
Parity Automata for Quantitative Linear Time
Logics∗

Corina Cîrstea1, Shunsuke Shimizu2, and Ichiro Hasuo3

1 University of Southampton, UK
cc2@ecs.soton.ac.uk

2 National Institute of Informatics, Tokyo, Japan
shunsuke@nii.ac.jp

3 National Institute of Informatics, Tokyo, Japan
hasuo@nii.ac.jp

Abstract
We initiate a study of automata-based model checking for previously proposed quantitative linear
time logics interpreted over coalgebras. Our results include: (i) an automata-theoretic charac-
terisation of the semantics of these logics, based on a notion of extent of a quantitative parity
automaton, (ii) a study of the expressive power of Büchi variants of such automata, with implic-
ations on the expressiveness of fragments of the logics considered, and (iii) a naïve algorithm for
computing extents, under additional assumptions on the domain of truth values.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Modal Logic

Keywords and phrases coalgebra, quantitative logic, linear time logic, parity automaton

Digital Object Identifier 10.4230/LIPIcs.CALCO.2017.7

1 Introduction

Linear time logics such as LTL or the linear time µ-calculus (see e.g. [9]), originally interpreted
over non-deterministic transition systems, have been adapted and used successfully in model
checking various types of non-deterministic and probabilistic systems [3]. These logics share
the same notion of linear time behaviour, but depending on the branching present in the
models, have either a qualitative or a quantitative interpretation (with {0, 1}, resp. the
unit interval as domains of truth values). Despite commonalities between the logics and
their automata-based verification techniques, a uniform account of the connection between
(quantitative) linear-time logics and (quantitative) automata over infinite structures is still
missing. This would allow existing verification techniques to be transferred to new models,
including weighted ones (for which linear time logics have already been studied [15]).

This paper initiates a general study of the connection between quantitative linear time
logics and quantitative automata on infinite structures, grounded in coalgebraic modelling, by
building on recent work on maximal traces [6], quantitative linear time logics for systems with
branching [4, 5], and coalgebraic trace semantics for Büchi and parity automata [17]. (Here,
a maximal trace is either a finite, completed trace or an infinite trace.) The work in [6, 4, 5]
models systems with branching as coalgebras of type T◦F , with F : Set→ Set an endofunctor

∗ S.S. and I.H. are supported by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST, and Grants-in-Aid No. 15KT0012 & 15K11984, JSPS. Part of this work was carried
out during a visit of the second author to the University of Southampton, supported by an EPSRC
Institutional Sponsorship Award EP/P511407/1.

© Corina Cîrstea, Shunsuke Shimizu, and Ichiro Hasuo;
licensed under Creative Commons License CC-BY

7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017).
Editors: Filippo Bonchi and Barbara König; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Parity Automata for Quantitative Linear Time Logics

used to specify linear behaviour (the structure of individual transitions) and T : Set→ Set a
monad used to specify branching structure (which typically associates quantities to individual
transitions). Examples include non-deterministic/probabilistic/weighted labelled transition
systems, with or without explicit termination, but also models with a more general “linear”
behaviour, including tree-like behaviour; for example, taking F : Set→ Set to be A× Id× Id
with Id : Set→ Set the identity functor captures linear behaviours given by infinite labelled
binary trees. In this setting, a canonical definition of linear time behaviour of states in a
coalgebra with branching associates, to each state and each possible maximal trace (element
of the final F -coalgebra), a quantity measuring the extent of the given state exhibiting
that trace, accumulated across all branches [6]. This recovers known concepts of infinite
trace semantics, including the possibility (for the finite powerset monad), likelihood (for the
sub-probability distribution monad) or minimal cost (for a weighted monad with weights
modelling costs) of exhibiting a particular trace.

Coalgebraic linear time logics, interpreted over the same types of models, were studied
in [4, 5], with formulas specifying properties of linear behaviour, and with their semantics
measuring the extent with which such properties hold in states of coalgebras with branching.
The monad T uniformly determines both the domain of truth values for the logics and the
choice of propositional operators (e.g. finite disjunctions for non-deterministic systems, sub-
convex combinations for probabilistic systems and linear combinations for weighted systems).
The modal operators employed arise from the functor F , but their interpretation is based
both on a choice of associated predicate liftings for F and on a canonical predicate lifting for
T, with the latter being used to accumulate the quantities associated to different branches.
As with the notion of linear time behaviour, exactly how this accumulation works depends
on the type of branching. For non-deterministic systems, one recovers the aconjunctive
linear-time µ-calculus. For probabilistic systems, the resulting logics differ from probabilistic
variants of LTL or the linear time µ-calculus in their absence of boolean operators. This
difference is beneficial, as it results in an expensive automata determinisation step required
for model checking such probabilistic variants (see [3, Section 10.3]) being avoided with our
logics, without a real loss in expressiveness (see Remark 6). For weighted systems, the logics
are similar to previously proposed ones [15] in their absence of conjunction operators. Our
choice of propositional operators is further supported by results in [5] on the equivalence of
the original, step-wise semantics of the logics with an alternative path-based semantics akin
to that of LTL, and by the close connection to quantitative automata described in this paper.

We now turn to the contributions of this paper. A definition of the extent with which
two states in coalgebras with branching exhibit similar linear behaviour was given in
[6]. Here we take this further by providing alternative characterisations of notions of
maximal and finite trace similarity between two branching coalgebras. These instantiate
to the existence/likelihood/minimal joint cost of a common trace, in the case of non-
deterministic/probabilistic/weighted branching. When one of the coalgebras models the
system of interest and the other captures (un)desirable behaviours, these notions provide
the right concepts for automata-theoretic model checking. Our alternative characterisations
involve a product construction, and a novel notion of extent of a coalgebra with branching.

We then extend these ideas to provide an automata-theoretic characterisation of the
semantics of the logics in [4, 5]. For this, we use a generalisation of standard parity automata
over words/trees, inspired by recent work on coalgebraic trace semantics for Büchi and
parity automata [17]. Our automata are parameterised by (i) a partial semiring monad,
specifying a type of branching, and (ii) a polynomial endofunctor F , specifying a type of
linear behaviour. Key to our approach is the notion of extent of a parity automaton, which

C. Cîrstea, S. Shimizu, and I. Hasuo 7:3

provides a quantitative notion of acceptance, not of a single maximal trace, but across all
maximal traces that conform to the automaton. This instantiates to the existence/likeli-
hood/minimal cost of an accepting trace (maximal trace satisfying the parity condition), for
non-deterministic/probabilistic/weighted branching (with weights modelling costs), respect-
ively (see Example 17). A key advantage of the extent-based characterisation of the semantics
is a localised view of the satisfaction relation of the logics – fixpoints are computed locally on
the reachable part of the product between model and formula automata, rather than globally
as predicates on the model state space, as stipulated in the original semantics. Our generic
translation from formulas to automata resembles known translations for non-deterministic
systems (see e.g. [19]), while additionally exploiting the choices made in the semantics of our
logics to simplify the construction. A translation from automata to formulas is also sketched.

For non-deterministic branching, Büchi automata over words are as expressive as parity
ones [11], while over trees this fails to hold [16]. Here we generalise this result to a quantitative
setting, under the additional assumption that the branching semiring is total. Given our
translations from logics to automata and back, this also yields an important result about
our logics, namely that for word-like linear behaviour (i.e. F isomorphic to a coproduct
of constant and identity functors), the alternation degree 1 fragment of the logics is fully
expressive. We stress that our translation from parity to Büchi automata preserves the
quantitative language. To our knowledge, the only related result in a quantitative setting is a
translation from probabilistic Rabin to probabilistic Büchi automata [2], which only preserves
the qualitative language. Unlike the standard translation from parity to Büchi via Rabin
automata [11], which uses the idempotence of disjunction, our translation does not require
idempotence of the semiring addition. For partial semirings which arise as sub-semirings
of total semirings satisfying our assumptions (as is the case for probabilistic branching), a
similar translation is obtained by moving to the larger semiring; this time, the resulting
Büchi automaton has branching as specified by the larger semiring, but can nonetheless be
used in the same way, given the preservation of the quantitative language (see Remark 33).

Our final contribution is a naïve algorithm for computing extents of parity automata.
This requires an additional assumption on the underlying semiring, satisfied by both non-
deterministic branching and a bounded variant of weighted branching, to ensure that the
computation of individual fixpoints terminates. To summarise, our contributions are:

1. automata-theoretic characterisations of finite and maximal trace similarity between states
of coalgebras with branching (Theorem 14),

2. a notion of extent of a parity automaton, parameterised by a choice of branching monad
and linear time behaviour (Definition 16),

3. translations from linear time formulas to automata and back, providing an automata-
theoretic characterisation of the quantitative semantics of the logics in [4, 5] (Theorem 24),

4. a translation from quantitative parity to quantitative Büchi automata over words (The-
orem 32), rendering the alternation degree 1 fragment of the logics fully expressive,

5. an algorithm for computing extents, similar in complexity to known algorithms for
emptiness checking in the non-deterministic case [14].

We assume familiarity with the coalgebraic approach to modelling systems. Section 2 recalls
the results of [6, 4, 5], while each subsequent section contains one of the above contributions.

CALCO 2017

7:4 Parity Automata for Quantitative Linear Time Logics

2 Preliminaries

2.1 From Partial Commutative Semirings to Commutative Monads
I Definition 1. A partial commutative semiring is a tuple S := (S,+, 0, •, 1) with (S,+, 0)
a partial commutative monoid and (S, •, 1) a commutative monoid, with • distributing over
+; that is, for all s, t, u ∈ S, s • 0 = 0, and whenever t+ u is defined, then so is s • t+ s • u
and moreover s • (t+ u) = s • t+ s • u.

The addition operation of any partial commutative semiring induces a pre-order relation v
on S, given by x v y iff there exists z ∈ S with x+ z = y, and having 0 as its least element.

I Example 2. Here we consider the boolean semiring ({0, 1},∨, 0,∧, 1), the (partial) probabil-
istic semiring ([0, 1],+, 0, ∗, 1), the tropical semiring N = (N∞,min,∞,+, 0) and its bounded

variants SB = ([0, B]∞,min,∞,+B , 0) with B ∈ N, where m+B n =
{
m+ n, if m+ n ≤ B
∞, otherwise

.

The associated pre-orders are ≤ on {0, 1} and [0, 1], and ≥ on N∞ and [0, B]∞.

We further assume that v has a top element and is an ω-chain complete as well as ωop-chain
complete partial order. This holds in all our examples.

A partial commutative semiring S induces a semiring monad (TS , η, µ) with

TS(X) = {ϕ : X → S | supp(ϕ) is finite ,
∑

x∈supp(ϕ)
ϕ(x) is defined }

ηX(x)(y) =
{

1 if y = x

0 otherwise
, µX(Φ)(x) =

∑
ϕ∈supp(Φ)

Φ(ϕ) • ϕ(x)

where supp(ϕ) = {x ∈ X | ϕ(x) 6= 0} is the support of ϕ. Moreover, the monad TS above is
strong and commutative, with strength stX,Y : X × TSY → TS(X × Y) and double strength
dstX,Y : TSX × TSY → TS(X × Y) given by

stX,Y (x, ψ)(z, y) =
{
ψ(y) if z = x

0 otherwise
, dstX,Y (ϕ,ψ)(z, y) = ϕ(z) • ψ(y)

We note that TS1 = S, with 1 a final object in Set, and therefore S carries a TS-algebra
structure given by µ1 : T2

S1→ TS1. The relationship between monads and partial semirings
was studied in [8, 6]. We use semiring monads to model branching, with the semirings in
Example 2 modelling non-deterministic, probabilistic and weighted branching. In the latter
case, we think of the weights as costs associated to individual system steps.

2.2 Finite and Maximal Traces
A coalgebraic approach to defining maximal traces of coalgebras of type TS ◦ F , with F

a polynomial1 endofunctor and TS : Set→ Set a semiring monad, is described in [6]. The
monad TS is used to specify branching structure, whereas the functor F is used to specify
linear behaviour, with the elements of the final F -coalgebra defining individual traces. Since
any polynomial endofunctor on Set can be written as a coproduct of finite products of identity

1 An endofunctor F : Set → Set is polynomial if it is constructed from constant and identity functors
using finite products and arbitrary coproducts.

C. Cîrstea, S. Shimizu, and I. Hasuo 7:5

functors, we readily assume this shape: FX =
∐
λ∈Λ

Xar(λ) with Λ a set of operators with

finite arities. The elements of the final F -coalgebra (initial F -algebra) are potentially infinite
(resp. finite) trees with nodes labelled by some λ and having as many outgoing edges as ar(λ).
The definition of maximal traces resembles the alternative partition-refinement definition
of bisimilarity, but differs from it in two key ways: (i) what is defined is a trace relation
between states of a TS ◦ F -coalgebra and elements of the final F -coalgebra, and (ii) trace
relations are S-valued relations that measure, for each state in a coalgebra with branching
and each linear behaviour, the extent (e.g. ability, likelihood or minimal cost) of that state
exhibiting the given linear behaviour. Concretely, for a TS ◦ F -coalgebra γ : C → TSFC,
its maximal traces are given by the greatest fixpoint of the following operator on S-valued
relations between C and the carrier of the final F -coalgebra (Z, ζ):

RelC,Z
Rel(F)

// RelFC,FZ
LS // RelTSFC,FZ

(γ×ζ)∗
// RelC,Z (1)

Here, RelX,Y is the category of S-valued relations on X×Y , and Rel(F) : RelX,Y → RelFX,FY
“lifts” S-valued relations onX×Y to S-valued relations on FX×FY , with the help of the semir-
ing multiplication: for R : X×Y → S, Rel(F)(R) maps (ιλ(x1, . . . , xar(λ)), ιλ′(y1, . . . , yar(λ′)))
to 0 if λ 6= λ′, and (ιλ(x1, . . . , xar(λ)), ιλ(y1, . . . , yar(λ))) to R(x1, y1) • . . . • R(xar(λ), yar(λ)).
Also, LS : RelX,Y → RelTSX,Y , called extension lifting, takes a relation R : X × Y → S to
the relation µ1 ◦ TSR ◦ st′X,Y : TSX × Y → S, with st′X,Y : TSX × Y → TS(X × Y) the
swapped strength map of TS . This choice for LS is canonical, in the sense that LS(R)(_, y)
is the unique extension of R(_, y) to a TS-algebra homomorphism, for y ∈ Y (see [6] for
details). Concretely, LS(R)(

∑
i cixi, y) = µ1(

∑
i ciR(xi, y)) for xi ∈ X and y ∈ Y . The

effect of using LS above is that the quantity ultimately associated to each pair (c, z) ∈ C ×Z
is accumulated across all branches from c, in a step-wise fashion.

A similar treatment of finite traces is obtained by replacing the final F -coalgebra (Z, ζ)
with the initial F -algebra (I, ι), with ι : FI ' // I , and taking the least fixpoint of the
following operator on S-valued relations:

RelC,I
Rel(F)

// RelFC,FI
LS // RelTSFC,FI

(γ×ι−1)∗
// RelC,I

I Example 3. When S = ({0, 1},∨, 0,∧, 1) (and thus TS is isomorphic to the finite powerset
monad), the (greatest, resp. least) fixpoints of the previous operators relate a state in a
non-deterministic coalgebra with a (maximal, resp. finite) trace iff that state can exhibit
the given trace. When S = ([0, 1],+, 0, ∗, 1) or S = (N∞,min,∞,+, 0), the (greatest,
resp. least) fixpoints give, for each state and each (maximal, resp. finite) trace, the likelihood,
resp. minimal cost of that state exhibiting the given trace. The precise shape of a trace
is determined by the choice of F ; taking F = 1 + A × Id captures words over A, whereas
F = 1 +A× Id× Id captures binary trees with non-leaf nodes labelled by A.

2.3 Quantitative Linear Time Logics for Coalgebras
We now recall (a variant of) the logics studied in [4, 5]. They are interpreted over TS ◦ F -
coalgebras, with TS and F as before, and have syntax given by

µLVΛ 3 ϕ ::= x | [λ](ϕ1, . . . , ϕar(λ)) |
∑
i∈I ci • ϕi | µx.ϕ | νx.ϕ

with x ∈ V , λ ∈ Λ and ci ∈ S such that
∑
i∈I ci is defined. Here, V is a set of variables and I

is a finite set. Writing ιλ : Xar(λ) → FX with λ ∈ Λ for the coproduct injections, we define,

CALCO 2017

7:6 Parity Automata for Quantitative Linear Time Logics

for each modal operator λ ∈ Λ, an S-valued predicate lifting JλK : S_ × . . .× S_ ⇒ S
F_ by:

JλK(p1, . . . , par(λ))(ιλ′(x1, . . . , xar(λ′))) =
{
p1(x1) • . . . • par(λ)(xar(λ)), if λ = λ′

0, otherwise
(2)

I Definition 4. For a TS ◦ F -coalgebra (C, γ) and a valuation V : V → SC , the denotation
JϕKVγ ∈ SC of a formula ϕ ∈ µLVΛ is defined inductively on the structure of ϕ by

JxKVγ = V (x),
J
∑
i∈I

ci • ϕiKVγ = µ1(
∑
i∈I

ci JϕiKVγ),

J[λ](ϕ1, . . . , ϕar(λ))KVγ = γ∗(extFC(JλKC(Jϕ1KVγ , . . . , Jϕar(λ)KVγ))), where the extension pre-
dicate lifting ext : S_ ⇒ S

TS_ takes an S-valued predicate p : C → S to the S-valued
predicate µ1 ◦ TSp : TSC → S, while γ∗ : STSFC → SC is pre-composition with γ.
Jµx.ϕKV \{x}γ (Jνx.ϕKV \{x}γ) is the least (resp. greatest) fixpoint of the operator on SC

taking p : C → S to JϕKV [p/x]
γ , where the valuation V [p/x] : V → SC takes x to p and

y ∈ V \ {x} to V (y).
(In the second clause, both the formal sum notation and the action of µ1 have been extended
pointwisely to functions on C.) We write µLΛ for the set of closed formulas (V = ∅).

For the operator in the last clause of Definition 4 to be order-preserving, monotonicity of
both ext and JλK, with λ ∈ Λ, is required, and proved in [5]. The existence of lfps, respectively
gfps then follows by [10, Theorem 8.22], which assumes an order-preserving operator on a cpo.
The use of extension lifting in the third clause of Definition 4 results in J[λ](ϕ1, . . . , ϕar(λ))KVγ (c)
accumulating the values JλKC(Jϕ1KVγ , . . . , Jϕar(λ)KVγ)(fi), with γ(c) =

∑
i cifi, by taking into

account the weights ci:

J[λ](ϕ1, . . . , ϕar(λ))KVγ (c) = µ1(
∑
i

ciJλKC(Jϕ1KVγ , . . . , Jϕar(λ)KVγ)(fi))

The presence of weighted sums in the logics is supported by results in [5] showing that the
inclusion of such sums preserves the equivalence of the above step-wise semantics with an
alternative, path-based semantics, akin to that of LTL. Finite conjunctions are missing from
the logics, and our step-wise semantics prevents their inclusion. It is worth noting, however,
that fixpoint logics for weighted systems are similar in their absence of conjunctions [15]. For
total semirings S, finite disjunctions are present as finite weighted sums with the weights
equal to 1. Their interpretation is as expected: the formula

∑
i 1 • ϕi (written more simply∑

i ϕi) measures the extent of conforming to one of the ϕis.

I Example 5. Taking F = 1 +A× Id ' 1 +
∐
a∈A Id yields a logic with a nullary modality ∗

(for termination), and unary modalities [a] with a ∈ A, with the usual interpretation. Taking
F = A× Id× Id '

∐
a∈A(Id× Id) yields a logic with binary modalities [a] with a ∈ A, with

associated predicate liftings given by JaKX(p1, p2)(ιa′(x, y)) =
{
p1(x) • p2(y), if a′ = a

0, otherwise
,

for p1, p2 ∈ SX and x, y ∈ X. Irrespective of the choice of F , when S = ({0, 1},∨, 0,∧, 1),
a formula ϕ holds in a state of a TS ◦ F -coalgebra iff that state admits a maximal trace
satisfying ϕ. For S = ([0, 1],+, 0, ∗, 1) or S = (N∞,min,∞,+, 0), JϕKγ : C → S measures
the likelihood, resp. minimal cost of states of TS ◦ F -coalgebras conforming to ϕ (suitably
scaled according to the weighted sums present in ϕ).

I Remark 6. Taking S = ([0, 1],+, 0, ∗, 1) and F = 1 +A× Id yields a linear time logic for
probabilistic transition systems. The absence of pure disjunctions makes this logic different

C. Cîrstea, S. Shimizu, and I. Hasuo 7:7

from probabilistic LTL. A variant of our logics which incorporates disjunctions that can be
resolved in one step (e.g. [a]ϕ ∨ [b]ψ with a 6= b) as new modalities turns out to be more
expressive than probabilistic LTL (see [5, Example 4.3]). In this case, deterministic parity
automata (known to be more expressive than LTL) can be directly encoded in the logic.

I Remark 7. By casting our logics into a dual adjunction framework, as done in [5], it follows
immediately that TS ◦ F -behavioural equivalence implies logical equivalence. This, however,
is not very interesting, given the linear time nature of our logics. A detailed study of a
weaker, trace-based notion of equivalence for which our logics are both sound and expressive
is left as future work.

2.4 Equational Systems
The use of nested fixpoints in the semantics of fixpoint logics can elegantly be rephrased in
terms of solutions of equational systems [1].

I Definition 8. An equational system over posets L1, . . . , Ln is a sequence of equations
u1 =η1 f1(u1, . . . , un) , . . . , un =ηn fn(u1, . . . , un) , where u1, . . . , un are variables, ηi ∈
{µ, ν} and fi : L1 × . . . × Ln → Li is a monotone function. A variable uj is a µ-variable
(ν-variable) if ηj = µ (resp. ηj = ν).

A precise definition of the solution of an equational system can be found in [1, Section 1.4.4].
Intuitively, assuming that the Lis have enough suprema and infima, the solution of an
equational system is defined as follows:

1. the first equation is solved (by taking either the least or the greatest solution, depending
on η1), to obtain an interim solution u1 = l

(1)
1 (u2, . . . , un);

2. this is substituted for u1 in the second equation, yielding a new equation u2 =η2

f‡2 (u2, . . . , un);
3. the second equation is solved to obtain an interim solution u2 = l

(2)
2 (u3, . . . , un);

4. continuing this way from left to right eventually eliminates all the variables and leads to
a closed solution un = l

(n)
n ∈ Ln; and

5. closed solutions are propagated back from right to left to yield closed solutions for all of
u1, . . . , un.

Instead of µ- and ν-annotations, some of the equational systems appearing later in the paper
use natural numbers, with odd (even) values indicating µ- (resp. ν-) variables, and with the
order of equations being determined by the natural order on N. We also use a generalised
form for equational systems, which allows several equations indexed by the same value, all of
which are to be solved simultaneously.

3 An Automata-Based Approach to Trace Similarity

As already sketched in [6], notions of maximal and resp. finite trace similarity between states
of TS ◦F -coalgebras can be defined by using a double extension lifting in place of the extension
lifting LS of (1). This section paves the way towards an automata-based characterisation
of the semantics of the logic µLΛ, by providing a similar (and simpler) characterisation of
maximal and resp. finite trace similarity.

The double extension lifting L′S : RelX,Y → RelTSX,TSY takes an S-valued relation
R : X × Y → S to the S-valued relation µ1 ◦ TSR ◦ dstX,Y : TSX × TSY → S. Compared
to LS , L′S uses the double strength map of TS in place of the swapped strength map to yield

CALCO 2017

7:8 Parity Automata for Quantitative Linear Time Logics

a relation on TSX × TSY . As with LS , this choice for L′S is canonical (see [6]), and satisfies
L′S(R)(

∑
i cixi,

∑
j djyj) = µ1(

∑
i

∑
j(ci • dj)R(xi, yj)).

I Definition 9. The maximal (resp. finite) trace similarity relation between two TS ◦ F -
coalgebras (C, γ) and (D, δ) is the greatest (resp. least) fixpoint of the following operator on
S-valued relations between C and D:

RelC,D
Rel(F)

// RelFC,FD
L′S // RelTSFC,TSFD

(γ×ζ)∗
// RelC,D

We write 'νγ,δ: C ×D → S and 'µγ,δ: C ×D → S for these relations.

I Example 10. For S = ({0, 1},∨, 0,∧, 1), maximal (finite) trace similarity relates precisely
those states which admit a common maximal (resp. finite) trace. For S = ([0, 1],+, 0, ∗, 1) or
S = (N∞,min,∞,+, 0), maximal (finite) trace similarity measures the likelihood, resp. min-
imal joint cost of two states exhibiting a common maximal (resp. finite) trace.

We now introduce notions of ν- and µ-extent of a TS ◦ F -coalgebra, and rephrase the
definitions of 'νγ,δ and 'µγ,δ using these notions. The idea is to measure the weight with
which a state in a coalgebra with branching can exhibit any maximal (resp. finite) trace.
This weight is cumulative across all the branches.

I Definition 11. The ν-extent (µ-extent) of a TS ◦ F -coalgebra (A,α) is the gfp (resp. lfp)
of the operator on SA taking p : A→ S to the composition

A
α // TSFA

TSFp // TSFS
TS(•F)

// TSS = T2
S1 µ1 // TS1 = S

where •F : FS → S is given by •F (ιλ(s1, . . . , sar(λ))) = s1 • . . . • sar(λ) for λ ∈ λ.

The above operator uses a one-step unfolding of the coalgebra structure to compute a
finer approximation of the extent on a state based on the extent on its immediate successors.
As the generality of F allows for immediate successors which are tuples of states, the semiring
multiplication may also need to be used (in •F). The monad multiplication is used to
accumulate the values from different branches. The composition in Definition 11 takes a ∈ A
with α(a) =

∑
i ci(a1

i , . . . , a
ji
i) to µ1(

∑
i ci(p(a1

i)• . . .•p(ajii))). That is, the extent associated
to a particular state accumulates the extents associated to its immediate successors, scaled
by the weights of the corresponding branches.

I Example 12. For the TS ◦F -coalgebras below, with F = 1+A×Id and S = ([0, 1],+, 0, ∗, 1)
(resp. S = (N∞,min,∞,+, 0)), the ν-extent maps x to 0.4, y to 0.6 and z to 0.2 (resp. x and
y to 1 and z to 0), whereas the µ-extent again maps x to 0.4, y to 0.6 and z to 0.2 (resp. x
and z to 4 and y to 2). Intuitively, the reason for the µ- and ν-extents being the same in the
probabilistic case is that the likelihood of never reaching y from either x or z is 0.

x1
2 ,a

��

1
2 ,b

��
y

1
2 ,∗oo 1

4 ,c

AA

z

1
2 ,c

qq1
4 ,c

]] x2,a

��

1,b

��
y

2,∗
oo 0,c

AA

z

0,c

qq0,c

]]

The notions of ν- and µ-extent turn out to be particularly useful when applied to the
product of two TS ◦F -coalgebras; this collects their common F -behaviour, suitably quantified
with the help of the monad structure of TS .

C. Cîrstea, S. Shimizu, and I. Hasuo 7:9

I Definition 13. The product of TS ◦F -coalgebras (C, γ) and (D, δ) is the TS ◦F -coalgebra
with carrier C ×D and transition function γ ⊗ δ given by

C ×D
γ×δ
// TSFC × TSFD

dstFC,FD
// TS(FC × FD)

〈Fπ1,Fπ2〉∗
// TSF (C ×D)

where 〈Fπ1, Fπ2〉∗ is pre-composition with 〈Fπ1, Fπ2〉 : F (C ×D)→ FC × FD.

The effect of pre-composing with 〈Fπ1, Fπ2〉 is that pairs of non-matching one-step
behaviours are discarded from the resulting coalgebra.

Our first result relates the ν- and µ-extents of the product of two coalgebras with the
maximal and respectively finite trace similarity relation between them.

I Theorem 14. Let (C, γ) and (D, δ) be two TS ◦ F -coalgebra. The ν-extent (µ-extent) of
the product coalgebra (C ×D, γ ⊗ δ) coincides with the maximal trace similarity relation 'νγ,δ
(resp. the finite trace similarity relation 'µγ,δ).

Proof (sketch). The proof involves showing that the operators used in the definition of 'νγ,δ
and 'µγ,δ on the one hand, and of the ν-/µ-extent of the product automaton on the other,
coincide. J

4 Parity (S, F)-Automata and their Extent

We now consider parity (S, F)-automata, as extensions of TS ◦F -coalgebras with a parity map,
and define their extent. Parity maps are a natural way to formulate acceptance conditions for
automata on infinite words/trees: the states of the automaton are assigned natural number
parities, and a run of the automaton is accepting iff the largest parity occurring infinitely
often along the run is even (see e.g. [11]). We use parity maps in a similar way, but this time
in a quantitative setting where the emphasis moves away from individual runs.

I Definition 15. A parity (S, F)-automaton is given by a TS ◦ F -coalgebra (A,α) together
with a function Ω : A→ {1, 2, . . .} with finite range, called parity map.

A similar notion called (T, F)-system was considered in [17], albeit under different assumptions
on the monad T, which rule out semiring monads as considered here. A trace semantics for
a (T, F)-system was defined in loc. cit. as a Kleisli map obtained by taking least and greatest
fixpoints, and this was proved to instantiate to the standard notions of acceptance by a
non-deterministic, resp. probabilistic parity automaton. As in [17], our assignment of parities
to all states of the automaton allows for a smooth relationship to equational systems.

The extent of a parity automaton generalises the ν- and µ-extents of a coalgebra by taking
into account the different parities associated to the automaton states. The only difference is
that now the extent involves a collection of nested fixpoints, one for each parity.

I Definition 16. Let (A,α,Ω) be a parity (S, F)-automaton with ran(Ω) ⊆ {1, . . . , n}, let
Ak = {a ∈ A | Ω(a) = k}, and let αk = α ◦ ιk : Ak → TSFA denote the restriction of α to
Ak. The extent e = [e1, . . . , en] : A→ S of (A,α,Ω) is the solution of the equational systemu1 =µ µ1 ◦ TS(•F) ◦ TSF [u1, . . . , un] ◦ α1

...
un =η µ1 ◦ TS(•F) ◦ TSF [u1, . . . , un] ◦ αn

 (3)

with η = µ (η = ν) if n is odd (resp. even), with variables uk ranging over the poset (SAk ,v)
(and therefore [u1, . . . , un] : A→ S), and with the rhss of the equations pictured below:

Ak
αk // TSFA

TSF [u1,...,un]
// TSFS

TS(•F)
// TSS = T2

S1 µ1 // TS1 = S

CALCO 2017

7:10 Parity Automata for Quantitative Linear Time Logics

I Example 17. For non-deterministic/probabilistic/weighted systems, the extent captures
the existence/likelihood/minimal cost of an accepting run. For the coalgebras in Example 12,
assigning parities 1 to the states x and y and 2 to the state z yields automata with extents
mapping x to 0.4, y to 0.6 and z to 0.2, and resp. x to 1, y to 1 and z to 0. The reason for the
extent being similar to the µ- and ν-extents of the underlying coalgebra in the probabilistic
case is that, although runs which visit z infinitely often contribute to the extent, under
the current assignment of probabilities to transitions, the contributed quantity is 0. The
situation would be different if the transition from z to x was removed and the one from z to
itself had probability 1, in which case the extent would map x to 12

14 , y to 5
7 and z to 1.

I Remark 18. A trace semantics for parity (S, F)-automata similar to that of [17] can also
be defined, using an equational system whose variables uk range over SAk×Z . In this case,
the rhs of the kth equation is given by:

Ak × Z
α×(ηFZ◦ζ)

// TSFA× TSFZ
dst // TS(FA× FZ)

〈Fπ1,Fπ2〉∗
// TSF (A× Z)

TSF [u1,...,un]
��

S TSSµ1
oo TSFSTS(•F)

oo

5 From Linear Time Logics to Parity (S, F)-Automata

We now show how to assign, to each clean and guarded formula of µLΛ (Definition 19),
a parity (S, F)-automaton. We then give an automata-theoretic characterisation of the
semantics of a µLΛ-formula, using the extent of a product automaton (between a model and
a formula automaton). The next definition is standard for fixpoint logics (see e.g. [18]).

I Definition 19. For a set V of variables, a formula ϕ ∈ µLVΛ is clean if no variable appears
both free and bound, or is bound more than once, in ϕ, and guarded if each occurrence of a
bound variable inside its defining fixpoint formula lies within the scope of a modal operator.

For a clean formula ϕ ∈ µLVΛ, we write BVar(ϕ) for its set of bound variables. Also, for
x, y ∈ BVar(ϕ), we write ϕx = ηx.ψx for the unique sub-formula of ϕ which binds x, and
y ≤ x iff ϕy is a sub-formula of ϕx. Our technical development will require first transforming
a guarded formula to a strictly guarded one, as defined below.

I Definition 20. A formula ϕ ∈ µLVΛ is (i) strongly guarded if every occurrence of a fixpoint
variable x inside the defining formula ψy of a variable y (with y ≤ x) appears within the
scope of a modal operator, and (ii) strictly guarded if every occurrence of a fixpoint variable
x inside ψx is immediately preceded by a modal operator.

Guardedness requires that, in the formula syntax tree, one cannot pass from a fixpoint
quantification ηy.ψy to an occurrence of y without encountering a modal operator. Strong
guardedness additionally requires that this is the case when passing from ηy.ψy to any fixpoint
variable x occurring inside ψy. It is easy to see that every guarded formula is equivalent to
a strongly guarded one. To see this, assume for simplicity that S = ({0, 1},∨, 0,∧, 1) and
therefore the logic only contains non-weighted sums (i.e. disjunctions) which we denote by +.
Then, a non-strongly guarded occurrence of variable x, necessarily of the form ηx.ϕ[η′y.(x+ψ)]
with ϕ a formula with a guarded hole, is equivalent to ηx.ϕ[x+ η′y′.ψ[(x+ y′)/y]], where x is
now guarded in ψ[(x+ y′)/y] as y was initially guarded in ψ. (This argument generalises to
weighted sums, where now x+ψ is replaced by

∑
i ciψi with ψi = x for some i. However, when

C. Cîrstea, S. Shimizu, and I. Hasuo 7:11

S is a partial semiring, an additional unfolding of the formula η′y′.ψ[(x+ y′)/y] is required,
as the counterpart of the sum x+ η′y′.ψ[(x+ y′)/y] may not be defined.) Strict guardedness
additionally requires that occurrences of x inside ψy are immediately preceded by modal
operators. Given the distributivity of modal operators over weighted sums (an immediate
consequence of the definition of JλK), one can translate a strongly guarded formula into an
equivalent, strictly guarded one by pushing weighted sums outside the modal operators.

The next definition can be traced back to the notion of Fischer-Ladner closure [12].

I Definition 21. A set C ⊆ µLVΛ of formulas is closed if
ψ[ηx.ψ/x] ∈ C whenever ηx.ψ ∈ C, for η ∈ {µ, ν},
ϕi ∈ C for i ∈ {1, . . . , n}, whenever

∑
i∈{1,...,n}

ci • ϕi ∈ C,

ϕ1, . . . , ϕar(λ) ∈ C whenever [λ](ϕ1, . . . , ϕar(λ)) ∈ C.
The closure Cl(ϕ) of a µLVΛ-formula ϕ is the smallest closed set containing ϕ.

We note that Cl(ϕ) is always finite: the second and third clauses above can only be
applied finitely many times before the first clause applies; and applications of the first clause
only lead to the inclusion of a new formula in Cl(ϕ) once for each fixpoint sub-formula of ϕ.

We now exploit the close relationship between the logic µLΛ on the one hand and the
semiring S and endofunctor F on the other to associate, to each clean and strictly guarded
formula ϕ ∈ µLΛ, a parity (S, F)-automaton with carrier Cl(ϕ). To this end, we assign
natural numbers nx to variables x ∈ BVar(ϕ) in a way which is consistent with the order
BVar(ϕ), that is, nx ≤ ny whenever x ≤ y, and which differentiates between least and
greatest fixpoints, that is, nx is odd (even) if ϕx = µx.ψ (resp. ϕx = νx.ψ). The number
of parities can be optimised to equal the alternation depth of ϕ, given by the number of
alternations between least and greatest fixpoints [1]. Hereafter we assume that ϕ is a fixpoint
formula (otherwise the formula νx.ϕ with x a fresh variable can be considered instead).

I Definition 22. The parity (S, F)-automaton (Cl(ϕ), β,Ω) associated to a clean and strictly
guarded formula ϕ ∈ µLΛ with ϕ = ϕz = ηz.ψz has β : Cl(ϕ)→ TSFCl(ϕ) and Ω : Cl(ϕ)→
{1, 2, . . .} defined by induction on the structure of Cl(ϕ):

Ω(ηx.ψx) = nx (and hence Ω(ϕ) = nz),
β(ηx.ψx) = β(ψ[ηx.ψx/x]); Ω(ψ[ηx.ψ/x]) = nx, unless ψ[ηx.ψ/x] is a fixpoint formula
itself, in which case the previous clause applies,
β
(∑
i∈{1,...,n}

ci • ϕi
)

= µFCl(ϕ)
(∑
i∈{1,...,n}

ci β(ϕi)
)
; Ω(ϕi) = Ω(

∑
i∈{1,...,n}

ci • ϕi) for i ∈

{1, . . . , n}, unless ϕi is a fixpoint formula, in which case the first clause applies,
β([λ](ϕ1, . . . , ϕar(λ))) = ηFCl(ϕ)(ιλ(ϕ1, . . . , ϕar(λ))); Ω(ϕi) = Ω([λ](ϕ1, . . . , ϕar(λ))) for
i ∈ {1, . . . , ar(λ)}, unless ϕi is a fixpoint formula, in which case the first clause applies,

with η : Id ⇒ TS and µ : T2
S ⇒ TS the unit and resp. multiplication of TS . (Note the

difference in denotations between the first and the second occurrences of the
∑

symbol in the
third clause: the first is part of a propositional symbol of µLΛ, whereas the second describes
an element of TSTSFCl(ϕ) as a formal sum.)

Thus, formulas in Cl(ϕ) are assigned parities starting from the outermost formula, and
with a formula receiving the same parity as the smallest formula which contains it – unless
the given formula is a fixpoint one ηx.ψx, in which case its parity is nx. This is standard
(see e.g. [7]), and gives Ω(ψ′) ≤ Ω(ψ) whenever ψ′ is a sub-formula of ψ different from a
fixpoint formula. However, if a formula ψ ∈ Cl(ϕ) occurs several times within ϕ, Ω(ψ) is
defined more than once according to the above definition. In this case, a copy of ψ should be
made within Cl(ϕ) for each occurrence of ψ, with different copies assigned possibly different

CALCO 2017

7:12 Parity Automata for Quantitative Linear Time Logics

parities. To avoid complicating the definition of the parity automaton associated to ϕ, and
our subsequent exposition, we assume (for the above definition) that ϕ does not contain
several occurrences of any sub-formula. Our technical development does not, however, depend
on this assumption.

The recursive definition of β, with base case [λ](ϕ1, . . . , ϕar(λ)), deviates from the more
standard approach to translating fixpoint formulas to automata (see e.g. [18]), which applies
more generally to unguarded formulas and involves an intermediate automaton with silent
steps. Here, silent steps are automatically absorbed into the next non-silent transition, with
no unwanted consequences. This is possible due to our strict guardedness assumption:

1. Guardedness ensures well-definedness of β, as only a finite number of applications of the
second and third clauses of Definition 19 are possible before the last clause applies.

2. Strict guardedness ensures that the implicit elimination of silent steps is such that every
path from ϕy to x in the formula syntax tree corresponds to a “path” from ϕy[ϕx/x] to
ϕx in the resulting automaton. Thus, states (such as ϕx) with parities greater than the
parity associated to ϕy are not sidestepped during the implicit elimination of silent steps.
The first formula of Example 23 illustrates why strict guardedness is needed.

I Example 23. Assume F = 1 +A× Id. Thus, the associated logic contains a single nullary
modality ∗ and unary modalities [a] with a ∈ A.

1. The strongly guarded formula ξx := νx.ξy with ξy := µy.[a](x + y), with associated
automaton shown below on the left, is not strictly guarded. This automaton does not
faithfully represent ξx, as it does not accept aω (since Ω(ξx + ξy[ξx/x]) = Ω(ξy) = 1). On
the other hand, the automaton associated to the equivalent, strictly guarded formula
ξ′x := νx.ξ′y with ξ′y := µy.([a]x+ [a]y), shown below on the right, correctly accepts aω
(as Ω(ξ′x) = 2). The problem with ξx is that the path from ξy to x in the formula syntax
tree does not correspond to a path from ξx + ξy[ξx/x] to ξx in the resulting automaton
(and similarly for the path from ξx to x).

ξx
a // ξx + ξy[ξx/x]

a

��

ξy[ξx/x]aoo ξ′x

a

�� a
--
ξ′y[ξ′x/x]

a

��

a

kk

2. The automata associated to the strictly guarded formulas ϕx := νx.(ϕy + [b]x) with
ϕy := µy.(∗+ [a]y), and ψx := νx.ψy with ψy := µy.[c]([a]x+ [b]y), are:

ϕx

b

��∗oo a // ϕy

a

�� ∗ //
ψx

c
55

[a]ψx + [b]ψ′y

b

&&

a

xx
ψ′y

c
ii

with ψ′y := ψy[ψx/x], Ω(ϕx) = Ω(ψx) = 2 and Ω(ϕy) = Ω(ψ′y) = Ω([a]ψx + [b]ψ′y) = 1.

Given a TS ◦F -coalgebra (C, γ) and ϕ ∈ µLΛ with associated automaton (Cl(ϕ), β,Ω), one
can endow the product of (C, γ) and (Cl(ϕ), β) with a parity map by setting Ω(c, ψ) = Ω(ψ)
for (c, ψ) ∈ C × Cl(ϕ). The next result provides a characterisation of JϕKγ using the extent
of the resulting parity automaton.

I Theorem 24. If (Cl(ϕ), β,Ω) with ran(Ω) ⊆ {1, . . . , n} is the parity automaton for a clean
and strictly guarded formula ϕ ∈ µLΛ, (C, γ) is a TS ◦ F -coalgebra and e = [(en)n∈ran(Ω)] :
A → S is the extent of the product parity automaton (A,α,Ω) of (C, γ) and (Cl(ϕ), β,Ω),
then JϕKγ(c) = e(c, ϕ) for c ∈ C.

C. Cîrstea, S. Shimizu, and I. Hasuo 7:13

The proof of Theorem 24 involves defining an equational system Eϕ in generalised form
(see Section 2.4), whose solution is known to provide an alternative characterisation of JϕKγ ,
and proving that this solution can alternatively be characterised using the extent of the
product automaton (A,α,Ω). This intermediary result makes use of solution-preserving
substitutions of rhss of equations in Eϕ for the respective variables, to transform Eϕ into an
equational system equivalent to the one used to define the extent of the product automaton.

The equational system Eϕ employs a variable uψ ranging over SC for each formula
ψ ∈ Cl(ϕ). In order to specify the rhss of Eϕ, we define, for each ψ ∈ Cl(ϕ), a term
dψ : (SC)Cl(ϕ) → SC over these variables:

d[λ](ϕ1,...,ϕar(λ)) = γ∗(extFC(JλK(uϕ1 , . . . , uϕar(λ)))),

d∑
i∈{1,...,n}

ci•ϕi = µ1(
∑

i∈{1,...,n}

ciuϕi), (4)

dηx.ψ = uηx.ψ.

I Definition 25. For ϕ ∈ µLΛ clean and strictly guarded, the system Eϕ collects (i) all
equations uηx.ψ =Ω(ηx.ψ) dψ[ηx.ψ/x] with ηx.ψ ∈ Cl(ϕ), and (ii) all equations uξ =Ω(ξ) dξ
with ξ ∈ Cl(ϕ), ξ 6= ηx.ψ, where the uψs range over SC for ψ ∈ Cl(ϕ).

The following result is folklore (see e.g. [7] for a similar result).

I Proposition 26. For ϕ ∈ µLΛ clean and guarded, and (C, γ) a TS ◦ F -coalgebra, let
(vψ)ψ∈Cl(ϕ) denote the solution of the equational system Eϕ. Then, for ψ ∈ Cl(ϕ), JψKγ :
C → S coincides with dψ[(vξ/uξ)ξ∈Cl(ϕ)].

I Example 27. The systems of equations associated to ξx and resp. ϕx of Example 23 are

 uξx =2 uξy [ξx/x]
uξy [ξx/x] =1 γ∗(extFC(JaKuξx+ξy [ξx/x]))

uξx+ξy [ξx/x] =1 µ1(uξx + uξy [ξx/x])

 ,

uϕx =2 µ1(uϕy + u[b]ϕx)
u[b]ϕx =2 γ∗(extFC(JbKuϕx))
uϕy =1 µ1(u∗ + u[a]ϕy)
u∗ =1 γ∗(extFC(J∗K))

u[a]ϕy =1 γ∗(extFC(JaKuϕy))


The definitions of both Eϕ and β are driven by the structure of Cl(ϕ), and use the same

strategy to associate parities to formulas. However, the definition of β sidesteps certain
formulas during the implicit elimination of silent steps from the resulting automaton. The
proof of Theorem 24, not included here for space reasons, shows that, under the assumption
that ϕ is strictly guarded, carrying out a suitable choice of substitutions (those implicitly
performed in the definition of β) on Eϕ results in an equational system equivalent to both
Eϕ and the system of equations defining the extent of the product automaton.

For the modal µ-calculus, a converse translation, from parity automata to fixpoint
formulas, also exists. This is defined by induction on the number of parities and uses vectorial
syntax as an intermediary step. Vectorial syntax [1] generalises standard fixpoint calculus
syntax by replacing fixpoint variables with arrays of such variables, all with the same parity,
with the corresponding fixpoints being computed simultaneously. A similar translation from
parity (S, F)-automata to µLΛ-formulas can be defined here. A translation from a parity
(S, F)-automaton to vectorial syntax is straightforward: each automaton state yields a new
variable, with parity given by the automaton, and whose defining formula is taken from the
coalgebra map of the automaton. A translation from vectorial to standard syntax is then
carried out by appealing to the Bekič principle – this allows reducing a simultaneous fixpoint
to a sequence of individual fixpoints (see e.g. [1, Lemma 1.4.2]). The formula associated to
the original automaton can now be read directly from the resulting equational system.

CALCO 2017

7:14 Parity Automata for Quantitative Linear Time Logics

I Theorem 28. For a parity (S, F)-automaton (A,α,Ω) with Amax(ran(Ω)) = {a}, there exists
ϕa ∈ µLΛ such that, for every TS ◦ F -coalgebra (C, γ), if e : [(en)n∈ran(Ω)] is the extent of
the product parity automaton between (C, γ) and (A,α,Ω) then JϕaKγ(c) = e(c, a) for c ∈ C.

Proof (sketch). The proof closely follows that of [19, Theorem 34]. J

I Remark 29. The results of this section can easily be extended to the variant of µLΛ
described in Remark 6: while formula and model automata now have slightly different types,
their product, itself a parity (S, F)-automaton, can be constructed in a similar way.

6 From Parity to Büchi Automata

We now present a direct reduction from parity word automata to Büchi ones. Parity word
automata are parity (S, FΣ,∆)-automata, with FΣ,∆ = Σ× Id + ∆ for alphabets Σ and ∆.
Büchi automata have ran(Ω) = {1, 2}. Here we additionally assume the semiring S to be total.
Our reduction involves manipulating “linear” equational systems; their rhss use operations
that resemble matrix-vector multiplication and vector addition, as defined below.

I Definition 30. Let X and Y be sets, and let M : X × Y → S and v : Y → S be a relation
and a predicate respectively. Assume M and v to have finite support. M • v : X → S is
defined by (M • v)(x) =

∑
y∈Y M(x, y) • v(y) . For predicates v1, v2 : Y → S, v1 + v2 is

defined by pointwisely extending + on S.

By the finite support property, M • v is well-defined even for X or Y infinite. The next
lemma concerning linear equational systems is key to our reduction.

I Lemma 31. Let a set X = X1+. . .+Xn, a number k ∈ [1, n] and a relationM : X×X → S

be fixed. Let X≤k = X1 + . . .+Xk and X>k = Xk+1 + . . .+Xn. For a predicate v : X≤k → S,
the equational systems Eηk (v) and Eµk (v), whose solutions belong to SX1 × . . .× SXk ∼= SX≤k ,
are defined as follows. Polarities η1, . . . , ηk ∈ {µ, ν} of Eηk (v) can be chosen arbitrarily.

Eηk (v) =

 u1 =η1 M1 • [u1, . . . , uk] + v1
...

uk =ηk Mk • [u1, . . . , uk] + vk

 ,

Eµk (v) =

 u1 =µ M1 • [u1, . . . , uk] + v1
...

uk =µ Mk • [u1, . . . , uk] + vk


Here each sub-relation Mi : Xi ×X≤k → S and each sub-predicate vi : Xi → S are given by
domain restriction. Then for any vη, vµ : X≤k → S, the solution of Eηk (vη + vµ) is obtained
by summing the solutions of Eηk (vη) and Eµk (vµ).

The reduction proceeds in a step-wise manner, decrementing the largest parity, assumed
without loss of generality to be even, by 2 at each step. An example is given in Figure 1.
One reduction step is as follows:

1. Create a copy of states with parity lower than n− 1. Incoming (only!) edges to those
states are also copied. (This is only possible if the semiring is total.)

2. For the old copy of states with parity lower than n− 1, let the new parity be n− 3 and
drop explicit terminations (i.e. transitions with a nullary letter).

3. Decrement the priorities of the other states by 2.

C. Cîrstea, S. Shimizu, and I. Hasuo 7:15

12

3 4

56

X

d

d
d

c

c

b b
a

a

7−−−→

33

3 3

34

d

d
d

c

c

b b
a

a

2

3 4

1
X

b

d

d
d

c

c

Figure 1 A step of the reduction from a parity automaton to a Büchi automaton. The number
on each node denotes its parity. This step does not change the accepted language ((b c∗ b)∗ (aa)∗)ω |
((b c∗ b)∗ (aa)∗)∗ b cω | ((b c∗ b)∗ (aa)∗)∗ b c∗ c(ddd)∗ .

The intuition is that, from old copies of states, a state with parity higher than n− 2 must be
visited again for acceptance; whereas from new copies, such a state must not be visited. The
correctness of this translation is proved using Lemma 31. This also explains why the shape
of F must be restricted to FΣ,∆ – this makes extents be given by linear equational systems.

By repeatedly applying the reduction step, any parity (S, FΣ,∆)-automaton A can be
reduced to a Büchi (S, FΣ,∆)-automaton AB. Since the reduction is such that an accepting
path of A corresponds to exactly one accepting path of AB, idempotence of + is not required.

I Theorem 32. Let A = (A,α,Ω) be a parity (S, FΣ,∆)-automaton with ran(Ω) = [1, n].
Assume without loss of generality that n is even. The Büchi (S, FΣ,∆)-automaton AB =
(AB, αB,ΩB) is given by

AB =
∐
k∈[1,n]Ak × {i | i ∈ [k, n], i is even}

αB(a, i)(ισ(a′, j)) =
{
α(a)(ισ(a′)) if i = j, or dΩ(a)e = i and i > j

0 otherwise

αB(a, i)(ιδ) =
{
α(a)(ιδ) if dΩ(a)e = i

0 otherwise

ΩB(a, i) =
{

2 if dΩ(a)e = i and i is even
1 otherwise

Here dΩ(a)e = min{k | k ≥ Ω(a) and k is even}. The automaton AB satisfies

ext(A×M)(a,m) =
∑

(a,i)∈AB ext(AB ×M)((a, i),m) (5)

for any TS ◦ FΣ,∆-coalgebraM and each (a,m) ∈ A×M .

I Remark 33. The definition of AB does not generalise to partial semirings S, due to the
duplication of states involved. However, if S can be extended to a total semiring S′ satisfying
our assumptions, then carrying out the reduction for A as an (S′, FΣ,∆)-automaton yields
the desired result, namely a Büchi (S′, FΣ,∆)-automaton AB that satisfies condition (5). In
particular, this means that one can treat the probabilistic case (S = ([0, 1],+, 0, ∗, 1)) by
moving to the total semiring S′ = (R∞,+, 0, ∗, 1). Specifically, one can model check formulas
in our probabilistic linear time µ-calculus by (i) taking the product of the given model and
formula automata, (ii) reducing the resulting automaton, viewed as an (S′, FΣ,∆)-automaton,
to a Büchi one, and (iii) computing the extent of the (S′, FΣ,∆)-automaton thus obtained.

CALCO 2017

7:16 Parity Automata for Quantitative Linear Time Logics

Input: parity automaton (A,α,Ω)
Output: extent e : A→ S of (A,α,Ω)
1. let e := [a 7→ 0S]
2. Extent(max(ran(Ω)))
Procedure Extent(n ∈ N)
1. if n = 0 then return endif
2. for a ∈ An do

3. e(a)←
{

0S , if n is even
1S , otherwise

4. endfor
5. repeat
6. let old := e
7. e← Extent(n− 1)
8. for a ∈ An do
9. e(a)←

∑
i∈I vi •old(a1)• . . .•old(aji)

where α(a) =
∑

i∈I viιλ(a1, . . . , aji)
10. endfor
11. until e = old

Lines 8-10 of the Extent procedure
compute a better approximation of the
extent for automaton states with the
current parity n, based on a one-step
unfolding of the automaton transition
structure.
Line 7 computes the extent of states
with immediately lower parity, relative
to the current values for states with
parity n, through a recursive call to
Extent (which may involve further re-
cursive calls).
Recursive calls to Extent update the
same copy of e, and only make an ad-
ditional copy to remember values from
the previous step.

Figure 2 Algorithm for computing the extent e : A→ S of (A,α,Ω).

Theorem 32 together with the existence of semantics preserving translations from µLΛ-
formulas to parity (S, F)-automata and back (Theorems 24 and 28) now give us the following:

I Corollary 34. For F = FΣ,∆, the alternation degree 1 fragment of µLΛ is fully expressive.

7 An Algorithm for Computing Extents

We now describe an algorithm for computing the extent of a parity (S, F)-automaton, under
the additional assumption that the length of any strictly ascending/descending chain in (S,v)
is bounded. Both the boolean semiring and the bounded version of the tropical semiring (see
Example 2) satisfy this assumption.

We fix a parity (S, F)-automaton (A,α,Ω). Thus, for a ∈ A, α(a) is a finite weighted
sum of tuples ιλ(a1, . . . , ak) with λ ∈ Λ, k = ar(λ) and ai ∈ A. The algorithm is described
in Figure 2, and employs a recursive procedure Extent(n ∈ ω).

To see that the algorithm terminates, note that each call of Extent(n) either increases or
decreases all the values in An. The assumed bound on the length of strictly ascending/des-
cending chains guarantees termination of each call: each iteration of the repeat . . .until
changes at least one of the values e(a) with a ∈ An. Several improvements to the algorithm
are possible, e.g. only remembering certain extent values (those with parity n) in the variable
old; and deferring the recursive call until the approximation on the current parity saturates.

Next, we discuss complexity. If |ran(Ω)| = 1, and assuming for simplicity that S is finite,
the algorithm has a time complexity which is quadratic in the size of the automaton – the
length of a strictly increasing/decreasing chain in BAi is at most |Ai||B|, each iteration (lines
8-10 in the algorithm) increases/decreases at least one of the values e(a), and takes time linear
in |A|. If |ran(Ω)| = m > 1, then since each recursive call of Extent only updates values e(a)
with a ∈ Ai, for some i ∈ ran(Ω), the time complexity is O(|A||ran(Ω)||B||ran(Ω)|∏

i∈ran(Ω) |Ai|).
We conclude by noting that, for Büchi (S, F)-automata, the algorithm can be generalised

to semirings S where only strictly ascending chains in (S,v) are required to have bounded
length. This extends applicability e.g. to the tropical semiring. Instead of the exact extent of a

C. Cîrstea, S. Shimizu, and I. Hasuo 7:17

Büchi automaton, the generalised algorithm computes increasingly finer over-approximations
of the extent. The boundedness assumption guarantees that inner calls to Extent terminate.

8 Related Work and Concluding Remarks

A translation from fixpoint calculi over an arbitrary signature Σ to Σ-automata is defined at
an abstract level in [1, Section 7]. However, the fixpoint calculi of loc. cit. are intrinsically
boolean (their semantics is given in terms of parity games), and thus do not subsume the
quantitative logics described here. Our logics share many features with concrete µ-calculi,
and our translations from formulas to automata and back resemble existing ones (see e.g. [19,
Section 5.3]). Yet, our logics differ in their quantitative semantics, which in particular means
that a semantics based on parity games is not available anymore.

Our translation from formulas to automata exposes and exploits the coalgebraic structures
present in both models and formulas. Theorems 24 and 28 are thus similar to results in [18],
which also provide a coalgebraic perspective on the connection between fixpoint logics and
automata. Differently from [18], our construction of the automaton for a formula avoids the
use of silent transitions and, more importantly, applies also to quantitative logics.

Our results go beyond existing ones, both in the case of probabilistic systems (given our
choice of logics) and in the case of weighted systems (where we are not aware of similar
translations). In particular, for probabilistic systems, our logics are subtly different from
existing ones (they contain sub-convex combinations of formulas but no pure disjunctions or
conjunctions), yet are at least as expressive (see Remark 6).

Our parity to Büchi translation (Theorem 32) is novel in two ways: (i) unlike existing
translations (e.g. from probabilistic Rabin to probabilistic Büchi automata [2]) which preserve
only the qualitative language, our translation preserves the quantitative language, and (ii) our
result comes with a proof which is not a generalisation of any proof we are aware of in the
qualitative case. Thus, the jump from a qualitative to a quantitative setting is non-trivial.

Our admittedly trivial model checking algorithm has complexity similar to that of known
algorithms for the qualitative case [14], while also being applicable in quantitative settings.
Currently this only includes semirings with finite strictly ascending/descending chains. Such
semirings can e.g. be used to model resource usage with bounded resources. The study of
more generally applicable algorithms is left as future work. For this, our recent lattice-based
generalisation of the notion of progress measure [13] is expected to prove useful.

Acknowledgments. We thank the anonymous reviewers for their insightful comments.

References
1 A. Arnold and D. Niwiński. Rudiments of µ-Calculus. Studies in Logic and the Foundations

of Mathematics. North-Holland, 2001.
2 C. Baier, M. Größer, and N. Bertrand. Probabilistic ω-automata. J. ACM, 59(1):1, 2012.
3 C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
4 C. Cîrstea. A coalgebraic approach to linear-time logics. In A. Muscholl, editor, Foundations

of Software Science and Computation Structures, 17th International Conference, pages 426–
440. Springer, 2014.

5 C. Cîrstea. A coalgebraic approach to quantitative linear time logics. CoRR,
abs/1612.07844, 2016. URL: http://arxiv.org/abs/1612.07844.

6 C. Cîrstea. From branching to linear time, coalgebraically. Fundamenta Informaticae,
150:1–28, 2017.

CALCO 2017

http://arxiv.org/abs/1612.07844

7:18 Parity Automata for Quantitative Linear Time Logics

7 R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal µ-calculus. In
Computer Aided Verification, 4th International Workshop, pages 410–422. Springer, 1993.

8 D. Coumans and B. Jacobs. Scalars, monads, and categories. In Quantum Physics and
Linguistics. A Compositional, Diagrammatic Discourse, pages 184–216. Oxford Univ. Press,
2013.

9 M. Dam. Fixed points of Büchi automata. In R. Shyamasundar, editor, Foundations
of Software Technology and Theoretical Computer Science, 12th Conference, pages 39–50.
Springer, 1992.

10 B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2. ed.). Cambridge
University Press, 2002.

11 B. Farwer. ω-Automata. In E. Grädel, W. Thomas, and T. Wilke, editors, Automata,
Logics, and Infinite Games: A Guide to Current Research, pages 3–20. Springer, 2002.

12 M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal
of Computer and System Sciences, 18(2):194 – 211, 1979.

13 I. Hasuo, S. Shimizu, and C. Cîrstea. Lattice-theoretic progress measures and coalgebraic
model checking. In 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 718–732, 2016.

14 D. Kirsten. Alternating tree automata and parity games. In E. Grädel, W. Thomas, and
T. Wilke, editors, Automata Logics, and Infinite Games: A Guide to Current Research,
pages 153–167. Springer, 2002.

15 I. Meinecke. A weighted µ-calculus on words. In 13th International Conference on Devel-
opments in Language Theory, pages 384–395. Springer, 2009.

16 M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans-
actions of the American Mathematical Society, 141:1–35, 1969.

17 N. Urabe, S. Shimizu, and I. Hasuo. Coalgebraic trace semantics for büchi and parity
automata. In J. Desharnais and R. Jagadeesan, editors, 27th International Conference on
Concurrency Theory, volume 59 of LIPICS, pages 24:1–24:15, 2016.

18 Y. Venema. Lectures on the modal µ-calculus. Lecture notes, Institute for Logic, Language
and Computation, University of Amsterdam, 2012.

19 I. Walukiewicz. Automata and logic, 2001. Notes available from
http://www.labri.fr/perso/igw/Papers/igw-eefss01.ps.

	Introduction
	Preliminaries
	From Partial Commutative Semirings to Commutative Monads
	Finite and Maximal Traces
	Quantitative Linear Time Logics for Coalgebras
	Equational Systems

	An Automata-Based Approach to Trace Similarity
	Parity (S,F)-Automata and their Extent
	From Linear Time Logics to Parity (S ,F)-Automata
	From Parity to Büchi Automata
	An Algorithm for Computing Extents
	Related Work and Concluding Remarks

