coordinates in [n] \ [m].

Consider the tree T ⊕ v in the orchard such that the coordinates of V (T ⊕ v) in [n] \ [m]
agree with s′. Our walk can be divided into three phases:
1. By Lemma 5.3, we can visit every vertex in T ⊕ v using a proper walk of length at most

2m− 1 that only uses edges in [m]. Assume that this walk starts at a and ends at b. By
our choice of v we have that (bm+1, . . . , bn) = (s′m+1, . . . , s

′
n).

2. From b, we then walk to the vertex s = (t1, . . . , tm, s′m+1, . . . , s
′
n). This only requires

flipping bits in [m], so it keeps the walk proper and adds only m to its length.
3. The inductive hypothesis applied to f ′ allows us to construct a proper walk from s to t

that only walks along edges in [n] \ [m] and has length at most 3(n−m).

Thus the total length of the walk is bounded by 2m− 1 +m+ 3(n−m) < 3n. J

5.1 Random Restrictions of Low Sensitivity Functions
In this section we prove our “switching lemma for low-sensitivity functions,” Lemma 5.6.
The high-level idea is to study the existence of (short) proper walks for a random restriction
fρ of f , and use Theorem 5.4 to transfer a bound on the probability that fρ has such short
proper walks, to a bound on the probability that fρ has full decision tree depth. Similar in
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spirit to Theorem 4.11, the proof proceeds by grouping walks according to their topology,
and showing that fρ is unlikely to contain any of them. We now define the notion of a “walk
topology”:

I Definition 5.5. A walk topology of dimension k and length ` is a sequence wt =
(wt1, . . . ,wt`) of coordinates in [k] (possibly with repetitions), where all elements of [k]
appear in wt, and they first appear in the order 1, . . . , k.

Given a walk topology wt, a starting point x0 ∈ {0, 1}n, and a sequence L = (`1, . . . , `k)
of distinct coordinates in [n], we get a walk W = W (x0, L,wt) on the n-dimensional cube
by starting at x0 and associating label i of w with coordinate `i for i ∈ [k]. The walk W
has length ` and dimension k. Conversely, every walk W gives a unique triple (x0, L,wt)
corresponding to its starting point, order in which coordinates are first flipped, and its
topology.

I Lemma 5.6. Let f : {0, 1}n → {±1}. Then

Pr
ρ∈Rk,n

[dt(fρ) = k] ≤ (2k3s(f))k∏k−1
i=0 (n− i)

.

Proof. Fix a restriction ρ ∈ Rk,n. Theorem 5.4 implies that if dt(fρ) = k, then fρ contains a
proper walk W of dimension k and length 3k. Let T OP denote the set of all walk topologies
of dimension k and length 3k, so that |T OP| ≤ k3k/k!. (Observe that of the k3k strings
in [k]3k, precisely a 1/k! fraction of those in which all k elements appear will have them
appearing first in the order 1, . . . , k.) Let SK denote the set of permutations of the live
variables K of ρ.

Fix wt ∈ T OP. We say that wt is good for ρ ∈ Rk,n if there exists a proper walk
for fρ with topology wt; in other words there exists y ∈ C(ρ) and L ∈ SK such that
W = W (y, L,wt) is a proper walk for f . To bound the probability of this event, we first
show that it suffices to consider the case when y and L are uniformly random: we have that
Prρ∈Rk,n

[wt is good for fρ] equals

Pr
ρ∈Rk,n

[∃y ∈ C(ρ), L ∈ SK s.t. W = W (y, L,wt) is a proper walk for fρ]

≤ k!2k Pr
ρ←Rk,n,y←C(ρ),L←SK

[W (y,L,wt) is a proper walk for fρ], (9)

where the inequality holds since for each outcome ρ of ρ there are 2k points y ∈ C(ρ) and k!
elements L ∈ SK .

Sampling the triple (ρ,y,L) is equivalent to independently sampling x ← {0, 1}n and
L = (`1, . . . , `k) by picking k coordinates uniformly from [n] without replacement. It is easy
to see that this determines (ρ,y,L) and hence the walk W = W (y,L,wt). We can now
define the sequence of points on the walk X = (x1, . . . ,xk) as described earlier so that W is
proper for fρ if xi is sensitive to `i. Hence

Pr
x,L

[W is a proper walk for fρ] = Pr
x,L

[xi is sensitive to `i ∀i ∈ [k]]

=
∏
i≤k

Pr
x,L

[xi is sensitive to `i
∣∣xj is sensitive to `j ∀j < i].

(10)

Let us first sample x ← {0, 1}n, and then sample the elements of L = (`1, . . . , `k) one
at a time without replacement. Observe that xi (the first time on the walk W that we flip
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`i) is a function of x, `1, . . . , `i−1, since x1 = x and supp(xi ⊕ x1) ⊆ {`1, . . . , `i−1} (and
the exact subset is specified by wt). Hence fixing outcomes x, `1, . . . , `i−1 of x, `1, . . . , `i−1
fixes the random variables x1, . . . ,xi and whether xj is sensitive to `j for j < i (the events
that we condition on in Equation 10). We then sample `i uniformly from the coordinates in
[n] \ {`1, . . . , `i−1}; crucially, xi is sensitive to at most s(f) of these coordinates. Hence

Pr
x,L

[xi is sensitive to `i
∣∣xj is sensitive to `j ∀j < i] ≤ s(f)

n− i+ 1 .

Plugging this into Equation (10),

Pr
x,L

[Wis a proper walk for fρ] ≤ (s(f))k∏k−1
i=0 (n− i)

. (11)

Hence by Equation (9),

Pr
ρ∈Rk,n

[wt is good for fρ] ≤ k!2k(s(f))k∏k−1
i=0 (n− i)

. (12)

Taking a union bound over all (at most) k3k/k! possible choices of wt ∈ T OP, we get that

Pr
ρ∈Rk,n

[dt(fρ) = k] ≤ k3k2k(s(f))k∏k−1
i=0 (n− i)

≤ (2k3s(f))k∏k−1
i=0 (n− i)

. J

We note that one can prove a similar bound for Prρ∈Rk,n
[dt(fρ) ≥ j]; here we have

presented only the case j = k both because it is simpler and because it suffices for the
concentration results in Section 5.2.

We would like to replace the (s(f))k term with sk(f), the kth sensitivity moment. The
above proof does not seem to generalize to that case, because we do not have an analogue of
Sidorenko’s result on trees for proper walks.

5.2 Fourier tails of low sensitivity functions
We have the necessary pieces in place to give an upper bound on Ik[f ]:

I Lemma 5.7. For every f : {±1}n → {±1} and every k ≥ 1, we have Ik[f ] ≤ (2k3s(f))k.

Proof. By Theorem 3.2 and Lemma 5.6, we have that

Ik[f ]∏k−1
i=0 (n− i)

≤ Pr
ρ∈Rk,n

[deg(fρ) = k] ≤ Pr
ρ∈Rk,n

[dt(fρ) = k] ≤ (2k3s(f))k∏k−1
i=0 (n− i)

,

which may be rewritten as the claimed bound. J

Next we observe that bounding Ik[f ] yields tail bounds for the Fourier spectrum of f .

I Lemma 5.8. For every f : {±1}n → {±1}, every k ≥ 1, and every ε > 0, we have

degε(f) ≤ max
(
k, e

(
Ik[f ]
ε

)1/k)
.

Proof. We first consider the case when Ik[f ]/k! ≤ ε. In this case,∑
|S|≥k

f̂(S)2 ≤
∑
|S|≥k

f̂(S)2
(
|S|
k

)
= Ik[f ]

k! ≤ ε

so degε(f) ≤ k.
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So assume that Ik[f ]/k! ≥ ε. It suffices to prove that for

t0 = e

(
Ik[f ]
ε

)1/k

we have∑
|S|≥t0

f̂(S)2 = Pr
R←Df

[|R| ≥ t0] ≤ ε.

Since
(
t
k

)
is strictly incresing for t ≥ k, we have

Pr
R←Df

[|R| ≥ t] = Pr
R←Df

[(
|R|
k

)
≥
(
t

k

)]
.

Now observe that we have

Ik[f ]
k! = E

R←Df

[(
|R|
k

)]
.

Hence for any t such that

t ≥ k
(
Ik[f ]
k!ε

)1/k

≥ k

Markov’s inequality gives

Pr
R←Df

[|R| ≥ t] ≤
ER←Df

[
(|R|
k

)
](

t
k

) ≤ Ik[f ]
k! · (t/k)k ≤ ε,

One can check that t0 satisfies the required bound using Stirling’s approximation. J

Now we are ready to prove Theorem 1.2:

I Theorem 1.2 (restated). For any function f and any ε > 0, we have
degε(f) ≤ O(s(f)(log 1/ε)3).

Proof. Applying Lemma 5.8 and Lemma 5.7, for every f : {±1}n → {±1}, every k ≥ 1, and
every ε > 0, we have

degε(f) ≤ max
{
k, e

2k3s(f)
ε1/k

}
≤ 2es(f) k

3

ε1/k
.

Taking k = log(1/ε), we get that

degε(f) = O(s(f) log(1/ε)3),

as claimed. J

We note that the relations between influence moments and Fourier concentration that
are established in [26, Section 4] can also be used to obtain Theorem 1.2 from Lemma 5.7.
[26, Section 4] also shows that bounded k-th influence moments imply bounded Fourier L1
spectral norm on the k-th level, which in turn implies Fourier concentration on a small number
of Fourier coefficients (smaller than the trivial

(
n
k

)
bound on the number of coefficients up to

degree k). These results can be used with Lemma 5.7 to establish the corresponding Fourier
bounds for functions with bounded max sensitivity.
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6 Additional questions and complexity measures

As stated earlier, we hope that this work will stimulate further research on the sensitivity
graph Gf and on complexity measures associated with it. Towards this end we conclude
with some additional questions and a new complexity measure.

The graph Gf consists of a number of connected components. This component structure
naturally suggests another complexity measure:

I Definition 6.1. For x ∈ {0, 1}n, the component dimension of f at x, denoted cdim(f, x),
is the dimension of the connected component of Gf that contains x (i.e. the number of
coordinates i such that x’s component contains at least one edge in the i-th direction). We
define cdim(f) to be maxx∈{0,1}n cdim(f, x)).

It is easy to see that cdim(f) ≥ ts(f) ≥ s(f), and thus a consequence of Conjecture 4.10
is that cdim(f) ≥ dt(f); however we have not been able to prove a better lower bound for
cdim(f) in terms of dt(f) than that implied by Theorem 4.9. We note that cdim(f) and
ts(f) are not polynomially related, since the addressing function shows that the gap between
them can be exponential.

Lastly, it is an intriguing open question whether the reverse direction of the robust
sensitivity conjecture also holds: for every k, does there exist a′k, b′k such that E[sk] ≤
a′k E[dk] + b′k? Can one relate this question to a statement about graph-theoretic (or other)
complexity measures?
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A Some Examples

I Lemma A.1. Let n = 2k−1. There exists f : {0, 1}n → {±1} for which dt(f) = log(n+1)
whereas ts(f) = n.

Proof. Take a complete binary tree with n internal nodes and n + 1 leaves. The leaves
are alternately labelled 1 and −1 from left to right, while the internal nodes are labelled
with x1, . . . , xn according to an in-order traversal of the tree. The bound on decision tree
depth follows from the definition of f . To lower bound ts(f), we start at the −1n input and
start flipping bits from −1 to 1 in the order x1, . . . , xn. It can be verified that every bit flip
changes the value of the function. J
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I Lemma A.2. There exists a Boolean function f on n variables such that any proper walk
for f has length Ω(n2).

Proof. Assume that n is a power of 2 and fix a Hadamard code of length n/2. We define
an n-variable function f over variables x1, . . . , xn/2 and y1, . . . , yn/2 as follows: if the string
x1, . . . , xn/2 equals the i-th codeword in the Hadamard code of length n/2, then the output
is yi, otherwise the output is 0. Note that for any i 6= j, if n-bit inputs a, b are sensitive to
yi, yj respectively then the Hamming distance between a and b must be at least n/4. Thus
any proper walk must flip at least n/4 bits between any two vertices that are sensitive to
different yis, so the minimum length of any proper walk must be at least n2/8. J
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