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—— Abstract

Given a twice continuously differentiable cost function f, we prove that the set of initial conditions
so that gradient descent converges to saddle points where V2 f has at least one strictly negative
eigenvalue, has (Lebesgue) measure zero, even for cost functions f with non-isolated critical
points, answering an open question in [12]. Moreover, this result extends to forward-invariant
convex subspaces, allowing for weak (non-globally Lipschitz) smoothness assumptions. Finally,
we produce an upper bound on the allowable step-size.
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1 Introduction

The interplay between the structure of saddle points and the performance of gradient descent
dynamics is a critical and not well understood aspect of non-convex optimization. Despite
our incomplete theoretical understanding, in practice, the intuitive nature of the gradient
descent method (and more generally gradient-like algorithms!) make it a basic tool for
attacking non-convex optimization problems for which we have very little understanding of
the geometry of their saddle points. In fact, these techniques become particularly useful
as the equilibrium structure becomes increasingly complicated, e.g., such as in the cases of
nonnegative matrix factorization [11] or congestion/potential games [25], where symmetries
in the nature of non-convex optimization problems give rise to continuums of saddle points
with complex geometry. In these cases, especially, the simplistic, greedy attitude of the
gradient descent method, which is by design agnostic towards the global geometry of the
cost function minimized, comes rather handy. As we move forward in time, the cost keeps
decreasing and convergence is guaranteed.

This simplicity, however, comes at least seemingly at a significant cost. For example, it is
well known that there exist instances where bad initialization of gradient descent converges to
saddle points [18]. Despite the existence of such worst case instances in theory, practitioners
have been rather successful at applying these techniques across a wide variety of problems
[23]. Recently, Lee et. al. [12] have given a rather insightful interpretation of the effectiveness
of gradient descent methods in terms of circumventing the saddle equilibrium problem using

1A gradient-like system is a system where for each non-equilibrium initial condition the dynamic will
move towards a new state whose cost is strictly less than that of the initial state.
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tools from topology of dynamical systems. At a glance, the paper argues the following
intuitively clear message: The instability of (locally unstable) saddle points translates to a
global phenomenon and the probability of converging to such a saddle point given a randomly
chosen (random not over a local neighborhood but over the whole state space) initial condition
18 zero.

This message is clear, concise, and satisfying in the sense that it transcribes the practical
success of the gradient descent method to a concrete theoretical guarantee. As is usually the
case, such high level statements come with an asterisk of necessary technical conditions on
the cost function f minimized.

Formally, a cost function f is said to satisfy the “strict saddle” property if each critical
point? z of f is either a local minimizer, or a strict saddle, i.e., V2f(z) has at least one
strictly negative eigenvalue. In this case, Lee et. al. argue that if f : R? — R is a twice
continuously differentiable function then gradient descent with constant step-size a (defined
by 2xt+1 = . —aV f(2zk)) with a random initialization and sufficiently small constant step-size
converges to a local minimizer or negative infinity almost surely.

Critically, for this result to apply, f is required to have isolated saddle points, Vf is
assumed to be globally L-Lipschitz® and the step-size « is taken to be less than 1/L. These
regularity conditions soften somewhat the impact of the statement both theoretically as well
as in practice. First, although the assumption of isolated fixed points is indeed generic for
abstract classes of cost functions, in several special cases of practical interest where the cost
function has some degree of symmetry (e.g., due to scaling invariance) this assumption is not
satisfied. For this reason, the question of whether the assumption of isolated equilibria is
indeed necessary was explicitly raised in [12]. Moreover, the assumption of global Lipschitz
continuity for Vf is not satisfied even by low degree polynomials (e.g., cubic). Finally, a
natural question is how tight is the assumption on the step-size?

In this work we provide answers to all the above questions. We show that the assumption
of isolated saddle points is indeed not necessary to argue generic convergence to local minima.
To argue this, we need to combine tools from dynamical systems, topology, analysis and
optimization theory. Moreover, we show that the globally Lipschitz assumption can be
circumvented as long as the domain is convex and forward invariant with respect to gradient
descent. This proposition makes our results readily applicable to many standard settings.
This extension holds even for non-coercive functions.* Finally, using linear algebra and
eigenvalue analysis we provide an upper bound on the allowable step-size (for these results
to hold).

It is important to clearly state that the focus of this work is more theoretical than applied.
Specifically, although GD is guaranteed to converge to local minima this convergence can in
the worst case (worst case initial conditions, instances) take exponential time as finding local
minima of non-convex functions is an NP-hard problem. Nevertheless, we believe that this
combination of topological techniques (standard in continuous-time dynamics) and discrete
optimization techniques, besides solving an interesting open question, will hopefully be of use
for other algorithmic problems as well. Deep learning, due to the singularity of the Hessian
of the loss function in practice [24], is a domain where such techniques could lead to new
insights and practical algorithms.

2 1 is a critical point of f if Vf(x) = 0.

3 That is, f satisfies |V f(x) = VF(¥)lly < Lx — ¥l

4 As pointed out by a referee this extension of Lee et al. is relatively easy when a function is coercive,
since the sublevel sets are compact.
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1.1 Related work

First-order descent methods can indeed escape strict saddle points when assisted by near
isotropic noise. [21] establishes convergence of the Robbins-Monro stochastic approximation
to local minimizers for strict saddle functions, whereas [10] establishes convergence to local
minima for perturbed versions of multiplicative weights algorithm in generic potential games.
Recently, [7] quantified the convergence rate of perturbed stochastic gradient descent to local
minima. The addition of isotropic noise can significantly slow down the convergence rate. In
contrast, our setting is deterministic and corresponds to the simplest possible discrete-time
implementation of gradient descent.

Numerous curvature-based optimization techniques have been developed in order to
circumvent saddle points (e.g., trust-region methods [5, 28], modified Newton’s method
with curvilinear line search [17], cubic regularized Newton’s method [19], and saddle-free
Newton methods [6]). Unlike gradient descent, these methods have superlinear per-iteration
implementation costs, making them impractical for high dimensional settings.

Gradient descent with carefully chosen initial conditions can bypass the problem of
local minima altogether and converge to the global minimum for many practical non-
convex optimization settings (e.g., dictionary learning [1], latent-variable models [29], matrix
completion [9], and phase retrieval [2]). In contrast, we focus on the performance of gradient
descent under generic initial conditions. Finally, some recent work has been focusing on the
connections between stability and efficiency of fixed points in non-convex optimization (e.g.,
Gaussian random fields [4]).

Gradient-like dynamics, where the dynamic moves towards states of decreased cost
but without necessarily moving in the direction of steepest decrease, is a generalization
of gradient dynamics that arise in a number of applications including game theory and
mathematical biology. Similar arguments about convergence to local minima for almost all
initial conditions have been argued [10, 20, 13] for (variants of) replicator dynamics and
multiplicative weights update algorithms when applied to games where the incentives of
all agents are closely aligned.® From the perspective of biology and specifically evolution,
(variants of) replicator/MWUA [3, 16] capture standard models of the evolution of the
frequencies of different genotypes within a species (preferential survival of the fittest).
By analyzing the properties of local minimum energy states we can derive completely
different conclusions about the long term system behavior (in terms e.g., of the resulting
genetic diversity) from the ones that follow from analyzing all saddle points [13]. In fact,
understanding the properties of local minima raises interesting computational complexity
questions [15]. Finally, examining the stability properties of equilibria can help us capture
quantitatively the long term behavior of biologically inspired gradient-like systems even under
time-evolving fitness landscapes [14]. Given the emergent overlapping interests between
these areas and (non-convex) optimization theory, it seems that novel opportunities for
cross-fertilization between these research communities arise.

1.2 Organization

In Section 2, we introduce the notation and definitions used throughout the paper and
state formally our main theorems. In Section 3, we prove our results establishing the
negligible probability of converging to saddle points, addressing the possibility of continuums

5 Such games are known as potential/congestion games [10] and correspond to games where all agents act
as if they share a common cost/potential function that they are trying to minimize.
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of equilibria, forward-invariant subspaces, and establishing an upper bound on the step-size.
In Section 4, we produce several examples showcasing the effectiveness of our methods.
Finally, we conclude in Section 5 by suggesting directions for future work.

2 Preliminaries

Notation: We use boldface letters, e.g., x, to denote column vectors. We denote by
sp(A), || A]|, the spectral radius and spectral norm of a symmetric matrix A respectively. We
also use [x||, for the ¢3 norm of vector x. By V2f(x) we denote the Hessian of a twice
differentiable function f : & — R, for some set £ C RV,

Assume a minimization problem of the form minycpny f(x) where f : RY — R is a
twice continuously differentiable function. Gradient descent is one of the most well-known
algorithms (discrete dynamical system) to attack this generic optimization problem. It is
defined by the equations below:

Xp+1 = X — aV f(xg),

or equivalently xx.1 = g(xx) with g(x) = x —aVf(x), g : RN — RY and a > 0.

It is easy to see that the fixed points of the dynamical system xx11 = g(x) are exactly
the points x so that V f(x) = 0, called critical points or equilibria. The set of local minima
of f is a subset of the set of critical points of f. These two sets do not coincide and this
poses a serious obstacle for proving strong theoretical guarantees for gradient descent, since
the dynamics may converge to a critical point which is not a local minimum, called a saddle
point.

Lee et al. [12] argue, under technical conditions which include the assumption of isolated
critical points, that the set of initial conditions that converge to strict saddle points is a zero
measure set (for definition of strict saddle, see Definition 1). The paper leaves as an open
question whether the condition of isolated equilibria is necessary. We prove that the set of
initial conditions that converge to a strict saddle point is a zero measure set even in the
case of non-isolated critical points®. Furthermore, one of the conditions for f is that Vf
is globally Lipschitz, which implies that the second derivative of f is bounded, i.e., there
exists a 8 > 0 such that for all x we have ||V2f(x)||2 < B. However, even third degree
polynomial functions are not globally Lipschitz. We provide a theorem which can circumvent
this assumption as long as the domain S is forward or positively invariant with respect to g,
i.e., g(S) C S. Finally, we provide an easy upper bound on the step-size «, via eigenvalue
analysis of the Jacobian of g, i.e., I — aV?2f(x).

Below we give some necessary definitions as appeared in Lee et al. [12].

» Definition 1.
A point x* is a critical point of f if Vf(x*) = 0. We denote by C = {x: Vf(x) = 0}
the set of critical points (can be uncountably many).
A critical point x* is isolated if there is a neighborhood U around x* and x* is the only
critical point in U.” Otherwise is called non-isolated.

A critical point x* of f is a saddle point if for all neighborhoods U around x* there are
v,z € U such that f(z) < f(x*) < f(y).

5 Our arguments hence allow for cost functions f’s with uncountably many critical points.
7 If the critical points are isolated then they are countably many or finite.
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A critical point x* of f is a strict saddle if Ayin(V2f(x*)) < 0 (minimum eigenvalue of
matrix V2 f(x*) is negative).

A set S is called forward or positively invariant with respect to some function h : £ — RN
with S C £ CRY if h(S) C S.

2.1 Main Results

In [12], the steps of the proof of their result are the following: Under the regularity assumption
that V f is globally Lipschitz with some Lipschitz constant L, Lee et al. are able to show that
g(x) = x —aVf(x) is a diffeomorphism for av < 1/L. Afterwards, using the center-stable
manifold theorem (see theorem 8), they show that the set of initial conditions so that g
converges to saddle points has measure zero under the assumption that the critical points
are isolated. We generalize their result for non-isolated critical points, answering one of their
open questions (see also the example in Section 4.1, where there is a line of critical points).

» Theorem 2. [Non-isolated] Let f : RN — R be a twice continuously differentiable
function and supycr~y HVQf(X)H2 < L < oo. The set of initial conditions x € RN so that
gradient descent with step-size 0 < a < 1/L converges to a strict saddle point is of (Lebesgue)
measure zero, without the assumption that critical points are isolated.

We can prove a stronger version of the theorem above, circumventing the globally Lipschitz
condition for domains which are forward invariant (see also the example in Section 4.2).

» Theorem 3. [Non-isolated, forward invariant] Let f : S — R be twice continuously
differentiable in an open convex set S CRYN and supycg Hsz(x)H2 <L<oo Ifg(§)CS
(where g(x) = x — aV f(x)) then the set of initial conditions x € S so that gradient descent
with step-size 0 < a < 1/L converges to a strict saddle point is of (Lebesgue) measure zero,
without the assumption that critical points are isolated.

Finally, via eigenvalue analysis of I —aV?f(x), we can find upper bounds on the step-size of
gradient descent. A straightforward theorem is the following:

» Theorem 4. [Upper bound on step-size] Let f be twice continuously differenti-
able in an open set S C RN and C* be the set of local minima. Assume also that v <
V2f(>c)H2 < 00. A necessary condition so that gradient descent converges to local
minima for all but (Lebesque) measure zero initial conditions in S is that the step-size satisfies
a<?2

infxec*

3 Proving the theorems

Before we proceed with the proofs, let us argue that Theorem 3 is a generalization of Theorem
2. This can be checked by setting S := R and observing that g(RY) C RY. We continue
with the proofs of Theorems 3 and 4.

3.1 Proof of Theorem 3

In this section, we prove Theorem 3. We start by showing (for completeness) that the
assumptions of Theorem 3 imply that V f(x) is Lipschitz in S.

» Lemma 5. Let f : S — R where S is an open convex set and f be twice continuously
differentiable in S. Also assume that supycs ||V2f(x)||2 < L < oo. Then Vf satisfies the
Lipschitz condition in S with Lipschitz constant L.

2:5
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Proof. Let x,y € S (column vectors) and define the function H : [0,1] — RY as H(t) =
Vf(x+t(y —x)). By the chain rule we get that H'(t) := % = (V2 f(x+t(y —x))) - (y —x).
It holds that

195) - V16l = | [ (i < @) de

=/0 (V2 £(x + ty — %)y — ||, dt
< / 192 F(x + ty — %)), lly — 1|, dt

1
s/o Ly - xll,dt = Lly — x|,
|

» Remark. From Schwarz’s theorem we get that V2f(x) is symmetric for x € S, hence
[V2f(x)||, = sp(Vf (%))

The assumption that sup, g ||[V2f(x)||, < L < oo implies that V f(z) is Lipschitz with
constant L in the convex set S, as stated by Lemma 5. We show that the converse holds as
well, i.e., the Lipschitz condition for V f(x) with constant L in the main theorem in Lee et
al. implies HVQf(x)H2 < L for all x € S and hence the assumption in our Theorems 2, 3
that sup,cs HVQf(x)H2 < L is satisfied.

» Lemma 6. Let f: S — R where S CRY is an open convex set and f is twice continu-
ously differentiable in S. Assume V f(x) is Lipschitz with constant L in S then it holds

SUPxes ||v2f(X)H2 < L.

Proof. Fix an € > 0. By Taylor’s theorem since f is twice differentiable with respect to some
point x it holds that

IV£(y) = VI, = (V) = %), —ollly —xI,)
> (V2 )y = 0|, —elly — I,

for y sufficiently close to x (depends on €). Therefore under the Lipschitz assumption we get
that there exists a closed neighborhood U (€) of x so that for all y € U we get

[(V2 ) =3, SIVF) = VIS +elly —xlly < (L +€) [x = yll, - (1)

We consider a closed ball B subset of U, with center x and radius r (in ¢3) and set z = x —y.
2 X))z
It is true that ||V2f(X)||2 = SUpP||z),=r v Hfz(H Vel
2
that the length of the vectors is exactly r. Using 1 we get that ||V2f(x)||2 < L+ €. Since ¢

is arbitrary, we get that ||V2f(x)||2 < L. We conclude that supycs ||V2f(x)||2 <L. <

by definition of spectral norm, scaled so

Lemmas 5 and 6 (which are provided for completeness) show that the smoothness assumptions
in Lee et al. paper are equivalent to ours. We use the condition on the spectral norm of the
matrix V2f(x) so that we can work with the eigenvalues in our theorems (e.g., in Remark
3.1 the spectral norm coincides with spectral radius for V2 f(x)). Below we prove that the
update rule of gradient descent, i.e., function g is a diffeomorphism under the assumptions
of Theorem 3 (similar approach appeared in [12]).

» Lemma 7. Under the assumptions of Theorem 3, function g is a diffeomorphism in S.
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Proof. First we prove that g is a injective. We follow the same argument as in [12]. Suppose
g(y) = g(x), thus y — x = a(Vf(y) — Vf(x)). We assume that x # y and we will
reach contradiction. From Lemma 5 we get [|[Vf(y) — Vf(x)|l, < L|ly — x|, and hence
Ix —ylly, < aLlly — x|, < |y — x|, since «L < 1 (contradiction).

We continue by showing that g is a local diffeomorphism. Observe that the Jacobian of
gis I —aV?f(x). It suffices to show that aV?f(x) has no eigenvalue which is 1, because
this implies matrix I — aV2f(x) is invertible. As long as I — aV?2f(x) is invertible, from
Inverse Function Theorem (see [27]) follows that g is a local diffeomorphism. Finally, since

~! is well defined and since g is a local diffeomorphism in S, it

g is injective, the inverse g
follows that ¢g—! is smooth in S. Therefore g is a diffeomorphism.

Let A be an eigenvalue of V2f(x). Then || < sp(V2f(x)) = ||V2f(x)||2 < L where the

equality comes from Remark 3.1 and first and last inequalities are satisfied by assumption.

Therefore aV?2 f(x) has as eigenvalue o\ and |aA| < aL < 1. Thus all eigenvalues of aV? f(x)
are less than 1 in absolute value and the proof is complete. |

Proof of Theorem 3. We will use the Center-stable manifold theorem since g(x) = x —
aV f(x) is a diffeomorphism, where sup,¢g ||V2f(x)||2 < L and a < 1/L. A modification
of the proof of Theorem 3 appeared in [20] and [13] for replicator dynamics (not gradient
descent).

» Theorem 8 (Center and Stable Manifolds, p. 65 of [26]). Let p be a fized point for the
C" local diffeomorphism h : U — R™ where U C R™ s an open neighborhood of p in R"
andr > 1. Let E* @ E€® E" be the invariant splitting of R™ into generalized eigenspaces
of Dh(p)® corresponding to eigenvalues of absolute value less than one, equal to one, and
greater than one. To the Dh(p) invariant subspace E® @ E° there is an associated local h
invariant C" embedded disc WS, of dimension dim(E® & E°), and ball B around p such
that:

hWicyn B Cc WEC. If k" (x) € B for allm > 0, then x € Wi (2)

From this point on our approach deviates significantly from that of [12] and new ideas
and tools need to be introduced.

Let r be a critical point of function f(x) and B, be the (open) ball that is derived from
Theorem 8. We consider the union of these balls

A= U, B,.

The following property for RY holds:
» Theorem 9 (Lindel6f's lemma [8]). For every open cover there is a countable subcover.

Therefore due to Lindeléf’s lemma, we can find a countable subcover for A, i.e., there exist
fixed points rq,ro,... such that A = UY°_, B, . If gradient descent converges to a strict
saddle point, starting from a point v € S, there must exist a ty and m so that g*(v) € B,
for all ¢ > to. From Theorem 8 we get that g'(v) € W% (r,,) NS where we used the fact that
g9(8) C S (from assumption forward invariant), namely the trajectory remains in S for all

times 2. By setting D1 (rp) = ¢ ' (WS (r,) NS) and D11 (ry) = g~ H(Di(r,) N S) we get

loc

8 Jacobian of h evaluated at p.

9 WEE (1) denotes the center stable manifold of fixed point Ty,
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that v € Dy(r,,) for all t > t. Hence the set of initial points in S so that gradient descent
converges to a strict saddle point is a subset of

P =Ux_1 UZ Di(rm)). (3)

Since r,, is strict saddle point, the Jacobian I — aV?f(x) has an eigenvalue greater than
1, namely the dimension of the unstable eigenspace satisfies dim(E") > 1, and therefore
the dimension of W;¢ (r,,) is at most N — 1. Thus, the set W (r,,) NS has Lebesgue
measure zero in RY. Finally since g is a diffeomorphism (from Lemma 7), g~! is continuously
differentiable and thus it is locally Lipschitz (see [22] p.71). Therefore using Lemma 10 which
we state below, g~! preserves the null-sets and hence (by induction) D;(r,,) has measure zero
for all 4. Thereby we get that P is a countable union of measure zero sets, i.e., is measure

zero as well and the claim of Theorem 3 follows. <

» Lemma 10. Let h: S — R™ be a locally Lipschitz function with S C R™ then h is null-set
preserving, i.e., for E C S if E has measure zero then h(E) has also measure zero.

Proof. The lemma is quite standard, but we provide a proof for completeness. Let B, be an
open ball such that ||h(y) — h(x)|| < K, |y —x]| for all x,y € B,. We consider the union
U, B, which cover R™ by the assumption that h is locally Lipschitz. By Lindel6f’s lemma
we have a countable subcover, i.e., U2, B;. Let E; = E N B;. We will prove that h(E;) has
measure zero. Fix an € > 0. Since E; C E, we have that E; has measure zero, hence we can
find a countable cover of open balls C1, Cy, ... for E;, namely F; C U;";le so that C; C B;
for all j and also Z;‘;l w(C5) < g Since E; C U2, C; we get that h(E;) C U2 h(C)),
namely h(C1),h(Cs),... cover h(EZ) and also h(C;) C h(B;) for all j. Assuming that
ball C; = B(x,r) (center x and radius r) then it is clear that h(C;) C B(h(x), K;r) (h
maps the center x to h(x) and the radius r to K;r because of Lipschitz assumption). But
w(B(h(x), Kir)) = K'u(B(x,1)) = K"u(C;), therefore p(h(C;)) < K" u(C;) and so we
conclude that

u(h(E) <) u(h(Cy)) < K"y p(Cy) < e
j=1 j=1
Since € was arbitrary, it follows that u(h(E;)) = 0. To finish the proof, observe that
h(E) = U2, h(E;) therefore pu(h(E)) < 372, u(h(E;)) = 0. <
A straightforward application of Theorem 3 is the following:

» Corollary 11. Assume that the conditions of Theorem & are satisfied and all saddle points
of f are strict. Additionally, let v be a prior measure with support S which is absolutely

continuous with respect to Lebesque measure, and assume limy_,o g* () exists'® for all x in
S. Then

P, [lim " (x) = x"] = 1,
where x* is a local minimum.

Proof. Since the set of initial conditions whose limit point is a (strict) saddle point is a
measure zero set and we have assumed limy_, o g’f (z) exists for all initial conditions in S
then the probability of converging to a local minimizer is 1. |

10 g% denotes the composition of g with itself k times.
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Figure 1 Example that satisfies the assumptions of Theorem 2. The black line represent critical
points of f, all of which are strict. The red lines correspond to diverging trajectories of gradient
descent with small step size.

» Remark. Arguing that limy g¥(x) exists follows from standard arguments in several settings
of interest (e.g for analytic functions f that satisfy (Lojasiewicz Gradient Inequality)), see
paper [12] and references therein.

The importance of Theorem 3 will become clear in the examples of Section 4. Specifically,
in the example of Section 4.2, the function is not globally Lipschitz (we use the example
that appears in [12]), nevertheless Theorem 3 applies and thus we have convergence to local
minimizers with probability 1. In the example of Section 4.1 we see that simple functions
may have non-isolated critical points.

3.2 Proof of Theorem 4

Proof. We proceed by contradiction. Consider any local minimum x*, and by assumption
we get that sp(V2f(x*)) > 7. Let a > % Therefore the Jacobian I — aV?f(x*) of g at x*

has spectral radius greater than 1 since sp( —aV?f(x*)) > sp(aV2f(x*)) —1>ay—1> 1.

This implies that the fixed point x* of g is (Lyapunov) unstable. Since this is true for every
local minimum, it cannot be true that gradient descent converges with probability 1 to local
minima. |

4 Examples

4.1 Example for non-isolated critical points

Consider the simple example of the cost function f: R?® — R with f(z,y, 2) = 22y + 222 —
2z —y — z. Its gradient is V(f) = (2y + 2z — 2,2z — 1,2z — 1). Naturally, its saddle points
correspond exactly to the line (1/2,w,1 — w) for w € R and by computing their (common)

eigenvalues we establish that they are all strict saddles (their minimum eigenvalue is —2+/2).

As we expect from our analysis effectively no trajectories converge to them (instead the value
of practically all trajectories goes to —oo). We plot in red some sample trajectories for small
enough step sizes, starting in the local neighborhood of the equilibrium set.

2:9
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Figure 2 Example that satisfies the assumptions of Theorem 3. The three black dots represent
the critical points. Function f is not Lipschitz.

4.2 Example for forward invariant set

We use the same function as in Lee et al. f(z,y) = ””—22 + % — y; As argued in previous
sections, f is not globally Lipschitz so the main result in [12] cannot be applied here. We
will use our Theorem 3 which talks about forward invariant domains.

The critical points of f are (0,0),(0,1),(0,—1). (0,0) is a strict saddle point and the
other two are local minima. Observe that the Hessian V2 f(z,y) is

10
7= (0 wa)

For § = (—1,1) x (=2,2), so we get that sup(, ,)cs ||V2f(x,y)”2 < 11 (for y = 2 gets the
maximum value). We choose a = -5 < -, and we have g(z,y) = (1—a)z, (1+a)y—ay?®) =
(L, %y - 7{—;) It is not difficult to see that g(S) C S (easy calculations). The assumptions
of Theorem 3 are satisfied, hence it is true that the set of initial conditions in S so that
gradient descent converges to (0,0) has measure zero. Moreover, by Corollary 11 it holds
that if the initial condition is taken (say) uniformly at random in S, then gradient descent
converges to (0, 1), (0, —1) with probability 1. The figure below makes the claim clear, i.e.
the set of initial conditions so that gradient descent converges to (0,0) lie on the axis y = 0,
which is of measure zero in R2. For all other starting points, gradient descent converges to

local minima. Finally, from the figure one can see that S is forward invariant.

4.3 Example for step-size

We use the same function as in the previous example. Observe that for (0,0), (0, 1), (0,—1)
we have that the spectral radius of V2f is 1,2, 2 respectively (so the minimum of all is 1).
We choose o > 2 and we get that g(x,y) = (—z,3y — 2¢°). It is not hard to see that gradient
descent does not converge (in the first coordinate function g cycles between z and —x).

5 Conclusion

Our positive result cannot be improved without making explicit assumptions on the structure
of the cost function f nor using beneficial random noise/well chosen initial conditions (as far
as convergence is concerned, speed of convergence is not in the scope of this paper). Naturally,
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all these directions are of key interest and are the object of recent work (see section 1.1).
Keeping up with this simplest, deterministic implementation of gradient descent a natural
hypothesis is that (in settings of practical interest) it converges not only to local minimizers
but moreover the size of the region of attraction of each local minimizer is in a sense directly
proportional to its quality.

Recently, in [20] there has been some progress in proving such statements in non-convex
gradient-like systems that arise from learning in games. In such settings, (stable) fixed points
correspond to Nash equilibria, but instead of having the typical system performance being
dominated by the worst case Nash equilibria (as Price of Anarchy suggests) the regions
of attractions of such bad (social) states prove to be minimal and the system works near
optimally on average (given uniformly random initial conditions). Extending such statements
to actual gradient-dynamics as well as comparing the average case performance of different
heuristics even in restricted settings is a fascinating question that could shed more light into
the in-many-cases surprising efficiency of the gradient descent method.
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