
Cryptanalysis of Indistinguishability Obfuscations
of Circuits over GGH13∗†

Daniel Apon1, Nico Döttling‡2, Sanjam Garg2, and
Pratyay Mukherjee4

1 University of Maryland, College Park, MD, USA
dapon@cs.umd.edu

2 University of California, Berkeley, CA, USA
nicodoettling@berkeley.edu

3 University of California, Berkeley, CA, USA
sanjamg@berkeley.edu

4 Visa Research, Palo Alto, CA, USA
pratyay85@gmail.com

Abstract
Annihilation attacks, introduced in the work of Miles, Sahai, and Zhandry (CRYPTO 2016), are
a class of polynomial-time attacks against several candidate indistinguishability obfuscation (iO)
schemes, built from Garg, Gentry, and Halevi (EUROCRYPT 2013) multilinear maps. In this
work, we provide a general efficiently-testable property for two single-input branching programs,
called partial inequivalence, which we show is sufficient for our variant of annihilation attacks on
several obfuscation constructions based on GGH13 multilinear maps.

We give examples of pairs of natural NC1 circuits, which – when processed via Barrington’s
Theorem – yield pairs of branching programs that are partially inequivalent. As a consequence we
are also able to show examples of “bootstrapping circuits,” (albeit somewhat artificially crafted)
used to obtain obfuscations for all circuits (given an obfuscator for NC1 circuits), in certain
settings also yield partially inequivalent branching programs. Prior to our work, no attacks on
any obfuscation constructions for these settings were known.

1998 ACM Subject Classification E.3 Data Encryption

Keywords and phrases Obfuscation, Multilinear Maps, Cryptanalysis.

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.38

1 Introduction

An obfuscator is a program compiler which hides all partial implementation details of a
program, intuitively. This is formalized via the notion of indistinguishability obfuscation [9]:
we say an obfuscator O is an indistinguishability obfuscator if it holds for every pair C0, C1
of functionally equivalent circuits (i.e. computing the same function) that O(C0) and O(C1)

∗ This is the extended abstract of the full version [4] which can be found at https://eprint.iacr.org/
2016/1003. Most proofs are deferred to the full version.

† Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, and research grants by
the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The
views expressed are those of the author and do not reflect the official policy or position of the funding
agencies.

‡ Nico Döttling was supported by a postdoc fellowship of the German Academic Exchange Service
(DAAD).

EA
T

C
S

© Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.38
https://eprint.iacr.org/2016/1003
https://eprint.iacr.org/2016/1003
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

are indistinguishable. A recent surge of results has highlighted the importance of this notion:
virtually “any cryptographic task” can be achieved assuming indistinguishability obfuscation
and one-way functions [34].

All known candidate constructions of indistinguishability obfuscation, e.g. [25, 8, 6], are
based on multilinear-maps [24, 21, 27]1, which have been the subjects of various attacks [16,
18, 15, 29, 19]. Among them, the attacks (e.g. [24, 29]) on GGH13 [24] multilinear maps
required explicit access to “low-level” encodings of zero, or differently represented low-
level encodings of zero, e.g. [18]; such low-level zero-encodings do not appear naturally in
obfuscation constructions. Recently Miles, Sahai, and Zhandry [32] introduced a new class
of polynomial-time2 attacks without requiring low-level zeros against several obfuscation
constructions [12, 8, 3, 31, 33] and [7], when instantiated with the GGH13 multilinear maps.

More specifically, Miles et al. [32] exhibit two simple branching programs (and also
programs padded with those) that are functionally equivalent, yet their BGKPS-obfuscations
(put forward by Barak et al. in [8]) and similar constructions [12, 3, 31, 33, 7] are efficiently
distinguishable.3 However, the branching programs considered there, in particular the all-
identity branching program, do not appear “in the wild”. More specifically, obfuscation
constructions for circuits first convert an NC1 circuit into a branching program (e.g. via
Barrington’s transformation) that possibly results in programs with complex structures, even
if one starts with simple circuits. This brings us to the following open question:

Is it possible to attack obfuscations of complex branching programs generated from
NC1 circuits?

1.1 Our Contributions

In this work, we are able to answer the above question affirmatively. In particular, our main
contributions are:

We first define a general and efficiently-testable property of two single-input4 branching
programs called partial inequivalence (discussed below) and demonstrate an annihilation
attack against BGKPS-like obfuscations of any two (large enough) branching programs
that satisfy this property.
Next, using implementation in Sage [35] (see the full version for details on the implement-
ation) we give explicit examples of pairs of (functionally equivalent) natural NC1 circuits,
which when processed via Barrington’s Theorem yield pairs of branching programs that
are partially inequivalent – and thus, attackable.
As a consequence of the above result, we are also able to show that the “bootstrapping
circuit(s)” technique used to boost iO for NC1 to iO for P/poly, for a certain choice of
the universal circuit (albeit artificially crafted), yield partially inequivalent branching
programs in a similar manner – and are, thus, also attackable.

1 The work of [2] might be seen as an exception to this: Assuming the (non-explicit) existence of indistin-
guishability obfuscation, they provide an explicit construction of an indistinguishability obfuscator.

2 Several subexponential-time or quantum-polynomial-time [22, 1, 17] attacks on GGH13 multilinear
maps also have been considered. We do not consider these in this paper.

3 To avoid repetitions, from now on we will refer to the obfuscation constructions of [8, 12, 3, 31, 33] by
BGKPS-like constructions that use single-input branching programs.

4 The branching programs, where any pair of matrices in the sequence depends on a single input location,
are called single-input branching programs. Such branching programs naturally evolve from Barrington’s
transformation on circuits.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:3

Branching
Programs

NC1 Circuits
(Barrington’s)

NC1-to-P/poly
[25, 5] [11, 28]

GGHRSW[25] ⊗ © ©

BGKPS-like
constructions [12, 8, 3]
[33, 31, 7]

× ⊗ ⊗

Obfuscations from weak
multilinear maps [26, 23]

© © ©

Figure 1 The Attack Landscape for GGH13-based Obfuscators. In all cases, the multilinear
map is [24]. © means no attack is known. × means a prior attack is known, and we present more
general attacks for this setting. ⊗ means we give the first known attack in this setting and⊗
means a new attack is discovered concurrently to ours (namely [13]).

Our general partial inequivalence condition is broad and seems to capture a wide range
of natural single-input branching programs. However, we require the program to be large
enough.5 Additionally, we need the program to output 0 on a large number of its inputs.

Finally, our new annihilation attacks are essentially based on linear system solvers and
thus quite systematic. This is in contrast with the attacks of Miles et al. [32] which required
an exhaustive search operation rendering it hard to extend their analysis for branching
programs with natural structural complexity. Therefore, at a conceptual level, our work
enhances the understanding of the powers and the (potential) limits of annihilation attacks.

One limitation of our technique is that they do not extend to so-called dual-input
branching programs. We leave it as an interesting open question.

A Concurrent and Independent work

Concurrent and independent to our work,6 Chen et al. [13] provides a polynomial time attack
against the GGHRSW construction [25] based on GGH13 (and also GGH15 [27]) maps
that works for so-called “input-partitioning” branching programs. Nonetheless, their attacks
are not known to extend [14] for complex branching programs evolved from NC1 circuits
(e.g. via Barrington’s Transformation). Hence, our work stands as the only work that breaks
obfuscations of NC1 circuits based on GGH13 till date.

Change in Obfuscation landscape

Given our work and the work of Chen et al. [13] the new attack landscape against GGH13-
based obfuscators is depicted in Figure 1. We refer the reader to [2, Figure 13] for the state
of the art on obfuscation constructions based on CLT13 and GGH15 multilinear maps.

5 Note that, for our implementation we consider circuits that are quite small, only depth 3, and the
resulting Barrington programs are of length 64. However, using the implementation we then “boost”
the attack to a much larger NC1 circuits that suffice for the real-world attack (discussed in the full
version) to go through.

6 The first draft of our full version [4] appeared online concurrently as their first draft [13]. At the
same time another independent work [20] appeared that provided attacks against several CLT13 based
obfuscators for a broader class of programs.

ICALP 2017

38:4 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

1.2 Technical Overview
Below, after providing some additional backgrounds on multilinear maps and known attacks,
we provide an overview of our annihilation attacks.

Multilinear Maps: Abstractly

As a first approximation, one can say that a cryptographic multilinear map system encodes a
value a ∈ Zp (where p is a large prime) by using a homomorphic encryption scheme equipped
with some additional structure. In other words, given encodings of a and b, one can perform
homomorphic computations by computing encodings of a+ b and a · b. Additionally, each
multilinear map encoding is associated with some level described by a value i ∈ {1 . . . κ} for
a fixed universe parameter κ. Encodings can be added only if they are at the same level:
Enci(a)⊕Enci(b)→ Enci(a+b). Encodings can be multiplied: Enci(a)�Encj(b)→ Enci+j(a·b)
if i + j ≤ κ but is meaningless otherwise. We naturally extend the encoding procedure
and the homomorphic operations to encode and to compute on matrices, respectively, by
encoding each term of the matrix separately. Finally, the multilinear map system comes
equipped with a zero test: an efficient procedure for testing whether the input is an encoding
of 0 at level-κ. However, such zero-test procedure is not perfect as desired when instantiated
with concrete candidate multilinear maps. In particular we are interested in the imperfection
in GGH13 map.

An Imperfection of the GGH13 Multilinear Maps

Expanding a little on the abstraction above, a fresh multilinear map encoding of a value
a ∈ Zp at level i is obtained by first sampling a random value µ from Zp and then encoding
Enci(a+ µ · p). Homomorphic operations can be performed just as before, except that the
randomnesses from different encodings also get computed on. Specifically, Enci(a+ µ · p)⊕
Enci(b+ ν · p) yields Enci(a+ b+ (µ+ ν) · p) and multiplication Enci(a+µ · p)�Encj(b+ ν · p)
yields Enci+j(a · b+ (b · µ+ a · ν + µ · ν · p) · p) if i+ j ≤ κ but is meaningless otherwise. An
imperfection of the zero-test procedure is a feature characterized by two phenomena:
1. On input Encκ(0 + r · p) the zero-test procedure additionally reveals r in a somewhat

“scrambled” form.
2. For certain efficiently computable polynomials f and a collection of scrambled values
{ri} it is efficient to check if f({ri}) = 0 mod p or not for any choice of ri’s.7

This imperfection has been exploited to perform attacks in prior works, such as the one by
Miles et al. [32].8

Matrix Branching Programs

A matrix branching program of length ` for n-bit inputs is a sequence
BP =

{
A0,

{
Ai,0, Ai,1

}`
i=1, A`+1

}
, where A0 ∈ {0, 1}1×5, Ai,b’s for i ∈ [`] are in {0, 1}5×5

and A`+1 ∈ {0, 1}5×1. Without providing details, we note that the choice of 5× 5 matrices
comes from Barrington’s Theorem [10]. We use the notation [n] to describe the set {1, . . . , n}.

7 One can alternatively consider the scrambled values as polynomials over {ri} and then check if f({ri})
is identically zero in Zp.

8 Recent works such as [26, 23], have attempted to realize obfuscation schemes secure against such
imperfection and are provably secure against our attacks. We refer to them as obfuscations from weak
multilinear maps (see Figure 1).

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:5

Let inp be a fixed function such that inp(i) ∈ [n] is the input bit position examined in the ith
step of the branching program. The function computed by this matrix branching program is

fBP (x) =
{

0 if A0 ·
∏`
i=1 Ai,x[inp(i)] ·A`+1 = 0

1 if A0 ·
∏`
i=1 Ai,x[inp(i)] ·A`+1 6= 0

,

where x[inp(i)] ∈ {0, 1} denotes the inp(i)th bit of x.
The branching program described above inspects one bit of the input in each step. More

generally, multi-arity branching programs inspect multiple bits in each step. For example,
dual-input programs inspect two bits during each step. Our strategy only works against
single-input branching programs, hence we restrict ourselves to that setting.

Exploiting the Imperfection/Weakness

At a high level, obfuscation of a branching program BP = {A0, {Ai,0, Ai,1}`i=1, A`+1} yields a
collection of encodings {M0, {Mi,0,Mi,1}`i=1,M`+1}, say all of which are obtained at level-1.9
We let {Z0, {Zi,0, Zi,1}`i=1, Z`+1} denote the randomnesses used in the generation of these
encodings, where each Z corresponds to a matrix of random values (analogous to r above) in
Zp. For every input x such that BP (x) = 0, we have that M0�

⊙`
i=1 Mi,x[inp(i)]�M`+1 is an

encoding of 0, say of the form Enc(0+rx ·p) from which rx can be learned in a scrambled form.
The crucial observations of Miles et al. [32] are: (1) for every known obfuscation construction,
rx is a program dependent function of {Z0, {Zi,0, Zi,1}`i=1, Z`+1}, and (2) for a large enough
m ∈ Z the values {rxk

}mk=1 must be correlated, which in turn implies that there exists a
(program-dependent) efficiently computable function fBP and input choices {xBPk }mk=1 such
that for all k ∈ [m], BP (xBPk) = 0 and fBP ({rxBP

k
}mk=1) = 0 mod p.10 Further, just like

Miles et al. we are interested in constructing an attacker for the indistinguishability notion
of obfuscation. In this case, given two arbitrarily distinct programs BP and BP ′ (such
that ∀x,BP (x) = BP ′(x)) an attacker needs to distinguish between the obfuscations of BP
and BP ′. Therefore, to complete the attack, it suffices to argue that for the sequence of
{r′
xBP ′

k

} values obtained from execution of BP ′ it holds that, fBP ({r′
xBP ′

k

}mk=1) 6= 0 mod p.
Hence, the task of attacking any obfuscation scheme reduces to the task of finding such
distinguishing function fBP .

Miles et al. [32] accomplishes that by presenting specific examples of branching programs,
both of which implement the constant zero function, and a corresponding distinguishing
function. They then extend the attack to other related branching programs that are padded
with those constant-zero programs. The details of their attack [32] is quite involved, hence
we jump directly to the intuition behind our envisioned more general attacks.

Partial Inequivalence of Branching Programs and Our Attacks

We start with the following observation. For BGKPS-like-obfuscations for any branching
program BP = {A0, {Ai,0, Ai,1}`i=1, A`+1} the value sx = rx mod p looks something like: 11

9 Many obfuscation constructions use more sophisticate leveling structure, typically referred to as so-called
“straddling sets”. However we emphasize that, this structure does not affect our attacks. Therefore we
will just ignore this in our setting.

10This follows from the existence of an annihilating polynomial for any over-determined non-linear systems
of equations. We refer to [30] for more details.

11Obtaining this expression requires careful analysis that is deferred to the main body of the paper. Also,
by abuse of notation let A0,xinp(0) = A0, A`+1,xinp(`+1) = A`+1, Z0,xinp(0) = Z0 and Z`+1,xinp(`+1) = Z`+1.

ICALP 2017

38:6 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

sx '
∏̀
i=1

αi,x[inp(i)]

`+1∑
i=0

i−1∏
j=0

Aj,xinp(j) · Zi,x[inp(i)] ·
`+1∏
j=i+1

Aj,xinp(j)


︸ ︷︷ ︸

tx

,

where {Z0, {Zi,0, Zi,1}`i=1, Z`+1} where {Z0, {Zi,0, Zi,1}`i=1, Z`+1} are the randomnesses con-
tributed by the corresponding encodings. Let x denote the value obtained by flipping
every bit of x (a.k.a. the bitwise complement). Now observe that the product value
Λ =

∏`
i=1 αi,x[inp(i)] · αi,x[inp(i)] is independent of x. Therefore, ux = sx · sx = Λ · tx · tx.

Absorbing Λ in the {Zi,0, Zi,1}`i=1, we have that ux is quadratic in the randomness values
{Z0, {Zi,0, Zi,1}`i=1, Z`+1}, or linear in the random terms ZZ ′ obtained by multiplying every
choice of Z,Z ′ ∈ {Z0, {Zi,0, Zi,1}`i=1, Z`+1}. In other words if BP evaluates to 0 both on
inputs x and x, the values revealed by two zero-test operations give one linear equation where
the coefficients of the linear equations are program dependent. Now, if BP implements a “suf-
ficiently non-evasive” circuit,(e.g. a PRF) such that there exist sufficiently many such inputs
x, x for which BP (x) = BP (x) = 0, then collecting sufficiently many values {xBPk , uxBP

k
}mk=1,

we get a dependent system of linear relations. Namely, there exist {νBPk }mk=1 such that∑m
k=1 ν

BP
k · uxBP

k
= 0. In other words,

∑m
k=1 ν

BP
k · rxBP

k
· rxBP

k
= 0 mod p, where {νBPk }mk=1

depends only on the description of the branching program BP .
We remark that, in the process of linearization above we increased (by a quadratic factor)

the number of random terms in the system. However, this can be always compensated by
using more equations, because the number of random terms is O(poly(n)) (n is the input
length) whereas the number of choices of input x is 2O(n) which implies that there are
exponentially many rx available.

Note that for any branching program BP ′ that is “different enough” from BP , we could
expect that

∑m
k=1 ν

BP
k · r′

xBP
k

· r′
xBP

k

6= 0 mod p where r′
xBP

k

are values revealed in executions
of an obfuscation of BP ′. This is because the values {νBPk }mk=1 depend on the specific
implementation of BP through terms of the form

∏i−1
j=0 Aj,x[inp(i)] and

∏`+1
j=i+1 Aj,x[inp(i)] in

sx above. Two branching programs that differ from each other in this sense are referred to
as partially inequivalent.12

What Programs are Partially Inequivalent? Attack on NC1 circuits

The condition we put forth seems to be fairly generic and intuitively should work for large
class of programs. In particular, we are interested in the programs generated from NC1

circuits. However, due to complex structures of such programs the analysis becomes quite
non-trivial.13 Nonetheless, we manage to show via implementation in Sage [35] that the attack
indeed works on a pair of branching programs obtained from a pair of simple NC1 circuits,
(say C0, C1) (see Sec. 6 for the circuit descriptions) by applying Barrington’s Theorem. The
circuits take 4 bits of inputs and on any input they evaluate to 0. In our attack we use

12Note that the only other constraint we need is that both BP and BP ′ evaluates to 0 for sufficiently
many inputs, which we include in the definition (c.f. Def. 2) of partial inequivalence.

13Note that, the analysis of Miles et al. uses 2×2 matrices in addition to using simple branching programs.
These simplifications allow them to base their analysis on many facts related to the structures of
these programs. Our aim here is to see if the attack works for programs obtained from NC1 circuits,
in particular via Barrington’s Theorem. So, unfortunately it is not clear if their approach can be
applicable here as the structure of the programs yielded via Barrington’s Theorem become much
complex structurally (and also much larger in size) to analyze.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:7

all possible 16 inputs. Furthermore, we can escalate the attack to any pair of NC1 circuits
(E0, E1) where Eb = ¬Cb ∧Db (b ∈ {0, 1}) for practically any two NC1 circuits D0, D1 (we
need only one input x for which D(x) = D(x) = 0). We now take again a sequence of 16-
inputs such that we vary the parts of all the inputs going into Cb and keep the part of inputs
read by Db fixed to x. Intuitively, since the input to Db is always the same, each evaluation
chooses the exactly same randomnesses (that is Zi’s) always. Hence in the resulting system
all the random variables can be replaced by a single random variable and hence ¬Cb∧Db can
be effectively “collapsed” to a much smaller circuit ¬Cb ∧ 0 (0 refers to the smallest trivial
circuit consisting of only identities). Finally, again via our Sage-implementation we show
that for circuits ¬C0 ∧ 0 and ¬C1 ∧ 0 the corresponding branching programs are partially
inequivalent.

As a corollary we are also able to show examples of universal circuits Ub for which the
same attack works. Since the circuit D can be almost any arbitrary NC1 circuit, we can,
in particular use any universal circuit U ′ and carefully combine that with C to obtain our
attackable universal circuit U that results in partially inequivalent Barrington programs.

2 Notations and Preliminaries

2.1 Notations

We denote the set of natural numbers {1, 2, . . .} by N, the set of all integers {. . . ,−1, 0, 1 . . .}
by Z and the set of real numbers by R. We use the notation [n] to denote the set of first n
natural numbers, namely [n] def= {1, . . . , n}.

For any bit-string x ∈ {0, 1}n we let x[i] denotes the i-th bit. For a matrix A we denote
its i-th row by A[i, ?], its j-th column by A[?, j] and the element in the i-th row and j-th
column by A[i, j]. The i-th element of a vector v is denoted by v[i].

For more notational conventions we refer to the full version [4].

3 Attack Model for Investigating Annihilation Attacks

Similar to Miles, Sahai, and Zhandry [32] we use an abstract attack model designed to
encompass the main ideas of BGKPS-like-obfuscations [8, 12, 3, 33, 31, 7] as the starting
point for our attacks. We formally describe the model in the full version [4].

4 Partially Inequivalent Branching Programs

In this section, we provide a formal condition on two single-input branching programs
(naturally extends to multi-input settings), namely partial inequivalence, that is sufficient
for launching a distinguishing attack in the abstract model. In Section 5 we prove that this
condition is sufficient for the attack.14

I Definition 1 (Partial Products). Let A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1) be a single-input
branching program of matrix-dimension d and length ` over n-bit input.

14We note that this condition is not necessary. Looking ahead, we only consider first order partially
inequivalent programs in paper and remark that higher order partially inequivalent programs could also
be distinguished using our techniques.

ICALP 2017

38:8 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

1. For any input x ∈ {0, 1}n and any index i ∈ [`+ 1] ∪ {0} we define the vectors φ(i)
A,x as

follows:

φ
(i)
A,x

def=


(
A0 ·

∏i−1
j=1 Aj,x[inp(j)]

)
⊗
(∏`

j=i+1 Aj,x[inp(j)] ·A`+1

)T
∈ {0, 1}1×d2 if i ∈ [`] ,(∏`

j=1 Aj,x[inp(j)] ·A`+1

)T
∈ {0, 1}1×d if i = 0 ,

A0 ·
∏`
j=1 Aj,x[inp(j)] ∈ {0, 1}1×d if i = `+ 1 .

Additionally, define φ̃(i)
A,x for any such branching program as:

φ̃
(i)
A,x

def=


[φ(i)

A,x | 0d2] if i ∈ [`] and x[inp(i)] = 0 ,

[0d2 | φ(i)
A,x] if i ∈ [`] and x[inp(i)] = 1 ,

φ
(i)
A,x if i = 0 or `+ 1 ,

where inp is a function from [`]→ [n] and that x[inp(i)] denotes the bit of x corresponding
to location described by inp(x).

2. Then the linear partial product vector φA,x and the quadratic partial product
vector ψA,x of A with respect to x are defined as:

φA,x
def= [φ̃(0)

A,x | · · · | φ̃
(`+1)
A,x] ∈ {0, 1}1×(2d+2`d2) ,

ψA,x
def= φA,x ⊗ φA,x ∈ {0, 1}1×(2d+2`d2)2

,

where x = x⊕ 1n is the compliment of x.
3. For a set of inputs X = {x1, x2, . . . , xm} the the linear partial product matrix ΦA,X

and the quadratic partial product matrix ΨA,X of A with respect to X are defined
as:

ΦA,X
def=


φA,x1

φA,x2

...

φA,xm

 ∈ {0, 1}
m×(2d+2`d2) ,

ΨA,X
def= ΦA,X � ΦA,X + ΦA,X � ΦA,X =


ψA,x1 +ψA,x1

ψA,x2 +ψA,x2

...

ψA,xm
+ψA,xm

 ∈ {0, 1}
m×(2d+2`d2)2

,

where X def= {x1, x2, . . .}.

I Definition 2 (Partial Inequivalence). Let A0 and A1 be two single-input matrix branching
programs of matrix-dimension d and length ` over n-bit input. Then they are called partially
inequivalent if there exists a polynomial in security parameter sized set X of inputs such
that:

For every x ∈ X, we have that A0(x) = A1(x) = 0 and A0(x) = A1(x) = 0.
colsp (ΨA0,X) 6= colsp (ΨA1,X) .

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:9

5 Annihilation Attacks for Partially Inequivalent Programs

In this section, we describe an abstract annihilation attack against any two branching
programs that are partially inequivalent. We show an attack only in the abstract model and
provide details on how it can be extended to the real GGH13 setting in the full version.

I Theorem 3. Let O be the generic obfuscator described in Section 3.2 of the full version.
Then for any two functionally equivalent same length single-input branching programs A0,A1
that are partially inequivalent there exists a probabilistic polynomial time attacker that
distinguishes between between O(A0) and O(A1) with noticeable probability in the abstract
attack model.

Proof.
Setup for the attack

The given branching programs A0 and A1 are provided to be functionally equivalent and
partially inequivalent. Therefore there exists a set X such that: (1) for all x ∈ X,A0(x) =
A0(x) = A1(x) = A1(x) = 0, and (2) colsp (ΨA0,X) 6= colsp (ΨA1,X) . We will assume that
the adversary has access to X as auxiliary information.

Challenge

A receives as a challenge the obfuscation of the branching program: A ∈ {A0,A1} by the
challenger. Recall from the description of the abstract obfuscator that, the obfuscation of
program A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1), denoted by O(A) consists of the following
public variables:

Y0 := A0 ·Radj1 + gZ0, Yi,b := αi,bRi ·Ai,b ·Radji+1 + gZi,b, Y0 := R`+1 ·A`+1 + gZ0,

where the arbitrary secret variables are:

Ã0
def= A0 ·Radj1 , Ãi,b

def= αi,b(Ri,b ·Ai,b ·Radji,b), Ã`+1
def= R`+1 ·A`+1;

for random variables (i.e. Killian randomizers) R1, {Ri}, R`+1 and the random secret variables
are denoted by Z0, {Zi,b}i∈[`],b∈{0,1}, Z`+1 and the special secret variable is g. Via change of
variables we can equivalently write:

Y0 := (A0 +gZ0) ·Radj1 ; Yi,b := αi,bRi ·(Ai,b+gZi,b) ·Radji+1; Y`+1 := R`+1 ·(A`+1 +gZ`+1).

Pre-Zeroizing Computation (Type-1 queries)

On receiving the obfuscation of A ∈ {A0,A1}, O(A) = {Y0, {Yi,b}, Y`+1} the attacker, in
the pre-zeroizing step, performs a “valid” Type-1 queries on all the inputs X,X where X =
{x1, . . . , xm}, X = {x1, . . . , xm}. That is, for an x ∈ {0, 1}n, and the abstract obfuscation
O(A), the attacker queries the polynomial:

PA,x = Y0 ·
∏̀
i=1

Yi,x[inp(i)] · Y`+1.

Then, expressing PA,x stratified as powers of g we obtain:

PA,x = P
(0)
A,x({Yi}i) + g · P (1)

A,x({Yi}i) + ...+ g`+2 · P (`+2)
A,x ({Yi}i)

ICALP 2017

38:10 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

for some polynomials P (j)
A,x({Yi}i) (j ∈ {0, ..., `+ 1}). However, by Lemma 4 we have that:

P
(0)
A,x = ρα̂xA(x)

for ρ def=
∏
i det(Ri) (or ρI =

∏
iR

adj
i Ri) and α̂x

def=
∏`
i=1 αi,xinp(i) . Since for x ∈ X we have

that A(x) = 0 , the polynomial P (0)
A,x is identically 0. Consequently, for each such Type 1

query the attacker receives a new handle to a variable WA,x that can be expressed as follows:

WA,x = PA,x/g = P
(1)
A,x + g · P (2)

A,x + ...+ g`+1 · P (`+2)
A,x .

Analogously, the attacker obtains handles WA,x. After obtaining handles

{(WA,x1 ,WA,x1), ...(WA,xm
,WA,xm

)}

the attacker starts the post-zeroizing phase.

Post-Zeroizing Computation

The goal of post-zeroizing computation is to find a polynomial Qann of degree poly(λ) such
that following holds for some b ∈ {0, 1}:
(i) Qann(P (1)

Ab,x1
, P

(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) ≡ 0.
(ii) Qann(P (1)

A1−b,x1
, P

(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) 6≡ 0.
Clearly, this leads to an attack on the obfuscation security as A would receive 0 from the
challenger if and only if Qann(P (1)

A,x1
, P

(1)
A,x1

..., P
(1)
A,xm

, P
(1)
A,xm

) is identically zero, hence it would
receive 0 if and only if Ab is chosen by the challenger in the challenge phase. To find such
Qann the attacker continues as follows. Observe that by Lemma 4, for every x ∈ X we have
that:

P
(1)
A,x = ρα̂x(φA,x · zT)′ , (1)

P
(1)
A,x = ρα̂x(φA,x · zT) . (2)

Next, multiplying the polynomials P (1)
A,x and P (1)

A,x (Eq. 1 and Eq. 2) we get:

P̃
(1)
A,x

def= P
(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · z)⊗ (φA,x · z)

)
(3)

= ρ2α̂
(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
(4)

= ρ2α̂(ψA,x · zT ⊗ zT) .

where α̂ def= α̂xα̂x is now independent of input x.15 Similarly we can also have:

P̃
(1)
A,x

def= P
(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · z)⊗ (φA,x · z)

)
= ρ2α̂

(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
= ρ2α̂(ψA,x · zT ⊗ zT) .

15Here, we use the fact that the branching programs are single-input. For multi-input programs we do
not know how to make α̂ independent of x. The rest of the analysis does not require the programs to
be single-input.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:11

However, since field multiplication is commutative, adding we get:

P̃
(1)
A,x + P̃

(1)
A,x = 2P (1)

A,xP
(1)
A,x = ρ2α̂(ψA,x · zT ⊗ zT) + ρ2α̂(ψA,x · zT ⊗ zT)

= ρ2α̂(ψA,x +ψA,x) · (zT ⊗ zT) .

Using the given conditions that ΨA0,X and ΨA1,X have distinct column spaces (and
hence distinct left-kernel) the attacker can efficiently compute (e.g. via Gaussian Elimination)
a vector vann ∈ {0, 1}1×m that belongs to its left-kernel, call it the annihilating vector, such
that for some b ∈ {0, 1} we have:

vann ·ΨAb,X = 0 but vann ·ΨA1−b,X 6= 0.

The corresponding annihilation polynomial Qann can be written as:

Qann
vann

(WA,x1 ,WA,x1 , . . . ,WA,xm
,WA,xm

) = vann ·


WA,x1WA,x1

...

WA,xmWA,xm

 .
Observe that the coefficient of g0 in the expression Qann

vann
(WA,x1 ,WA,x1 , . . . ,WA,xm

,WA,xm
)

from above is equal to Qann
vann

(P (1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

). Moreover this value for
A = Ab is:

Qann
vann

(P (1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) = vann ·
ΨAb,X

2 · (z ⊗ z)T ≡ 0

but for A1−b:

Qann
vann

(P (1)
A1−b,x1

, P
(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) = vann ·
ΨA1−b,X

2 · (z ⊗ z)T 6≡ 0.

Hence, the response to Type 2 query is sufficient to distinguish between obfuscation of Ab

and A1−b in the abstract model. This concludes the proof. J

Evaluations of P (0)
A,x and P (1)

A,x

Below we state a lemma without proof (that is deferred to the full version) that described
what the terms P (0)

A,x and P (1)
A,x look like.

I Lemma 4. For every x ∈ {0, 1}n, we have that:

P
(0)
A,x = ρα̂xA(x) ,

P
(1)
A,x = ρα̂x(φA,x · zT),

where ρ def=
∏
i det(Ri) and α̂x

def=
∏`
i=1 αi,xinp(i) and z is a vector consisting of the random

terms Z0, Zi,b, and Z`+1 used to generate the obfuscation terms Y0, Yi,b, and Y`+1 in an
appropriate sequence.

Extending the Abstract Attack to GGH13 Multilinear Maps

Based on the ideas from Miles et al. we can extend our abstract attacks to actual instantiations
with GGH13, that we defer to the full version [4].

ICALP 2017

38:12 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

6 Example of Partially Inequivalent Circuits

In this section, we show examples of pairs of NC1 circuits such that the corresponding
Barrington-implemented16 branching programs are partially inequivalent and therefore are
subject to the abstract annihilation attacks shown in Section 5. Note that here we extend
the notion of partial inequivalence from branching programs to circuits in a natural way.
Unless otherwise mentioned, partial inequivalence of circuits specifically imply that the
corresponding branching programs generated via applying Barrington’s Theorem are partially
inequivalent.

6.1 Simple Pairs of Circuits that are Partially Inequivalent
Consider the following pair of circuits (C0, C1) each of which implements a boolean function
{0, 1}4 → {0, 1}:

C0(x) def= (x[1] ∧ 1)
∧

(x[2] ∧ 0)
∧

(x[3] ∧ 1)
∧

(x[4] ∧ 0),

C1(x) def= (x[1] ∧ 0)
∧

(x[2] ∧ 0)
∧

(x[3] ∧ 0)
∧

(x[4] ∧ 0).

Define the set X def= {0, 1}4. Now, we provide an implementation (see the full version [4]
for more details on the implementation) in Sage [35] that evaluates the column spaces of
matrices produced via applying a Barrington-implementation to the above circuits. The
outcome from the implementation led us to conclude the following claim:

I Claim 5. Let AC0 ,AC1 be the Barrington-Implementation of the circuits C0, C1 respectively,
then we have that: colsp

(
ΨAC0 ,X

)
6= colsp

(
ΨAC1 ,X

)
.

I Remark. We emphasize that we use branching programs generated with a particular
Barrington-implementation that makes a set of specific choices. We refer the reader to the
full version [4] for the details of our implementation. Throughout this section we refer to
this particular Barrington-implementation.

The circuits presented above are of constant size. Looking ahead, though, they are
partially inequivalent and hence (by Theorem 3) are susceptible to the abstract attack that
does not translate to a real-world attack in GGH13 setting immediately. For that we need to
consider larger (albeit NC1) circuits which we construct next based on the above circuits.

6.2 Larger Pairs of Circuits that are Partially Inequivalent
Consider any pair of functionally equivalent NC1 circuits (D0, D1) and an input x? ∈ {0, 1}n
such that D0(x?) = D1(x?) = D0(x?) = D1(x?) = 0. Now define the circuits E0, E1 each of
which computes a boolean function {0, 1}n+4 → {0, 1} as follows:

E0(y) def= ¬C0(x) ∧D0(x′) ,

E1(y) def= ¬C1(x) ∧D1(x′) ,

(¬C is the circuit C with output negated) such that for each y ∈ {0, 1}n+4 we have y = x ◦x′
(◦ denotes concatenation) where x ∈ {0, 1}4 and x′ ∈ {0, 1}n. Define the input-sequence
Y

def= {x ◦ x? | x ∈ {0, 1}4} (consisting of 16 inputs). Then we show the following statement.

16Recall that by Barrington-implementation of a circuit we mean the single-input branching program
produced as a result of Barrington Theorem on the circuit. Also we implicitly assume that the branching
programs are input-oblivious.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:13

I Lemma 6. Let AE0 ,AE1 be the Barrington-implementations of E0, E1 respectively, then
we have that: colsp

(
ΨAE0 ,Y

)
6= colsp

(
ΨAE1 ,Y

)
.

6.3 Partially Inequivalent Universal Circuits
In this section we present constructions of (NC1) universal circuits that, when compiled
with two arbitrary distinct (NC1) but functionally equivalent circuits as inputs, then the
obfuscations of the Barrington-implementation of the compiled circuits are distinguishable
by the abstract attack.

I Theorem 7. There exists a family of NC1 universal circuits U = {U1, U2, . . . , Uv} of size
v = O(poly(λ)) such that: given two arbitrary functionally equivalent NC1 circuits G0, G1
that computes arbitrary boolean function {0, 1}n → {0, 1} satisfying (i) |G0| = |G1| = v and
(ii) there exists an input x? such that G0(x?) = G1(x?) = G0(x?) = G1(x?) = 0; then for
at least one i ∈ [v] the Barrington-implementations of the circuits Ui[G0] and Ui[G1] are
partially inequivalent.

References
1 Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched

NTRU assumptions – cryptanalysis of some FHE and graded encoding schemes. In Mat-
thew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part I, volume 9814 of Lecture Notes in Computer Science, pages 153–178, Santa Bar-
bara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-53018-4_6.

2 Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Univer-
sal constructions and robust combiners for indistinguishability obfuscation and witness
encryption. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
– CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages
491–520, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-53008-5_17.

3 Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 14: 21st Conference on Computer and Communications Security,
pages 646–658, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

4 Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over ggh13. Cryptology ePrint Archive, Report
2016/1003, 2016. URL: http://eprint.iacr.org/2016/1003.

5 Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 162–172, Kaoshiung,
Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-45608-8_9.

6 Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded
encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science,
pages 528–556, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-46497-7_21.

7 Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Advances in
Cryptology – EUROCRYPT, 2016.

ICALP 2017

http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://eprint.iacr.org/2016/1003
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-46497-7_21
http://dx.doi.org/10.1007/978-3-662-46497-7_21

38:14 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

8 Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 221–238, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-55220-5_13.

9 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,
Germany.

10 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 1–5, 1986. doi:
10.1145/12130.12131.

11 Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct ran-
domized encodings and their applications. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th Annual ACM Symposium on Theory of Computing, pages 439–448, Portland,
OR, USA, June 14–17, 2015. ACM Press.

12 Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages 1–
25, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-54242-8_1.

13 Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. Cryptology ePrint Archive, Report 2016/998, To appear in EUROCRYPT
2017, 2016. URL: http://eprint.iacr.org/2016/998.

14 Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. Personal Communication, 2016.

15 Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new CLT multilinear map over the integers. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume
9665 of Lecture Notes in Computer Science, pages 509–536, Vienna, Austria, May 8–12,
2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49890-3_20.

16 Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 3–12, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-46800-5_1.

17 Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU prob-
lems and cryptanalysis of the GGH multilinear map without an encoding of zero. IACR
Cryptology ePrint Archive, 2016:139, 2016. URL: http://eprint.iacr.org/2016/139.

18 Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level
zeroes: New MMAP attacks and their limitations. In Advances in Cryptology – CRYPTO
2015 – 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 247–266, 2015.

19 Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Crypt-
analysis of GGH15 multilinear maps. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Com-

http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://eprint.iacr.org/2016/998
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/2016/139

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:15

puter Science, pages 607–628, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-53008-5_21.

20 Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over CLT13. Cryptology ePrint Archive, Report
2016/1011, To appear in PKC 2017, 2016. URL: http://eprint.iacr.org/2016/1011.

21 Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 476–
493, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-40041-4_26.

22 Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in
Computer Science, pages 559–585, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-49896-5_20.

23 Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Obfus-
cation from low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599, 2016.
http://eprint.iacr.org/2016/599.

24 Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Crypto-
logy – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
1–17, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-38348-9_1.

25 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

26 Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In TCC 2016-B,
2016.

27 Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science,
pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-46497-7_20.

28 Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, editor,
TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in Com-
puter Science, pages 308–326, Zurich, Switzerland, February 9–11, 2010. Springer, Heidel-
berg, Germany.

29 Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of Lec-
ture Notes in Computer Science, pages 537–565, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-49890-3_21.

30 N. Kayal. The complexity of the annihilating polynomial. In Computational Complexity,
2009. CCC’09. 24th Annual IEEE Conference on, pages 184–193, July 2009. doi:10.1109/
CCC.2009.37.

31 Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic at-
tacks. Cryptology ePrint Archive, Report 2014/878, 2014. URL: http://eprint.iacr.
org/2014/878.

ICALP 2017

http://dx.doi.org/10.1007/978-3-662-53008-5_21
http://eprint.iacr.org/2016/1011
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-49896-5_20
http://eprint.iacr.org/2016/599
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1109/CCC.2009.37
http://dx.doi.org/10.1109/CCC.2009.37
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878

38:16 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

32 Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 629–658, Santa Barbara, CA, USA, August 14–
18, 2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-53008-5_22.

33 Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro, ed-
itors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 500–517, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-44371-2_28.

34 Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory
of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

35 W.A. Stein et al. Sage Mathematics Software (Version 7.3). The Sage Development Team,
2016. URL: http://www.sagemath.org.

http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://www.sagemath.org

	Introduction
	Our Contributions
	Technical Overview

	Notations and Preliminaries
	Notations

	Attack Model for Investigating Annihilation Attacks
	Partially Inequivalent Branching Programs
	Annihilation Attacks for Partially Inequivalent Programs
	Example of Partially Inequivalent Circuits
	Simple Pairs of Circuits that are Partially Inequivalent
	Larger Pairs of Circuits that are Partially Inequivalent
	Partially Inequivalent Universal Circuits

