
Stochastic k-Server: How Should Uber Work?∗†

Sina Dehghani1, Soheil Ehsani2, Mohammad Hajiaghayi3,
Vahid Liaghat4, and Saeed Seddighin5

1 University of Maryland, College Park, MD, USA
dehghani@cs.umd.edu

2 University of Maryland, College Park, MD, USA
ehsani@cs.umd.edu

3 University of Maryland, College Park, MD, USA
hajiagha@cs.umd.edu

4 Facebook, Menlo Park, CA, USA
vliaghat@gmail.com

5 University of Maryland, College Park, MD, USA
saeedrez@cs.umd.edu

Abstract
In this paper we study a stochastic variant of the celebrated k-server problem. In the k-server
problem, we are required to minimize the total movement of k servers that are serving an on-
line sequence of t requests in a metric. In the stochastic setting we are given t independent
distributions 〈P1, P2, . . . , Pt〉 in advance, and at every time step i a request is drawn from Pi.

Designing the optimal online algorithm in such setting is NP-hard, therefore the emphasis of
our work is on designing an approximately optimal online algorithm. We first show a structural
characterization for a certain class of non-adaptive online algorithms. We prove that in general
metrics, the best of such algorithms has a cost of no worse than three times that of the optimal
online algorithm. Next, we present an integer program that finds the optimal algorithm of
this class for any arbitrary metric. Finally by rounding the solution of the linear relaxation
of this program, we present an online algorithm for the stochastic k-server problem with an
approximation factor of 3 in the line and circle metrics and factor of O(logn) in a general metric
of size n. In this way, we achieve an approximation factor that is independent of k, the number
of servers.

Moreover, we define the Uber problem, motivated by extraordinary growth of online network
transportation services. In the Uber problem, each demand consists of two points -a source and
a destination- in the metric. Serving a demand is to move a server to its source and then to
its destination. The objective is again minimizing the total movement of the k given servers.
We show that given an α-approximation algorithm for the k-server problem, we can obtain an
(α + 2)-approximation algorithm for the Uber problem. Motivated by the fact that demands
are usually highly correlated with the time (e.g. what day of the week or what time of the day
the demand has arrived), we study the stochastic Uber problem. Using our results for stochastic
k-server we can obtain a 5-approximation algorithm for the stochastic Uber problem in line and
circle metrics, and a O(logn)-approximation algorithm for general metrics.

Furthermore, we extend our results to the correlated setting where the probability of a request
arriving at a certain point depends not only on the time step but also on the previously arrived
requests.

1998 ACM Subject Classification Computer science education

∗ A full version of the paper is available at https://arxiv.org/abs/1705.05755.
† Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-1546108, NSF
AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another
DARPA SIMPLEX grant.

EA
T

C
S

© Sina Dehghani, Soheil Ehsani, Mohammadtaghi Hajiaghayi, Vahid Liaghat, and
Saeed Seddighin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 126; pp. 126:1–126:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1705.05755
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

126:2 Stochastic k-Server

Keywords and phrases k-server, stochastic, competitive ratio, online algorithm, Uber

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.126

1 Introduction

The k-server problem is one of the most fundamental problems in online computation that
has been extensively studied in the past decades. In the k-server problem we have k mobile
servers on a metric space M. We receive an online sequence of t requests where the ith
request is a point ri ∈M. Upon the arrival of ri, we need to move a server to ri, at a cost
equal to the distance from the current position of the server to ri. The goal is to minimize
the total cost of serving all requests.

Manasse, McGeoch, and Sleator [31] introduced the k-server problem as a natural
generalization of several online problems, and a building block for other problems such as the
metrical task systems. They considered the adversarial model, in which the online algorithm
has no knowledge of the future requests. Following the proposition of Sleator and Tarjan [34],
they evaluate the performance of an online algorithm using competitive analysis. In this
model, an online algorithm ALG is compared to an offline optimum algorithm OPT which
is aware of the entire input in advance. For a sequence of requests ρ, let |ALG(ρ)| and
|OPT(ρ)| denote the total cost of ALG and OPT for serving ρ. An algorithm is c-competitive
if for every ρ, |ALG(ρ)| ≤ c |OPT(ρ)|+ c0 where c0 is independent of ρ.

Manasse et al. [31] showed a lower bound of k for the competitive ratio of any deterministic
algorithm in any metric space with at least k + 1 points. The celebrated k-server conjecture
states that this bound is tight for general metrics. For several years the known upper bounds
were all exponential in k, until a major breakthrough was achieved by Koutsoupias and
Papadimitriou [29], who showed that the so-called work function algorithm is (2k − 1)-
competitive. Proving the tight competitive ratio has been the “holy grail” of the field in the
past two decades. This challenge has led to the study of the problem in special spaces such
as the uniform metric (also known as the paging problem), line, circle, and trees metrics (see
[15, 16] and references therein). We also refer the reader to Section 1.3 for a short survey of
randomized algorithms, particularly the recent result of Bansal, Buchbinder, Madry, and
Naor [7] which achieves the competitive ratio of O(log3 n log2 k) for discrete metrics that
comprise n points.

The line metric (or Euclidean 1-dimensional metric space) is of particular interest for
developing new ideas. Chrobak, Karloof, Payne, and Vishwnathan [15] were the first to settle
the conjecture in the line by designing an elegant k-competitive algorithm. Chrobak and
Larmore [16] generalized this approach to tree metrics. Later, Bartal and Koutsoupias [10]
proved that the work function algorithm is also k-competitive in line. Focusing on the special
case of k = 2 in line, Bartal et al. [9] show that, using randomized algorithms, one can break
the barrier of lower bound k by giving a 1.98-competitive algorithm for the case where we
only have two servers.

Despite the strong lower bounds for the k-server problem, there are heuristics algorithms
that are constant competitive in practice. For example, for the paging problem- the special
case of uniform metric- the least recently used (LRU) strategy is shown to be experimentally
constant competitive (see Section 1.3). In this paper we present an algorithm an run it on
real world data to measure its empirical performance. In particular we use the distribution
of car accidents obtained from road safety data. Our experiments illustrate our algorithm is
performing even better in practice. See the full version of the paper for more details.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.126

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:3

The idea of comparing the performance of an online algorithm (with zero-knowledge
of the future) to the request-aware offline optimum has led to crisp and clean solutions.
However, that is not without its downsides. The results in the online model are often very
pessimistic leading to theoretical guarantees that are hardly comparable to experimental
results. Indeed, one way to tighten this gap is to use stochastic information about the input
data as we describe in this paper.

We should also point out that the competitive analysis is not the only possible or
necessarily the most suitable approach for this problem. Since the distributions from which
the input is generated are known, one can use dynamic programming (or enumeration of
future events) to derive the optimal movement of servers. Unfortunately, finding such an
optimal online solution using the distributions is an NP-hard problem 1, thus the dynamic
programming or any other approach takes exponential time. This raises the question that
how well one can perform in comparison to the best online solution. In the rest of the paper
we formally define the model and address this question.

A natural and well-motivated generalization of k-server is to assume the demands are
two points instead of just one, consisting of a source and a destination. To serve a demand
we need to move a server to the source and then move it to the destination. We call this
problem the Uber problem. One can see, the Uber problem is the same as k-server when the
sources and the destinations are the same. We also show that, given an α-approximation
algorithm for the k-server problem, we can obtain a (α+ 2)-approximation algorithm for the
Uber problem. Thus our results for k-server also apply to the Uber problem.

1.1 The Stochastic Model

In this paper, we study the stochastic k-server problem where the input is not chosen
adversarially, but consists of draws from given probability distributions. This problem has
lots of applications such as network transportations and equipment replacement in data
centers. The current mega data centers contain hundreds of thousands of servers and switches
with limited life-span. For example servers usually retire after at most three years. The
only efficient way to scale up the maintenance in data centers is by automation, and robots
are designed to handle maintenance tasks such as repairs or manual operations on servers.
The replacement process can be modeled as requests that should be satisfied by robots, and
robots can be modeled as servers. This problem also has applications in physical networks.
As an example, suppose we model a shopping service (e.g. Google Express) as a k-server
problem in which we receive an online sequence of shopping requests for different stores. We
have k shopping cars (i.e., servers) that can serve the requests by traveling to the stores. It
is quiet natural to assume that on a certain time of the week/day, the requests arrive from a
distribution that can be discovered by analyzing the history. For example, an Uber request
is more likely to be from suburb to midtown in the morning, and from midtown to suburb at
night. We formalize this stochastic information as follows.

For every i ∈ [1 · · · t], a discrete probability distribution Pi is given in advance from which
request ri will be drawn at time step i. The distributions are chosen by the adversary and
are assumed to be independent but not necessarily identical. This model is inspired by the

1 Reduction from k-median to Stochastic k-server: to find the k median of set S of vertices, one can
construct an instance of stochastic k-server with t = 1 and P1(v) = 1/|S| for every v ∈ S. The best
initialization of the servers gives the optimum solution to k-median of S.

ICALP 2017

126:4 Stochastic k-Server

well-studied model of prophet inequalities 2 [30, 25]. As mentioned before, the case of line
metric has proven to be a very interesting restricted case for studying the k-server problem.
In this paper, we focus mainly on the class of line metric though our results carry over to
circle metric and general metrics as well.

In the adversarial model, the competitive ratio seems to be the only well-defined notion
for analyzing the performance of online algorithms. However, in the presence of stochastic
information, one can derive a much better benchmark that allows us to make fine-grained
distinctions between the online algorithms. We recall that in the offline setting, for a class of
algorithms C, the natural notion to measure the performance of an algorithm ALG ∈ C is
the approximation ratio defined as the worse case ratio of |ALG| to |OPT(C)| where OPT(C)
is the optimal algorithm in the class. In this paper, we also measure the performance of
an online algorithm by its approximation ratio– compared to the optimal online solution.
We note that given distributions P1, . . . , Pt, one can iteratively compute the optimal online
solution by solving the following exponential-size dynamic program: for every i ∈ [0 · · · t]
and every possible placement A of k servers (called a configuration) on the metric, let τ(i, A)
denote the minimum expected cost of an online algorithm for serving the first i requests and
then moving the servers to configuration A. Note that τ(i, A) can inductively be computed
via the following recursive formula

τ(i, A) = min
B

τ(i− 1, B) + Eri∼Pi [min. distance from B to A subject to serving ri] ,

where τ(0, A) is initially zero for every A.

1.2 Our Results 3

Our first main result is designing a constant approximation algorithm in the line metric when
the distributions for different time steps are not necessarily identical.

I Theorem 1. There exists a 3-approximation online algorithm for the stochastic k-server
problem in the line metric. The running time is polynomial in k and the sum of the sizes of
the supports of input distributions. The same guarantee holds for the circle metric.

For the general metric, we present an algorithm with a logarithmic approximation
guarantee.

I Theorem 2. There exists a O(logn)-approximation online algorithm for the stochastic
k-server problem in a general metric of size n.

We prove the theorems using two important structural results. The first key ingredient
is a general reduction from class of online algorithms to a restricted class of non-adaptive
algorithms while losing only a constant factor in the approximation ratio. Recall that a
configuration is a placement of k-servers on the metric. We say an algorithm ALG is non-
adaptive if it follows the following procedure: ALG pre-computes a sequence of configurations
A0, A1, . . . , At. We start by placing the k-servers on A0. Upon the arrival of ri, (i) we move
the servers to configuration Ai; next (ii) we move the closest server s to ri; and finally (iii)
we return s to its original position in Ai. We first prove the following structural result.

2 In the prophet inequality setting, given (not necessarily identical) distributions P1, . . . , Pt, an online
sequence of values x1, . . . , xn where xi is drawn from Pi, an onlooker has to choose one item from the
succession of the values, where xi is revealed at step i. The onlooker can choose a value only at the
time of arrival. The goal is to maximize the chosen value.

3 In the interest of space, we have omitted some of the proofs. We refer the reader to the full version of
the paper in order to see all of the proofs.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:5

I Theorem 3. For the stochastic k-server problem in the general metric, the optimal non-
adaptive online algorithm is within 3-approximation of the optimal online algorithm.

Using the aforementioned reduction, we focus on designing the optimal non-adaptive
algorithm. We begin by formulating the problem as an integer program. The second
ingredient is to use the relaxation of this program to formalize a natural fractional variant of
the problem. In this variant, a configuration is a fractional assignment of server mass to the
points of the metric such that the total mass is k. To serve a request at point ri, we need to
move some of the mass to have at least one amount of server mass on ri. The cost of moving
the server mass is naturally defined as the integral of the movement of infinitesimal pieces
of the server mass. By solving the linear relaxation of the integer program, we achieve the
optimal fractional non-adaptive algorithm. We finally prove Theorems 1 and 2 by leveraging
the following rounding techniques. The rounding method in line has been also observed
by Türkoglu [35]. We provide the proof for the case of line in Section 5 for the sake of
completeness. The rounding method for general metrics is via the well-known embedding of
a metric into a distribution of well-separated trees while losing a logarithmic factor in the
distortion. Bansal et al. [7] use a natural rounding method similar to that of Blum, Burch,
and Kalai [12] to show that any fractional k-server movement on well-separated trees can be
rounded to an integral counterpart by losing only a constant factor.

I Theorem 4 (first proven in [35]). Let ALGf denote a fractional k-server algorithm in the
line, or circle. One can use ALGf to derive a randomized integral algorithm ALG such that
for every request sequence σ, E [|ALG(σ)|] = |ALGf (σ)|. The expectation is over the internal
randomness of ALG. Furthermore, in the stochastic model ALG can be derandomized.

I Theorem 5 (proven in [7]). Let ALGf denote a fractional k-server algorithm in any metric.
One can use ALGf to derive a randomized integral algorithm ALG such that for every request
sequence σ, E [|ALG(σ)|] ≤ O(logn) |ALGf (σ)|.

We also show that having an α-approximation algorithm for k-server, we can obtain a
(α+ 2)-approximation for the Uber problem, using a simple reduction.

I Theorem 6. Let ALG denote an α-approximation algorithm for k-server. One can use
ALG to derive a (α+ 2)-approximation algorithm for the Uber problem.

Proof. Consider an instance of the Uber problem IU . Let si and ti denote the i-th source and
destination, respectively. We generate an instance of the k-server problem Ik by removing
every ti from IU . In other words the demands are si’s. We use ALG to provide a solution
for IU as follows. For satisfying the i-th demand, we use ALG to move a server to si. Then
using the shortest path from si to ti, we move that server to ti and then return it back to si.
Let OPTU and OPTk denote the cost of the optimal solutions for IU and Ik, respectively.
Let d(si, ti) denote the distance of ti from si in the metric. Let C denote the total movement
of the servers. We have,

OPTU ≥ OPTk .

OPTU ≥
∑
i

d(si, ti).

C ≤ αOPTk +2
∑
i

d(si, ti) ≤ (α+ 2) OPTU . J

ICALP 2017

126:6 Stochastic k-Server

1.3 Further Related Work

The randomized algorithms often perform much better in the online paradigm. For the
k-server problem, a lower bound of Ω(log k) is shown by [28] for the competitive ratio of
randomized algorithms in most common metrics. Despite the exponential gap, compared to
the lower bound of deterministic algorithms, very little is known about the competitiveness
of randomized algorithms. In fact, the only known algorithms with competitive ratios below
k, work either in the uniform metric (also known as the paging problem [21, 32, 2, 8]), a
metric comprising k + 1 points [23], and two servers on the line [9]. Two decades after the
introduction of the k-server problem, a major breakthrough was achieved by Bansal et al.
[7] in discrete metrics with sub-exponential size. IfM comprise n points, their randomized
algorithm achieves a competitive ratio of O(log3 n log2 k).

The case of uniform metric has been extensively studied under various stochastic models
motivated by the applications in computer caching. Koutsoupias and Papadimitriou [29]
consider two refinements of the competitive analysis for server problems. First, they consider
the diffuse adversary model. In this model, at every step i the adversary chooses a distribution
Di over the uniform metric of the paging problem. Then the ith request is drawn from Di

which needs to be served. The distribution Di is not known to the online algorithm and
it may depend on the previous requests. However, in their paper, they consider the case
wherein it is guaranteed that for every point p, Di(p) ≤ ε for a small enough ε; i.e., the
next request is not predictable with absolute certainty for the adversary. The results of
Koutsoupias and Papadimitriou and later Young [36] shows that the optimum competitive
ratio in this setting is close to 1 + Θ(kε).

The second refinement introduced in [29] restricts the optimal solution to having lookahead
at most `. Hence, one can define a comparative ratio which indicates the worst-case ratio of
the cost of the best online solution to the best solution with lookahead `. They show that for
the k-server problem, and more generally the metrical task system problem, there are online
algorithms that admit a comparative ratio of 2`+ 1; for some instances this ratio is tight.

Various other models of restricting the adversary (access graph model [14, 26, 22], fault
rate model [27, 6, 19], etc) have also been considered for the paging problem (see [33, 11] and
references therein for a further survey of these results). Unfortunately, many of the stochastic
settings considered for the paging problem do not seem to have a natural generalization
beyond the uniform metric setting. For example, in the diffuse adversary model, most of
the studied distributions do not weaken the adversary in the general metric. In this paper,
we look for polynomial-time approximation algorithms in the class of online algorithms that
have access to the distributions.

We would like to mention that various online problems have been previously considered
under prophet inequality model or i.i.d. model (where all distributions are identical). The
maximum matching problem, scheduling, and online network design has been extensively
studied in these models(see e.g. [4, 3, 5, 17, 1, 18]). In the graph connectivity problems,
Garg, Gupta, Leonardi,and Sankowski [24] consider the online variants of Steiner tree and
several related problems under the i.i.d. stochastic model. In the adversarial model, there
exists an Ω(logn) lower bound on the competitive ratio of any online algorithm, where n is
the number of demands. However, Garg et al. show that under the i.i.d. assumption, these
problems admit online algorithms with constant or O(log logn) competitive ratios. We refer
the reader to the excellent book by Borodin and El-Yaniv [13] for further study of online
problems.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:7

2 Preliminaries

In this section we formally define the stochastic k-server problem. The classical k-server
problem is defined on a metricM which consists of points that could be infinitely many. For
every two points x and y in metricM, let d(x, y) denote the distance of x from y which is a
symmetric function and satisfies the triangle inequality. More precisely for every three points
x, y, and z we have

d(x, x) = 0 (1)
d(x, y) = d(y, x) (2)
d(x, y) + d(y, z) ≥ d(x, z). (3)

In the k-server problem the goal is to place k servers on k points of the metric, and move
these servers to satisfy the requests. We refer to every placement of the servers on the metric
points by a configuration. Let ρ = 〈r1, r2, . . . , rt〉 be a sequence of requests, the goal of the
k-server problem is to find configurations 〈A0, A1, A2, . . . , At〉 such that for every i there
exists a server on point ri in configuration Ai. We say such a list of configurations is valid for
the given list of requests. A valid sequence of configurations is optimal if

∑
d(Ai−1, Ai) is

minimized where d(X,Y) stands for the minimum cost of moving servers from configuration
X to configuration Y . An optimal sequence 〈A0, A1, . . . , At〉 of configurations is called an
optimal offline solution of OFKS(M, ρ) when ρ is known in advance. We refer to the optimal
cost of such movements with |OFKS(M, ρ)| =

∑
d(Ai−1, Ai).

We also define the notion of fractional configuration as an assignment of the metric points
to non-negative real numbers. More precisely, each number specifies a mass of fractional
server on a point. Every fractional solution adheres to the following condition: The total
sum of the values assigned to all points is exactly equal to k. Analogously, a fractional
configuration serves a request ri if there is a mass of size at least 1 of server assigned to point
ri. An offline fractional solution of the k-server problem for a given sequence of requests ρ is
defined as a sequence of fractional configurations 〈A0, A1, . . . , At〉 such that Ai serves ri.

In the online k-server problem, however, we are not given the whole sequence of requests
in the beginning, but we will be informed of every request once its realization is drawn. An
algorithm A is an online algorithm for the k-server problem if it reports a configuration A0
as an initial configuration and upon realization of every request ri it returns a configuration
Ai such that 〈A0, A1, . . . , Ai〉 is valid for 〈r1, r2, . . . , ri〉. If A is deterministic, it generates
a unique sequence of configurations for every sequence of requests. Let A(M, ρ) be the
sequence that A generates for requests in ρ and |A(M, ρ)| denote its cost.

In the online stochastic k-server problem, in addition to metric M, we are also given
t independent probability distributions 〈P1, P2, . . . , Pt〉 which show the probability that
every request ri is realized on a point of the metric at each time. An algorithm A is an
online algorithm for such a setting, if it generates a configuration for every request ri not
solely based on 〈r1, r2, . . . , ri〉 and 〈A0, A1, . . . , Ai−1〉 but also with respect to the probability
distributions. Similarly, we define the cost of an online algorithm A for a given sequence of
requests ρ with |A(M, ρ, 〈P1, P2, . . . , Pt〉)|. We define the expected cost of an algorithm A
on metricM and with probability distributions 〈P1, P2, . . . , Pt〉 by

|A(M, 〈P1, P2, . . . , Pt〉)| = E∀i,ri∼Pi
|A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

For every metric M and probability distributions 〈P1, P2, . . . , Pt〉 we refer to the online
algorithm with the minimum expected cost by OPTM,〈P1,P2,...,Pt〉.

ICALP 2017

126:8 Stochastic k-Server

An alternative way to represent a solution of the k-server problem is as a vector of
configurations 〈B0, B1, . . . , Bt〉 such that Bi does not necessarily serve request ri. The cost
of such solution is equal to

∑
d(Bi−1, Bi) +

∑
2d(Bi, ri) where d(Bi, ri) is the minimum

distance of a server in configuration Bi to request ri. The additional cost of 2d(Bi, ri) can be
thought of as moving a server from Bi to serve ri and returning it back to its original position.
Thus, every such representation of a solution can be transformed to the other representation.
Similarly, d(Bi, ri) for a fractional configuration Bi is the minimum cost which is incurred
by placing a mass 1 of server at point ri. We use letter B for the configurations of such
solutions throughout the paper.

In this paper the emphasis is on the stochastic k-server problem on the line metric. We
define the line metric L as a metric of points from −∞ to +∞ such that the distance of two
points x and y is always equal to |x−y|. Moreover, we show that deterministic algorithms are
as powerful as randomized algorithms in this setting, therefore we only focus on deterministic
algorithms in this paper. Thus, from here on, we omit the term deterministic and every time
we use the word algorithm we mean a deterministic algorithm unless otherwise is explicitly
mentioned.

3 Structural Characterization

Recall that an online algorithm A has to fulfill the task of reporting a configuration Ai upon
arrival of request ri based on 〈A0, A1, . . . , Ai−1〉, 〈r1, r2, . . . , ri〉, and 〈P1, P2, . . . , Pt〉. We
say an algorithm B is request oblivious, if it reports configuration Bi regardless of request ri.
As such, B generates configurations 〈B0, B1, . . . , Bt〉 for a sequence of requests 〈r1, r2, . . . , rt〉
and the cost of such configuration is

∑
d(Bi−1, Bi) +

∑
2d(Bi, ri). More precisely, no

matter what request ri is, B will generate the same configuration for a given list of past
configurations 〈B0, B1, . . . , Bi−1〉, a given sequence of past requests 〈r1, r2, . . . , ri−1〉, and
the sequence of probability distributions 〈P1, P2, . . . , Pt〉. In the following we show that every
online algorithm A can turn into a request oblivious algorithm BA that has a cost of at most
|3A(M, ρ, 〈P1, P2, . . . , Pt〉)| for a given sequence of requests ρ.

I Lemma 7. Let A be an online algorithm for the stochastic k-server problem. For any
metricM, there exists a request oblivious algorithm BA such that

|BA(M, 〈P1, P2, . . . , Pt〉)| ≤ 3|A(M, 〈P1, P2, . . . , Pt〉)|.

An immediate corollary of Lemma 7 is that the optimal request oblivious algorithm has
a cost of at most |3 OPTM,〈P1,P2,...,Pt〉(M, 〈P1, P2, . . . , Pt〉)|. Therefore, if we only focus on
the request oblivious algorithms, we only lose a factor of 3 in comparison to the optimal
online algorithm. The following lemma states a key structural lemma for an optimal request
oblivious algorithm.

I Lemma 8. For every request oblivious algorithm B, there exists a randomized request
oblivious algorithm B′ with the same expected cost which is not only oblivious to the last
request, but also oblivious to all requests that have come prior to this.

Proof. For any given request oblivious online algorithm B, we construct an online algorithm
B′ which is oblivious to all of the requests as follows: For an input 〈B1, B2, . . . , Bi−1〉 of
configurations and probability distributions 〈P1, P2, . . . , Pt〉, draw a sequence of requests
〈r1, r2, . . . , ri〉 from 〈P1, P2, . . . , Pt〉 conditioned on the constraint that B would generate
configurations 〈B1, B2, . . . , Bi−1〉 for requests 〈r1, r2, . . . , ri−1〉. Now, report the output of B
for inputs 〈B1, B2, . . . , Bi−1〉, 〈r1, r2, . . . , ri〉, and 〈P1, P2, . . . , Pt〉.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:9

We define the cost of step i of algorithm B′ as d(Bi−1, Bi) + 2d(Bi, ri). Due to the
construction of algorithm B′, the expected cost of this algorithm at every step i for a
random sequence of requests is equal to the expected cost of algorithm B for a random
sequence of requests drawn from 〈P1, P2, . . . , Pt〉. Therefore, the expected cost of both
algorithms for a random sequence of requests are equal and thus |B(M, 〈P1, P2, . . . , Pt〉)| =
|B′(M, 〈P1, P2, . . . , Pt〉)|. J

Lemma 8 states that there always exists an optimal randomized request oblivious online
algorithm that returns the configurations regardless of the requests. We call such an algorithm
non-adaptive. Since a non-adaptive algorithm is indifferent to the sequence of the requests,
we can assume it always generates a sequence of configurations just based on the distributions.
For an optimal of such algorithms, all such sequence of configurations should be optimal
as well. Therefore, there always exists an optimal non-adaptive online algorithm which is
deterministic. By Lemma 7 not only do we know the optimal request oblivious algorithm is
at most 3-approximation, but also the same holds for the optimal non-adaptive algorithm.

I Theorem 9. There exists a sequence of configurations 〈B0, B1, . . . , Bt〉 such that an online
algorithm which starts with B0 and always returns configuration Bi upon arrival of request ri
has an opproximation factor of at most 3.

4 Fractional Solutions

In this section we provide a fractional online algorithm for the k-server problem that can
be implemented in polynomial time. Note that by Theorem 9 we know that there exist
configurations 〈B1,B2, . . . ,Bt〉 such that the expected cost of a non-adaptive algorithm that
always returns these configurations is at most 3 times the cost of an optimal online algorithm.
Therefore, we write an integer program to find such configurations with the least expected
cost. Next, we provide a relaxed LP of the integer program and show that every feasible
solution of such LP corresponds to a fractional online algorithm for the stochastic k-server
problem. Hence, solving such a linear program, that can be done in polynomial time, gives
us a fractional online algorithm for the problem.

4.1 Linear Program
Recall that given t independent distributions 〈P1, . . . , Pt〉 for online stochastic k-server, an
adaptive algorithm can be represented by t+ 1 configurations 〈B0, . . . , Bt〉. Upon the arrival
of each request ri, we move the servers from configuration Bi−1 to Bi and then one server
serves ri and goes back to its position in Bi. The objective is to find the configurations such
that the cost of moving to new configurations in addition to the expected cost of serving the
requests is minimized. Therefore the problem can formulated in an offline manner. First we
provide an integer program in order to find a vector of configurations with the least cost.

The decision variables of the program represent the configurations, the movement of
servers from one configuration to another, and the way that each possible request is served.
In particular, at each time step τ :

For each node v there is a variable bτ,v ∈ N denoting the number of servers on node v.
For each pair of nodes u and v, there is a movement variable fτ,u,v ∈ N denoting the
number of servers going from u to v for the next round.
For each node v and possible request node r, there is a variable xτ,v,r ∈ {0, 1} denoting
whether r is served by v or not.

ICALP 2017

126:10 Stochastic k-Server

In the following integer program, the first set of constraints ensures the number of
servers on nodes at each time is updated correctly according to the movement variables.
The second set of constraints ensures that each possible request is served by at least
one server. The third set of constraints ensures that no possible request is served by an
empty node. By the definition, the cost of a sequence of configurations 〈B0, . . . , Bt〉 is∑t
i=1 d(Bi−1, Bi) + 2

∑t
i=1 d(Bi, ri). Thus the objective is to minimize the expression∑

τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r),

where Pr(z ∼ Pτ = r) denotes the probability that r is requested at time τ .

min.
∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

∀τ, v bτ+1,v = bτ,v +
∑
u

fτ,u,v −
∑
u

fτ,v,u.

∀τ, u, v
∑
v

xτ,v,r ≥ 1.

∀τ, v, r xτ,v,r ≤ bτ,v.

∀τ
∑
v

bτ,v ≤ k.

∀τ, v, r xτ,v,r ∈ {0, 1}.
∀τ, u, v fτ,u,v ∈ N.
∀τ, v bτ,v ∈ N.

Now we consider the following relaxation of the above integer program.

min.
∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

∀τ, v bτ+1,v = bτ,v +
∑
u

fτ,u,v −
∑
u

fτ,v,u.

∀τ, u, v
∑
v

xτ,v,r ≥ 1.

∀τ, v, r xτ,v,r ≤ bτ,v.

∀τ
∑
v

bτ,v ≤ k.

5 Reduction from Integral k-server to Fractional k-server

In this section we show how we can obtain an integral algorithm for the stochastic k-server
problem from a fractional algorithm. We first show that every fractional algorithm for the
line metric can be modified to an integral algorithm with the same cost. Next, we study the
problem on HST metrics; we give a rounding method that produces an integral algorithm
from a fractional algorithm while losing a constant factor. Finally, we leverage the previously
known embedding techniques to show every metric can be embedded into HST’s with a
distortion of at most O(logn). This will lead to a rounding method for obtaining an integral
algorithm from every fractional algorithm on general metrics while losing a factor of at most
O(logn). Combining this with the 3 approximation fractional algorithm that we provide

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:11

in Section 4, we achieve an O(logn) approximation algorithm for the stochastic k-server
problem on general graphs.

5.1 Integrals Are as Strong as Fractionals On the Line
In this section we show every fractional algorithm on the line metric can be derandomized
to an integral solution with the same expected cost. The rounding method is as follows:
For every fractional configuration A, we provide an integral configuration I(A) such that
(i) the distance of two configurations A1 and A2 is equal to the expected distance of two
configurations I(A1) and I(A2). (ii) for every point x in the metric that A has a server mass
of size at least 1 on x, there exists a server on point x in I(A).

Let for every point x in the metric, A(v) denote the amount of server mass on node v of
the line. For every fractional configuration B, we define a mass function fA : (0, k]→ V as
follows. fA(x) = vj if and only if j is the minimum integer such that

∑j−1
i=1 A(i) < x and∑j

i=1 A(i) ≥ x. Intuitively, if one gathers the server mass by sweeping the line from left to
right, fA(x) is the first position on which we have gathered x amount of server mass. The
rounding algorithm is as follows:

Pick a random real number r in the interval [0, 1).
I(A) contains k servers on positions fA(r), fA(r + 1), fA(r + 2), . . . , fA(r + k − 1).

Note that the rounding method uses the same r for all of the configurations. More precisely,
we draw r from [0, 1) at first and use this number to construct the integral configurations
from fractional configurations. The following two lemmas show that both of the properties
hold for the rounding algorithm we proposed.

I Lemma 10. Let A be a fractional configuration and x be a point such that A(x) ≥ 1. Then
I(A) has a server on x.

Proof. Due to the construction of our rounding method, for every two consecutive servers a
and b in I(A), the total mass of servers after a and before b in the fractional solution is less
than 1. Therefore, I(A) should put a server on point x, otherwise the total mass of servers in
the fractional solution between the first server before x and the first server after x would be
at least 1. J

The next lemma shows that the rounding preserves the distances between the configura-
tions in expectation.

I Lemma 11. Let A1 and A2 be two fractional configurations and |A1−A2| be their distance.
The following holds for the distances of the configurations

E| I(A1)− I(A2)| = |A1 −A2|.

Proof. The key point behind the proof of this lemma is that the distance of two fractional
configurations A1 and A2 can be formulated as follows

|A1 −A2| =
∫ 1

0
| Iω(A1)− Iω(A2)|dω

where Iω(A) stands for an integral configurations which places the servers on points fA(ω),
fA(ω + 1), fA(ω + 2), . . ., fA(ω + k − 1). Since at the beginning of the rounding method
we draw r uniformly at random, the expected distance of the two rounded configurations is
exactly equal to∫ 1

0
| Iω(A1)− Iω(A2)|dω

which is equal to the distance of A1 from A2. J

ICALP 2017

126:12 Stochastic k-Server

I Theorem 12. For any given fractional online algorithm A for the k-server problem on
the line metric, there exists an online integral solution for the same problem with the same
expected cost.

5.2 Reduction for General Graphs
An HST is a undirected rooted tree in which every leaf represents a point in the metric and
the distance of a pair of points in the metric is equal to the distance of the corresponding
leaves in the tree. In an HST, weights of the edges are uniquely determined by the depth
of the vertices they connect. More precisely, in a σ-HST the weight of an edges between a
vertex v and its children is equal to σh−dv where h stands for the height of the tree and dv
denotes the depth of vertex v.

Since HSTs are very well structured, designing algorithms on HSTs is relatively easier
in comparison to a more complex metric. Therefore, a classic method for alleviating the
complexity of the problems is to first embed the metrics into HSTs with a low distortion and
then solve the problems on these trees.

Perhaps the most important property of the HSTs is the following:

I Observation 1. For every pair of leaves u, v ∈ T of an HST, the distance of u and v is
uniquely determined by the depth of their deepest common ancestor.

Note that, the higher the depth of the common ancestor is, the lower the distance of the
leaves will be. Therefore, the closest leaves to a leaf v are the ones that share the most
common ancestors with v. Bansal et al. propose a method for rounding every fractional
solution of the k-server problem to an integral solution losing at most a constant factor [7].

I Theorem 13 ([7]). Let T be a σ-HST with n leaves, σ > 5, and let A = 〈A0, A1, A2, . . . , At〉
be a sequence of fractional configurations. There is an online procedure that maintains a
sequence of randomized k-server configurations S = 〈S0, S1, S2, . . . , St〉 satisfying the following
two properties:

At any time i, the state Si is consistent with the fractional state Ai.
If the fractional state changes from xi−1 to xi at time i, incurring a movement cost of
ci, then the state Si−1 can be modified to a state Si while incurring a cost of O(ci) in
expectation.

Embedding general metrics into trees and in particular HSTs has been the subject of
many studies. The seminal work of Fakcharoenphol et al. [20] has shown that any metric
can be randomly embedded to σ-HSTs with distortion O(σ logn

logσ).

I Theorem 14 ([20]). There exists a probabilistic method to embed an arbitrary metricM
into σ-HSTs with distortion σ logn

logσ .

Therefore, to round a fractional solution on a general metric, we first embed it into 6-HSTs
with a distortion of at most O(logn) and then round the solution while losing only a constant
factor. This will give us an integral algorithm that has an expected cost of at most O(logn)
times the optimal.

I Theorem 15. For any given fractional online algorithm A for the k-server problem on an
arbitrary metric, there exists an online integral solution for the same problem having a cost
of no worse that O(logn) times the cost of A in expectation.

Acknowledgment. We would like to thank Shi Li for having helpful discussions.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:13

References
1 Melika Abolhasani, Soheil Ehsani, Hosein Esfandiari, MohammadTaghi Hajiaghayi, Robert

Kleinberg, and Brendan Lucier. Beating 1 − 1/e for ordered prophets. arXiv preprint
arXiv:1704.05836, 2017.

2 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized
paging algorithms. Theoretical Computer Science, 234(1):203–218, 2000.

3 Saeed Alaei, Mohammad T Hajiaghayi, Vahid Liaghat, Dan Pei, and Barna Saha. Adcell:
Ad allocation in cellular networks. In Algorithms–ESA 2011, pages 311–322. Springer, 2011.

4 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online prophet-inequality
matching with applications to ad allocation. In Proceedings of the 13th ACM Conference
on Electronic Commerce, pages 18–35. ACM, 2012.

5 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The online stochastic gen-
eralized assignment problem. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 11–25. Springer, 2013.

6 Susanne Albers, Lene M Favrholdt, and Oliver Giel. On paging with locality of reference.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
258–267. ACM, 2002.

7 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 267–276. IEEE Computer Society, 2011. doi:10.1109/
FOCS.2011.63.

8 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A primal-dual randomized algorithm
for weighted paging. Journal of the ACM (JACM), 59(4):19, 2012.

9 Yair Bartal, Marek Chrobak, and Lawrence L Larmore. A randomized algorithm for two
servers on the line. Information and Computation, 158(1):53–69, 2000.

10 Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theoretical computer science, 324(2):337–345, 2004.

11 Luca Becchetti. Modeling locality: A probabilistic analysis of lru and fwf. In Algorithms–
ESA 2004, pages 98–109. Springer, 2004.

12 Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In Foundations of
Computer Science, 1999. 40th Annual Symposium on, 1999.

13 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge
university press, 2005.

14 Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive
paging with locality of reference. Journal of Computer and System Sciences, 50(2):244–
258, 1995.

15 Marek Chrobak, H Karloff, T Payne, and S Vishwnathan. New ressults on server problems.
SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

16 Marek Chrobak and Lawrence L Larmore. An optimal on-line algorithm for k servers on
trees. SIAM Journal on Computing, 20(1):144–148, 1991.

17 Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed
Seddighin. Online survivable network design and prophets. 2015.

18 Sina Dehghani, Ian A Kash, and Peter Key. Online stochastic scheduling and pricing the
clouds. 2017.

19 Peter J Denning. The working set model for program behavior. Communications of the
ACM, 26(1):43–48, 1983.

20 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 448–455. ACM, 2003.

ICALP 2017

http://dx.doi.org/10.1109/FOCS.2011.63
http://dx.doi.org/10.1109/FOCS.2011.63

126:14 Stochastic k-Server

21 Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator, and Neal E
Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

22 Amos Fiat and Manor Mendel. Truly online paging with locality of reference. In Founda-
tions of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 326–335.
IEEE, 1997.

23 Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM Journal on Computing, 32(6):1403–1422, 2003.

24 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses
for online combinatorial optimization problems. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 942–951. Society for Industrial and
Applied Mathematics, 2008.

25 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated on-
line mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007.

26 Sandy Irani, Anna R Karlin, and Steven Phillips. Strongly competitive algorithms for
paging with locality of reference. SIAM Journal on Computing, 25(3):477–497, 1996.

27 Anna R Karlin, Steven J Phillips, and Prabhakar Raghavan. Markov paging. SIAM Journal
on Computing, 30(3):906–922, 2000.

28 Howard Karloff, Yuval Rabani, and Yiftach Ravid. Lower bounds for randomized k-server
and motion-planning algorithms. SIAM Journal on Computing, 23(2):293–312, 1994.

29 Elias Koutsoupias and Christos H Papadimitriou. On the k-server conjecture. Journal of
the ACM (JACM), 42(5):971–983, 1995.

30 Ulrich Krengel, Louis Sucheston, et al. Semiamarts and finite values. Bull. Amer. Math.
Soc, 83(4), 1977.

31 Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11(2):208–230, 1990.

32 Lyle A McGeoch and Daniel D Sleator. A strongly competitive randomized paging al-
gorithm. Algorithmica, 6(1-6):816–825, 1991.

33 Konstantinos Panagiotou and Alexander Souza. On adequate performance measures for
paging. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pages 487–496. ACM, 2006.

34 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

35 Duru Türkoglu. The k-server problem and fractional analysis, 2005. Master’s Thesis, The
University of Chicago. URL: http://people.cs.uchicago.edu/~duru/papers/masters.
pdf.

36 Neal E Young. Bounding the diffuse adversary. In SODA, volume 98, pages 420–425, 1998.

http://people.cs.uchicago.edu/~duru/papers/masters.pdf
http://people.cs.uchicago.edu/~duru/papers/masters.pdf

	Introduction
	The Stochastic Model
	Our Results
	Further Related Work

	Preliminaries
	Structural Characterization
	Fractional Solutions
	Linear Program

	Reduction from Integral k-server to Fractional k-server
	Integrals Are as Strong as Fractionals On the Line
	Reduction for General Graphs

