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Abstract
In this paper, we present improved algorithms for the (∆ + 1) (vertex) coloring problem in the
Congested Clique model of distributed computing. In this model, the input is a graph on n nodes,
initially each node knows only its incident edges, and per round each two nodes can exchange
O(logn) bits of information.

Our key result is a randomized (∆ + 1) vertex coloring algorithm that works in O(log log ∆ ·
log∗∆)-rounds. This is achieved by combining the recent breakthrough result of [Chang-Li-Pettie,
STOC’18] in the LOCAL model and a degree reduction technique. We also get the following results
with high probability: (1) (∆ + 1)-coloring for ∆ = O((n/ logn)1−ε) for any ε ∈ (0, 1), within
O(log(1/ε) log∗∆) rounds, and (2) (∆ + ∆1/2+o(1))-coloring within O(log∗∆) rounds.
Turning to deterministic algorithms, we show a (∆+1)-coloring algorithm that works in O(log ∆)
rounds. Our new bounds provide exponential improvements over the state of the art.
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1 Introduction & Related Work

Graph coloring is one of the most central symmetry breaking problems, with a wide range
of applications to distributed systems and wireless networks. The most studied coloring
problem is the (∆ + 1) vertex coloring in which all nodes are given the same palette of ∆ + 1
colors, where ∆ is the maximum degree in the graph. Vertex coloring among other LCL
problems1 (e.g., MIS, matching) are traditionally studied in the LOCAL model in which any
two neighboring vertices in the input graph can exchange arbitrarily long messages.

In recent years there has been a tremendous progress in the understanding of the
randomized and the deterministic complexities of many LCL problems in the LOCAL model
[6, 20, 8, 9, 1]. Putting our focus on the (∆ + 1) coloring problem, in a seminal work,
Schneider and Wattenhofer [23] showed that increasing the number of colors from ∆ + 1 to
(1 + ε)∆ has a dramatic effect on the round complexity and coloring can be computed in just
O(log∗ n) rounds when ε = Ω(1) and ∆ > poly logn. This has led to two recent breakthroughs.
Harris, Schneider and Su [13] showed an O(

√
log ∆)-round algorithm for (∆ + 1) coloring,

providing a separation for the first time between MIS and coloring (due to the MIS lower
bound of [17]). In a recent follow-up breakthrough, Chang, Li and Pettie [7] extended the

1 LCL stands for Locally Checkable Labelling problems, see [21].
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160:2 (∆ + 1) Coloring in the Congested Clique Model

technique of [13] to obtain the remarkable and quite extraordinary round complexity of
O(log∗ n + Detdeg(polylogn)) for the (∆ + 1)-list coloring problem where Detdeg(n′) is the
deterministic round complexity of (deg +1) list coloring algorithm2 in n′-vertex graph. Both
of these recent breakthroughs use messages of large size, potentially of Ω(n) bits.

In view of these recent advances, the understanding of LCL problems in bandwidth-
restricted models is much more lacking. Among these models, the congested clique model
[19], which allows all-to-all communication has attracted a lot of attention in the last decade
and more recently, in the context of LCL problems [4, 15, 14, 5, 12, 24]. In the congested
clique model, each node can send O(logn) bits of information to any node in the network
(i.e., even if they are not connected in the input graph). The ubiquitous of overlay networks
and large scale distributed networks make the congested clique model far more relevant
(compared to the LOCAL and the CONGEST models) in certain settings.

Randomized LCL in the Congested Clique Model. Starting with Barenboim et al. [2],
currently, all efficient randomized algorithms for classical LCL problems have the following
structure: an initial randomized phase and a post-shattering deterministic phase. The
shattering effect of the randomized phase which dates back to Beck [3], breaks the graph
into subproblems of poly logn size to be solved deterministically. In the congested-clique
model, the shattering effect has an even more dramatic effect. Usually, a node survives
(i.e., remained undecided) the randomized phase with probability of 1/poly(∆). Hence, in
expectation the size of the remaining unsolved graph is3 O(n). At that point, the entire
unsolved subgraph can be solved in O(1) rounds, using standard congested clique tools (e.g.,
the routing algorithm by Lenzen [18]). Thus, as long as the main randomized part uses short
messages, the congested clique model “immediately" enjoys an improved round complexity
compared to that of the LOCAL model.

In a recent work [12], Ghaffari took it few steps farther and showed an Õ(
√

log ∆)-round
randomized algorithm for MIS in the congested clique model, improving upon the state-of-
the-art complexity of O(log ∆ + 2O(

√
log logn)) rounds in the LOCAL model, also by Ghaffari

[11]. When considering the (∆ + 1) coloring problem, the picture is somewhat puzzling. On
the one hand, in the LOCAL model, (∆ + 1) coloring is provably simpler then MIS. However,
since all existing o(log ∆)-round algorithms for (∆ + 1) coloring in the LOCAL model, use
large messages, it is not even clear if the power of all-to-all communication in the congested
clique model can compensate for its bandwidth limitation and outperform the LOCAL round
complexity, not to say, even just match it. We note that on hind-sight, the situation for MIS
in the congested clique was somewhat more hopeful (compared to coloring), for the following
reason. The randomized phase of Ghaffari’s MIS algorithm although being in the LOCAL
model [11], used small messages and hence could be implemented in the CONGEST model
with the same round complexity. To sum up, currently, there is no o(log ∆)-round algorithm
for (∆ + 1) coloring in any bandwidth restricted model, not even in the congested-clique.

Derandomization of LCL in the Congested-Clique Model. There exists a curious gap
between the known complexities of randomized and deterministic solutions for local problems
in the LOCAL model ([6, 20]). Censor et al. [5] initiated the study of deterministic LCL
algorithms in the congested clique model by means of derandomization. The main take home
message of [5] is as follows: for most of the classical LCL problems there are poly logn round

2 In the (deg +1) list coloring problem, each vertex v is given a palette with deg(v, G) + 1 colors.
3 Using the bounded dependencies between decisions, this holds also with high probability.
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randomized algorithms (even in the CONGEST model). For these algorithms, it is usually
sufficient that the random choices made by vertices are almost independent. This implies
that each round of the randomized algorithm can be simulated by giving all nodes a shared
random seed of poly logn bits. To dernadomize a single round of the randomized algorithm,
nodes should compute (deterministically) a seed which is at least as “good"4 as a random
seed would be. To compute this seed, they need to estimate their “local progress" when
simulating the random choices using that seed. Combining the techniques of conditional
expectation, pessimistic estimators and bounded independence leads to a simple “voting"-like
algorithm in which the bits of the seed are computed bit-by-bit. Once all bits of the seed are
computed, it is used to simulate the random choices of that round. For a recent work on
other complexity aspects in the congested clique, see [16].

1.1 Main Results and Our Approach
In this paper, we show that the power of all-to-all communication compensates for the
bandwidth restriction of the model:

I Theorem 1. There is a randomized algorithm that computes a (∆ + 1) coloring in
O(log log ∆ · log∗ n) rounds of the congested clique model, with high probability5.

This significantly improves over the state-of-the-art of O(log ∆)-round algorithm for (∆ + 1)
in the congested clique model. It should also be compared with the round complexity of
(2O(
√

log logn)) in the LOCAL model, due to [7]. As noted by the authors, reducing the LOCAL
complexity to below O((log logn)2) requires a radically new approach.

Our O(log log ∆·log∗ n) round algorithm is based on a recursive degree reduction technique
which can be used to color any almost-clique graph with ∆ = Õ(n1−o(1)) in essentially
O(log∗ n) rounds.

I Theorem 2. (i) For every ε ∈ (0, 1), there is a randomized algorithm that computes a
(∆ + 1) coloring in O(log(1/ε) · log∗ n) rounds for graphs with ∆ = O((n/ logn)1−ε), (ii)
This also yields a (∆ + ∆1/2+o(1)) coloring in O(log∗ n) rounds, with high probability.

Claim (ii) improves over the O(∆)-coloring algorithm of [14] that takes O(log log logn) rounds
in expectation. We also provide fast deterministic algorithms for (∆ + 1) list coloring. The
stat-of-the-art in the LOCAL model is Õ(

√
∆) + log∗ n rounds due to Fraigniaud, Heinrich,

Marc and Kosowski [10].

I Theorem 3. There is a deterministic algorithm that computes a (∆ + 1) coloring in
O(log ∆) rounds of the congested clique model and an O(∆2) coloring in O(1) rounds.

In [5], a deterministic algorithm for (∆ + 1) coloring in O(log ∆) round was shown only
for the case where ∆ = O(n1/3). Here it is extended for ∆ = Ω(n1/3). This is done by
derandomizing an (∆ + 1)-list coloring algorithm which runs in O(logn) rounds. Similarly
to [5], we first show that this algorithm can be simulated when the random choices made by
the nodes are pairwise independent. Then, we enjoy the small search space and employ the
method of conditional expectations. Instead of computing the seed bit by bit, we compute it
in chunks of blognc bits at a time, by fully exploiting the all-to-all power of the model.

4 The random seed is usually shown provide a large progress in expectation. The deterministically
computed seed should provide a progress at least as large as the expected progress of a random seed.

5 As usual, by high probability we mean 1− 1/nc for some constant c ≥ 1.
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Δ∗ = 𝑛

Figure 1 Illustration of the recursive sparsification. Gray boxes correspond to subgraphs with
maximum degree O(

√
∆).

The Challenges and the Degree Reduction Technique. Our starting observation is that
the CLP algorithm [7] can be implemented in O(log∗ n) rounds in congested clique model for
∆ = O(

√
n). When ∆ = O(

√
n), using Lenzen’s routing algorithm [18], each node can learn

in O(1) rounds, the palettes of all its neighbors along with the neighbors of its neighbors.
Such knowledge is mostly sufficient for the CLP algorithm to go through.

To handle large degree graphs, we design a graph sparsification technique that essentially
reduces the problem of (∆ + 1) coloring for an arbitrarily large ∆ = Õ(n1−ε) into ` =
O(log(1/ε)) (non-independent) subproblems. In each subproblem, one has to compute
a (∆′ + 1) coloring for a subgraph with ∆′ = O(

√
n), which can be done in O(log∗ n)

rounds, using a modification of the CLP algorithm, that we describe later on. Since there
many dependencies between these ` sub-problems, it is required by our algorithm to solve
them one-by-one, leading to a round complexity of O(log(1/ε) log∗ n). See Figure 1 for an
illustration of the recursion levels. To get an intuition into our approach and the challenges
involved, consider an input graph G with maximum degree ∆ = (n/ logn)1−ε and a palette
Pal(G) = {1, . . . ,∆ + 1} given to each node in G. A natural approach (also taken in [14]) for
handling a large degree graph is to decompose it (say, randomly) into k vertex disjoint graphs
G1, G2, . . . , Gk, allocate a distinct set of colors for each of the subgraphs taken from Pal(G)
and solve the problem recursively on each of them, enjoying (hopefully) smaller degrees in
each Gi. Intuitively, assigning a disjoint set of colors to each Gi has the effect of removing
all edges connecting nodes in different subgraphs. Thus, the input graph G is sparsified into
a graph G′ =

⋃
Gi such that a legal coloring of G′ (with the corresponding palettes given

to the nodes) is a legal coloring for G. The main obstacle in implementing this approach is
that assigning a distinct set of ∆(Gi) + 1 colors to each of the Gi subgraph might be beyond
the budget of ∆ + 1 colors. Indeed in [14] this approach led to O(∆) coloring rather than
(∆ + 1). To reduce the number of colors allocated to each subgraph Gi, it is desirable that
the maximum degree ∆(Gi) would be as small as possible, for each Gi. This is exactly the
problem of (k, p) defective coloring where one needs to color the graph with k colors such that
the number of neighbors with the same color is at most p. To this point, the best defective
coloring algorithm for large degrees is the randomized one: let each node pick a subgraph Gi
(i.e., a color in the defective coloring language) uniformly at random. By a simple application
of Chernoff bound, it is easy to see that the partitioning is “almost" perfect: w.h.p., for
every i, ∆(Gi) ≤ ∆/k +

√
logn ·∆/k. Hence, allocating ∆(Gi) + 1 colors to each subgraphs

consumes ∆ + Õ(
√

∆k) colors. To add insult to injury, this additive penalty of Õ(
√

∆k) is
only for one recursion call!

It is interesting to note that the parameter k – number of subgraphs (colors) – plays a
key role here. Having a large k has the benefit of sharply decreasing the degree (i.e., from ∆
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to ∆/k). However, it has the drawback of increasing the standard deviation and hence the
total number of colors used. Despite these opposing effects, it seems that for whatever value
of k chosen, increasing the number of colors to ∆ + ∆ε is unavoidable.

Our approach bypasses this obstacle by partitioning only a large fraction of the vertices
into small-degree subgraphs but not all of them. Keeping in mind that we can handle
efficiently graphs with maximum degree

√
n, in every level of the recursion, roughly 1−1/

√
∆

of the vertices are partitioned into subgraphs G1, . . . , Gk. Let ∆(Gi) be the maximum degree
of Gi. The remaining vertices join a left-over subgraph G∗. The number of subgraphs, k, is
chosen carefully so that allocating ∆(Gi) + 1 colors to each of the k subgraphs, consumes
at most ∆ colors, on the one hand; and that the degree reduction in each recursion level
is large enough on the other hand. These subgraphs are then colored recursively, until all
remaining subgraphs have degree of O(

√
n). Once all vertices in these subgraphs are colored,

the algorithm turns to color the left-over subgraph G∗. Since the maximum degree in G∗ is
O(
√
n), it is tempting to use the CLP algorithm to complete the coloring, as this can be

done in O(log∗ n) rounds for such bound on the maximum degree. This is not so immediate
for the following reasons. Although the degree of v in G∗ is O(

√
n), the graph G∗ cannot be

colored independently (as at that point, we ran out of colors to be solely allocate to G∗).
Instead, the coloring of G∗ should agree with the coloring of the rest of the graph and each v
might have Ω(∆) = n1−ε neighbors in G. At first glance, it seems that this obstacle is easily
solved by letting each v ∈ G∗ pick a subset of deg(v,G∗) = O(

√
n) colors from its palette

(i.e., removing the colors taken by its neighbors in G \ G∗). Now, one can consider only
the graph G∗ with maximum degree

√
n, where each vertex has a palette of deg(v,G∗) + 1

colors. Unfortunately, this seemingly plausible approach has a subtle flaw: for the CLP
algorithm it is essential that each vertex receives a palette with exactly ∆(G∗) + 1 colors.
This is indeed crucial and as noted by the authors adopting their algorithm to a (deg +1)
coloring algorithm is highly non-trivial and probably calls for a different approach.

In our setting, allocating each vertex v ∈ G the exact same number of colors seems to
be impossible as the number of available colors of each v depends on the number of its
neighbors in G \G∗, and this number has some fluctuations due to the random partitioning
of the vertices. To get out of this impasse, we show that after coloring all vertices in G \G∗,
every vertex v ∈ G∗ has rv ∈ [∆(G∗) ± (∆(G∗))3/5] available colors in its palette where
rv ≥ deg(v,G∗). In other words, all vertices can be allocated “almost" the same number of
colors, but not exactly the same. We then carefully revise the basic definitions of the CLP
algorithm and show that the analysis still goes through (upon minor changes) for this narrow
range of variation in the size of the palettes.

Paper Organization. In Section 2, we explain how the CLP algorithm of [7] can be simulated
in O(log∗ n) congested-clique rounds when ∆ = O(

√
n). In Section 3.1, we illustrate the

degree-reduction technique on the case where ∆ = O((n/ logn)3/4). Section 3.2 extends this
approach for ∆ = O((n/ logn)1−ε) for any ε ∈ (0, 1), and Section 3.3 handles the general
case and provides the complete algorithm. Finally, Section 4 discusses deterministic coloring
algorithms. Missing proofs are deferred to the full version.

2 The Chang-Li-Pettie (CLP) Alg. in the Congested Clique

High-level Description of the CLP Alg. in the LOCAL Model. In the description below,
we focus on the main randomized part of the CLP algorithm [13].

Harris-Schneider-Su algorithm is based on partitioning the graph into an ε-sparse subgraph
and a collection of vertex-disjoint ε-dense components, for a given input parameter ε. Since

ICALP 2018



160:6 (∆ + 1) Coloring in the Congested Clique Model

the CLP algorithm extends this partitioning, we next formally provide the basic definitions
from [13]. For an ε ∈ (0, 1), an edge e = (u, v) is an ε-friend if |N(u) ∩N(v)| ≥ (1− ε) ·∆.
The endpoints of an ε-friend edge are ε-friends. A vertex v is ε-dense if v has at least (1− ε)∆
ε-friends, otherwise it is ε-sparse. A key structure that arises from the definition of ε dense
vertices is that of ε-almost clique which is a connected component of the subgraph induced
by the ε-dense vertices and ε-friend edges. The dense components, ε-almost cliques, have
some nice properties: each component C has at most (1 + ε)∆ many vertices, each vertex
v ∈ C has O(ε∆) neighbors outside C (called external neighbors) and O(ε∆) vertices in
C which are not its neighbors. In addition, C has weak diameter at most 2. Coloring the
dense vertices consists of O(log1/ε ∆) phases. The efficient coloring of dense regions is made
possible by generating a random proper coloring inside each clique so that each vertex has a
small probability of receiving the same color as one of its external neighbors. To do that, in
each cluster a random permutation is computed and each vertex selects a tentative color
from its palette excluding the colors selected by lower rank vertices. Since each component
has weak diameter at most 2, this process is implemented in 2 rounds of the LOCAL model.
The remaining sparse subgraph is colored using a Schneider-Wattenhofer style algorithm [23]
within O(log(1/ε)) rounds.

In Chang-Li-Pettie algorithm the vertices are partitioned into ` = dlog log ∆e layers
in decreasing level of density. This hierarchical partitioning is based on a sequence of `
sparsity thresholds ε1, . . . , ε` where εi = √εi−1. Roughly speaking, level i consists of the
vertices which are εi-dense but εi−1-sparse. Instead of coloring the vertices layer by layer, the
algorithm partitions the vertices in level i into large and small components and partitions the
layers into O(log∗∆) strata. It then colors the vertices in O(log∗∆) phases, giving priority
to vertices in small components. The algorithms used to color these vertices are of the same
flavor of the dense-coloring procedure of Harris-Schneider-Su. The key benefit in having the
hierarchical structure is that the dense-coloring procedure is applied for O(1) many phases
on each stratum, rather than applying it for O(log1/ε ∆) phases as in [13].

An O(log∗∆)-Round Alg. for ∆ = O(
√
n) in the Congested Clique. We next observe

that the randomized part of the CLP algorithm [7] can be implemented in the congested
clique model when ∆ = O(

√
n) within O(log∗∆) rounds. We note that we obtain a round

complexity of O(log ∆∗) rather than O(log∗ n) as in [7], due to the fact that the only part of
the CLP algorithm that requires O(log∗ n) rounds was for coloring a subgraph with maximum
constant degree. In the congested-clique model such a step can be implemented in O(1)
rounds using Lenzen’s routing algorithm. We show:

I Theorem 4. For every graph with maximum degree ∆ = O(
√
n), there is an O(log∗∆)-

round randomized algorithm that computes (∆ + 1)-list coloring in the congested clique
model.

The main advantage of having small degrees is that it is possible for each node to collect
its 2-neighborhood in O(1) rounds (i.e., using Lenzen’s routing [18]). As we will see, this
is sufficient in order to simulate the CLP algorithm in O(log∗∆) rounds. The hierarchical
decomposition of the vertices depends on the computation of ε-dense vertices. By collecting
the neighbors of its neighbors, every vertex can learn its ε-dense friends and based on that
deduce if it is an ε-dense vertex for every ε. In particular, for every edge (u, v), v can
learn the minimum i such that u and v are εi-friends. To allow each vertex v compute the
ε-almost cliques to which it belongs, we do as follows. Each vertex v sends to each of its
neighbors N(v), the minimum εi such that u, v are εi-friends, for every u ∈ N(v). Since the
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weak diameter of each almost-clique is at most 2, each vertex has collected all the required
information from its 2nd neighborhood to locally compute its εi-almost cliques for every εi.
Overall, each vertex sends O(∆) messages and receives O(∆2) = O(n) messages, collection
this information can be done in O(1) rounds for all nodes, using Lenzen’s routing algorithm.
The next obstacle is the simulation of the algorithm that colors the ε-dense vertices. Since
each ε-almost clique C has (1 + ε)∆ = O(

√
n) vertices, we can make the leader of each

such C learn the palettes of all the vertices in its clique as well as their neighbors in O(1)
rounds. The leader can then locally simulate the dense-coloring procedure and notify the
output color to each of its almost-clique vertices. Finally, coloring the sparse regions in a
Schneider-Wattenhofer style uses messages of size O(∆) and hence each vertex is the target
of O(∆2) = O(n) messages which again can be implemented in O(1) many rounds. A more
detailed description appears in the full version [22]. By the above description, we also have:

I Corollary 5. Given q vertex-disjoint subgraphs G1, . . . , Gq each with maximum degree
∆ = O(

√
n), a (∆ + 1) coloring can be computed in O(log∗∆) rounds, for all subgraphs

simultaneously.

Handling Non-Equal Palette Size for ∆ = O(
√
n). The CLP algorithm assumes that each

vertex is given a list of exactly (∆ + 1) colors. Our coloring algorithms requires a more
relaxed setting where each vertex v is allowed to be given a list of rv ∈ [∆−∆3/5,∆ + 1]
colors where rv ≥ deg(v,G) + 1. In this subsection we show:
I Lemma 6. Given a graph G with ∆ = O(

√
n), if every vertex v has a palette with

rv ≥ deg(v,G) + 1 colors and rv ∈ [∆−∆3/5,∆ + 1] then a list coloring can be computed in
O(log∗∆) rounds in the congested clique model.

The key modification for handling non-equal palette sizes is in definition of ε-friend (which
affects the entire decomposition of the graph). Throughout, let q = ∆3/5 and say6 that u, v
are (ε, q)-friends if |N(u) ∩N(v)| ≥ (1− ε) · (∆− q). Clearly, if u, v are ε-friends, they are
also (ε, q)-friends. A vertex v is an (ε, q)-dense if it has at least (1− ε) · (∆− q) neighbors
which are (ε, q)-friends. An (ε, q)-almost clique is a connected component of the subgraph
induced by (ε, q)-dense vertices and their (ε, q) friends edges. We next observe that for the
ε-values used in the CLP algorithm, the converse is also true up to some constant. The full
proof of Theorem 6 is in the full version.

I Observation 7. For any ε ∈ [∆−10,K−1], where K is a large constant, and for q = ∆3/5,
it holds that if u, v are (ε, q) friends, they are (2ε)-friends. Also, if v is an (ε, q)-dense, then
it is 2ε-dense.

3 (∆ + 1)-Coloring for ∆ = Ω(
√
n)

In this section, we describe a new recursive degree-reduction technique. As a warm-up, we
start with ∆ = O((n/ logn)3/4). We make use of the following fact.

I Theorem 8 (Simple Corollary of Chernoff Bound). Suppose X1, X2, . . . , X` ∈ [0, 1] are
independent random variables, and let X =

∑`
i=1 Xi and µ = E[X]. If µ ≥ 5 logn, then

w.h.p. X ∈ µ±
√

5µ logn, and if µ < 5 logn, then w.h.p. X ≤ µ+ 5 logn.

6 The value of q is chosen to be a bit above the standard deviation of
√

∆ log n that will occur in our
algorithm.

ICALP 2018
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3.1 An O(log∗∆)-round algorithm for ∆ = O((n/ logn)3/4)
The algorithm partitions G into O(∆1/3) subgraphs as follows. Let ` = d∆1/3e. We define
`+ 1 subsets of vertices V1, . . . , V`, V

∗. A vertex joins each Vi with probability

pi = 1/`− 2
√

5 logn/(∆1/3 · `),

for every i ∈ {1, . . . , `}, and it joins V ∗ with the remaining probability of p∗ = 2
√

5 logn/∆1/3.
Let Gi = G[Vi] be the induced subgraph for every i ∈ {1, . . . , `, ∗}. Using Chernoff bound

of Theorem 8, the maximum degree ∆′ in each subgraph Gi, i ∈ {1, . . . , `} is w.h.p.:

∆′ ≤ ∆/`− 2∆2/3√
5 logn/`+

√
5∆ logn/` ≤ ∆/`− 1

In the first phase, all subgraphs G1, . . . , G` are colored independently and simultaneously.
This is done by allocating a distinct set of (∆′ + 1) colors for each of these subgraphs.
Overall, we allocate ` · (∆′ + 1) ≤ ∆ colors. Since ∆′ = O(∆2/3) = O(

√
n), we can apply

the (∆′ + 1)-coloring algorithm of Theorem 5 on all the graphs G1, . . . , G` simultaneously.
Hence, all the subgraphs G1, . . . , G` are colored in O(log∗∆) rounds.

Coloring the remaining left-over subgraph G∗. The second phase of the algorithm com-
pletes the coloring for the graph G∗. This coloring should agree with the colors computed
for G \G∗ computed in the previous phase. Hence, we need to color G∗ using a list coloring
algorithm. We first show that w.h.p. the maximum degree ∆∗ in G∗ is O(

√
n). The

probability of vertex to be in G∗ is p∗ = 2
√

5 logn/∆1/3. By Chernoff bound of 8, w.h.p.,
∆∗ ≤ p∗ ·∆ +

√
5p∗ ·∆ · logn. Since ∆ ≤ (n/ logn)3/4, ∆∗ = O(

√
n). To be able to apply

the modified CLP of Theorem 6, we show:

I Lemma 9. Every v ∈ G∗ has at least ∆∗ − (∆∗)3/5 available colors in its palette after
coloring all its neighbors in G \G∗.

Proof. First, consider the case where deg(v,G) ≤ ∆−(∆∗−
√

5∆∗ · logn). In such case, even
after coloring all neighbors of v, it still has an access of ∆∗ −

√
5∆∗ · logn ≥ ∆∗ − (∆∗)3/5

colors in its palette after coloring G \ G∗ in the first phase. Now, consider a vertex v

with deg(v,G) ≥ ∆ − (∆∗ −
√

5∆∗ · logn). Using Chernoff bound, w.h.p., deg(v,G∗) >
(∆− (∆∗ −

√
∆∗ · 5 logn)) · p∗ −

√
5 logn∆p∗ ≥ ∆∗ − (∆∗)3/5. J

Also note that a vertex v ∈ G∗ has at least deg(v,G∗) + 1 available colors, since all its
neighbors in G∗ are uncolored at the beginning of the second phase and initially it was given
(∆ + 1) colors. Eventhough, v ∈ G∗ might have Ω(∆) neighbors not in G∗, to complete
the coloring of G∗, by Theorem 9, after the first phase, each v can find in its palette
r ∈ [∆∗ − (∆∗)3/5,∆∗ + 1] available colors and this sub-palette is sufficient for its coloring in
G∗. Since ∆∗ = O(

√
n), to color G∗ (using these small palettes), one can apply the O(log∗∆)

round list-coloring algorithm of Theorem 6.

3.2 An O(log(1/ε) · log∗∆)-round algorithm for
∆ = O((n/ logn)1−ε)

Let N = n/(5 logn). First assume that ∆ ≤ N/2 and partitions the range of relevant
degrees [

√
n,N/2] into ` = Θ(log log ∆) classes. The yth range contains all degrees in

[N1−1/2y

, N1−1/(2y+1)] for every y ∈ {1, . . . , `}. Given a graph G with maximum degree
∆ = O(N1−1/(2y+1)), Algorithm RecursiveColoring colors G in y ·O(log∗∆) rounds, w.h.p.
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Step (I): Partitioning (Defective-Coloring). For i ∈ {0, . . . , y − 1}, in every level i of the
recursion, we are given a graph G′, with maximum degree ∆i = O(N1−1/2y−i+1), and a
palette Pali of (∆i + 1) colors. For i = 0, ∆0 = ∆ and the palette Pal0 = {1, . . . ,∆ + 1}.

The algorithm partitions the vertices of G′ into qi + 1 subsets: V ′1 , . . . , V ′qi
and a special

left-over set V ∗. The partitioning is based on the following parameters. Set x = 2y−i and

qi = d∆1/(2x−1)
i e and δi = 2

√
5 logn · q3/2

i /
√

∆i.

Each vertex v ∈ V (G′) joins V ′j with probability pj = 1/qi − δi/(qi)2 for every j ∈
{1, . . . , qi}, and it joins V ∗ with probability p∗ = δi/qi. Note that p∗ ∈ (0, 1) as x ≥ 2. For
every j ∈ {1, . . . , qi}, let G′j = G′[V ′j ] and let G∗ = G′[V ∗].

Step (II): Recursive coloring of G′1, . . . , G′qi
. Denote by ∆̃j to be the maximum degree in

G′j for every j ∈ {1, . . . , qi} and by ∆∗, the maximum degree in G∗. The algorithm allocates
a distinct subset of (∆̃j + 1) colors from Pali for every j ∈ {1, . . . , qi}. In the analysis, we
show that w.h.p. Pali contains sufficiently many colors for that allocation. The subgraphs
G′1, . . . , G

′
qi

are colored recursively and simultaneously, each using its own palette. It is easy
to see that the maximum degree of each G′j is O(N1−1/2y−i) (which is indeed the desire
degree for the subgraphs colored in level i+ 1 of the recursion).

Step (III): Coloring the left-over graph G∗. Since the algorithm already allocated at
most ∆i colors for coloring the G′j subgraphs, it might run out of colors to allocate for
G∗. This last subgraph is colored using a list-coloring algorithm only after all vertices of
G′1, . . . , G

′
qi

are colored. Recall that ∆∗ is the maximum degree of G∗. In the analysis,
we show that w.h.p. ∆∗ = O(

√
n). For every v ∈ G∗, let Pal(v) ⊆ Pali be the remaining

set of available colors after coloring all the vertices in V ′1 , . . . , V
′
qi
. Each vertex v ∈ G∗

computes a new palette Pal∗(v) ⊆ Pal(v) such that: (i) |Pal∗(v)| ≥ deg(v,G∗) + 1, and (ii)
|Pal∗(v)| ∈ [∆∗ −∆3/5,∆∗ + 1]. In the analysis section, we show that w.h.p. this is indeed
possible for every v ∈ G∗. The algorithm then applies the modified CLP algorithm, and G∗
gets colored within O(log∗∆) rounds.

Example:

Δ0 = 𝑛15/16

Δ1 = 𝑛7/8

…

𝑞1 = Θ(𝑛1/16)

𝑞2 = Θ(𝑛1/8)

Δ2 = 𝑛3/4
𝑞3 = Θ(𝑛1/4)

Δ3 = 𝑛1/2

…

…

𝐺

Δ∗ = 𝑛

Assume that input graph G has maximum degree ∆0 = n15/16. The algorithm partitions G
into k0 = n1/15 subgraphs in the following manner. For sake of clarity, we omit logarithmic

ICALP 2018
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factors in the explanation. With probability 1/(∆0)1/2+o(1), v joins a left-over subgraph G∗,
and with the remaining probability it picks a subgraph [1, k0] uniformly at random. It is easy
to see that the maximum degree in each of these subgraphs is at most ∆1 = n7/8 + n7/16.
A distinct set of ∆1 colors from [1,∆0 + 1] is allocated to each of the k subgraphs. Each
such subgraph is now partitioned into k1 = n1/8 subgraphs plus a left-over subgraph. This
continues until all subgraphs have their degrees sharply concentrated around

√
n. At that

point, the modified CLP algorithm can be applied on all the subgraphs in the last level `.
Once these subgraphs are colored, the left-over subgraphs in level ` − 1 are colored, this
continues until the final left-over subgraph of the first level is colored. We next provide a
compact and high level description of the algorithm.

Algorithm 1 RecursiveColoring(G′,Pali)

Input: Graph G′ with maximum degree ∆i = O(N1−1/2y−i+1).
A palette Pali of (∆i + 1) colors (same for all nodes).

Partitions G′ into qi + 1 vertex-disjoint subgraphs:
qi vertex-subgraphs G′1, . . . , G′qi

with maximum degree ∆i+1 = O(N1−1/2y−i).
Left-over subgraph G∗ with maximum degree ∆∗ = O(

√
n).

Allocate a distinct palette Palj ⊂ Pali of (∆i+1 + 1) colors for each j ≤ qi.
Apply RecursiveColoring(Gj ,Palj) for every j ≤ qi simultaneously.
Apply a (∆i + 1)-list coloring restricted to Pali, to complete the coloring of G[V ∗].

Analysis.

I Lemma 10. (i) For every j ∈ {1, . . . , qi}, w.h.p., ∆̃j = O(N1−1/2y−i). (ii) One can
allocate (∆̃j + 1) distinct colors from Pali for each G′j, j ∈ {1, . . . , qi}.

Proof. Using Chernoff bound of Theorem 8, w.h.p., for every j ∈ {1, . . . , qi − 1}, the
maximum degree ∆̃j in G′j is at most ∆̃j = O(∆i/qi). Since ∆i = O(N1−2y−i+1), claim (i)
follows. We now bound the sum of all colors allocated to these subgraphs:

∆̃j ≤ ∆i/qi − (∆i · δi)/(qi)2 +
√

5 logn ·∆i/qi ≤ ∆i/qi − 1 .

where the last inequality follows by the value of δi. We get that
∑qi

j=1(∆̃j + 1) ≤ ∆i and
since Pali contains ∆i + 1 colors, claim (ii) follows. J

We next analyze the final step of the algorithm and begin by showing that, w.h.p., the
maximum degree in the left-over graph G∗ is O(

√
n). By Chernoff bound of Theorem 8,

w.h.p., the maximum degree ∆∗ ≤ ∆i ·δi/qi+
√

logn ·∆i · δi/qi. Since ∆i = O(N1−1/2y−i+1),
we get that ∆∗ = O(

√
n). We now claim:

I Lemma 11. After coloring for all the vertices in G′1, . . . , G′qi
, each vertex v ∈ G∗ has a

palette Pal∗(v) of free colors such that (i) |Pal∗(v)| ≥ deg(u,G∗) + 1, and (ii) |Pal∗(v)| ∈
[∆∗ − (∆∗)3/5),∆∗ + 1].

Proof. Since each vertex v ∈ G′ has a palette of size (∆i + 1) ≥ deg(v,G′), after coloring all
its neighbors in G′1, . . . , G′qi

, it has at least deg(v,G∗) + 1 free colors in its palette. Claim
(ii) follows the same argument as in Theorem 9. We show that the palette of v has at least
∆∗ − O(

√
∆∗ · 5 logn) ≥ (∆∗ − (∆∗)3/5) available colors after coloring all the vertices in
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G \ G∗. First, when deg(v,G′) ≤ ∆i − (∆∗ −
√

∆∗ · 5 logn), then even after coloring all
neighbors of v in G′, it still has an access of ∆∗−

√
∆∗ · 5 logn colors in its palette. Consider

a vertex v with deg(v,G′) ≥ ∆i − (∆∗ −
√

∆∗ · 5 logn). By Chernoff, w.h.p. it holds that:

deg(v,G∗) ≥ (∆i − (∆∗ −
√

∆∗ · 5 logn)) · p∗ −
√

5 logn ·∆i · p∗

≥ ∆i · δi/qi −O(
√

∆i · δi logn/qi) ≥ ∆∗ − (∆∗)3/5 .

Hence, by combining with claim (i), the lemma follows. J

This completes the proof of Theorem 2(i).

(∆ + ∆1/2+ε) Coloring in Log-Star Rounds

I Lemma 12. For any fixed ε ∈ (0, 1), one can color, w.h.p., a graph with (∆ + ∆1/2+ε)
colors in O(log(1/ε) · log∗∆) rounds.

Proof. Due to Theorem 4, it is sufficient to consider the case where ∆ = Ω(
√
n). Partition

the graph into k = b∆εc subgraphs G1, . . . , Gk, by letting each vertex independently pick
a subgraph uniformly at random. By Chernoff bound of Theorem 8, the maximum degree
∆i in each subgraph Gi is at most ∆i ≤ ∆1−ε + ∆1/2−ε/2 ·

√
5 logn. Allocate a distinct set

of ∆i + 1 colors Pali to each subgraph Gi. Since ∆1−ε = O((n/ logn)1−ε/2), we can apply
Alg. RecursiveColoring on each of these subgraphs which takes O(log(1/ε) · log∗∆) rounds.
It is easy to see, that since the subgraphs are vertex disjoint, Alg. RecursiveColoring can be
applied on all k subgraphs simultaneously with the same round complexity. Overall, the
algorithm uses ∆ + ∆1/2+ε colors. J

3.3 (∆ + 1) Coloring Algorithm for General Graphs

For graphs G with ∆ ≤ n/(10 logn), we simply apply Alg. RecursiveColoring. Plugging
ε = 1/ logn in Theorem 2, we get that this is done in O(log log ∆ · log∗∆) rounds. It remains
to handle graphs with with ∆ ∈ [n/(10 logn), n]. We partition the graph into ` = d5 logne
subgraphs G1, G2, . . . , G` and a left-over graph G∗ in the following manner. Each v ∈ V
joins Gi with probability p = 1/`− 2

√
5 logn/(∆ · `) for every i ∈ {1, . . . , `}, and it joins G∗

with probability p∗ = 1− ` · p = Θ(logn/
√

∆). By Chernoff bound, the maximum degree in
Gi for i ∈ {1, 2, . . . , `} is ∆i ≤ ∆/`− 2

√
(∆ · 5 logn)/`+

√
∆ · 5 logn/` ≤ ∆/`− 1 . Hence,

we have the budget to allocate a distinct set Pali of ∆i colors for each Gi.
The first phase applies Algorithm RecursiveColoring on each (Gi,Pali) simultaneously for

every i. Since ∆i = O(n/ logn), and the subgraphs are vertex-disjoint, this can be done in
O(log log ∆ · log∗∆) rounds for all subgraphs simultaneously (see Theorem 2(i)).

After all the vertices of G \G∗ get colored, the second phase colors the left-over subgraph
G∗. The probability of a vertex v to be in G∗ is O(logn/

√
∆) = O(log2 n/

√
n). Hence, G∗

contains O(log2 n ·
√
n) vertices with high probability. We color G∗ in two steps. First, we use

the deg +1 list coloring Algorithm OneShotColoring from [2] to reduce the uncolored-degree
of each vertex to be O(

√
n/ log2 n) with high probability. This can be done in O(log logn)

rounds. In the second step, the entire uncolored subgraph G′′ ⊂ G∗ has O(n) edges and can
be solved locally in O(1) rounds. Note that for each v ∈ G′′, it is sufficient to consider a
palette with deg(v,G′′) + 1 colors, and hence sending all these palettes can be done in O(1)
rounds as well. The complete proof of Theorem 1 is in the full-version.
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Algorithm 2 FastColoring(G)

If ∆ ≤ n/(10 logn), call RecursiveColoring(G, [1,∆ + 1]).
Else, partition G into vertex-subgraphs as follows:
G′1, . . . , G

′
q with the maximum degree Θ(∆/ logn), and

a left-over subgraph G∗ with maximum degree ∆∗ = O(
√
n).

Allocate a distinct palette Palj ⊂ [1,∆ + 1] of (∆(Gj) + 1) colors for each j ≤ qi.
Apply RecursiveColoring(Gj ,Palj) for all G1, . . . , Gq simultaneously.
Apply a (deg +1)-list coloring algorithm on G∗ for O(log logn) rounds.
Solve the remaining uncolored subgraph locally.

4 Deterministic Coloring Algorithms

In this section, we provide deterministic coloring algorithms using the tools of bounded
inpdendent and conditional expectation introduced in [5].

I Theorem 13. There is a deterministic (∆ + 1) list coloring using O(log ∆) rounds, in the
congested clique model.

In [5], a deterministic (∆ + 1) coloring was presented only for graphs with maximum degree
∆ = O(n1/3). Here, we handle the case of ∆ = Ω(n1/3). We derandomize the following
simple (∆ + 1)-algorithm that runs in O(logn) rounds.

Algorithm 3 Round i of Algorithm SimpleRandColor (for node v with palette Palv)

Let Fv be the set of colors taken by the colored neighbors of v.
Pick a color cv uniformly at random from Palv \ Fv.
Send colors to neighbors and if cv 6= 0 and legal, halt.

I Observation 14. The correctness of Algorithm SimpleRandColor is preserved, even if the
coin flips are pairwise-independent.

The goal of phase i in our algorithm is to compute a seed that would be used to simulate
the random color choices of round i of Alg. SimpleRandColor. This seed will be shown to
be good enough so that at least 1/4 of the currently uncolored vertices, get colored when
picking their color using that seed. Let Vi be the set of uncolored vertices at the beginning
of phase i. We need the following construction of bounded independent hash functions:

I Lemma 15. [25] For every γ, β, d ∈ N, there is a family of d-wise independent functions
Hγ,β =

{
h : {0, 1}γ → {0, 1}β

}
such that choosing a random function from Hγ,β takes

d ·max {γ, β} random bits, and evaluating a function from Hγ,β takes time poly(γ, β, d).

For our purposes, we use Theorem 15 with d = 2, γ = logn, β = log ∆ and hence the size of
the random seed is α · logn bits for some constant α. Instead of revealing the seed bit by bit
using the conditional expectation method, we reveal the assignment for a chunk of z = blognc
variables at a time. To do so, consider the i’th chunk of the seed Y ′i = (y′1, . . . , y′z). For
each of the n possible assignments (b′1, . . . , b′z) ∈ {0, 1}z to the z variables in Y ′, we assign a
leader u that represent that assignment and receives the conditional expectation values from
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all the uncolored nodes Vi, where the conditional expectation is computed based on assigning
y′1 = b′1, . . . , y

′
z = b′z. Unlike the MIS problem, here the vertex’s success depends only on its

neighbors (i.e., and does not depend on its second neighborhood). Using the partial seed
and the IDs of its neighbors, every vertex v can compute the probability that it gets colored
based on the partial seed. It then sends its probability of being colored using a particular
assignment y′1 = b′1, . . . , y

′
z = b′z to the leader u responsible for that assignment. The leader

node u of each assignment y′1 = b′1, . . . , y
′
z = b′z sums up all the values and obtains the

expected number of colored nodes conditioned on the assignment. Finally, all nodes send to
the leader their computed sum and the leader selects the assignment (b∗1, . . . , b∗z) ∈ {0, 1}z of
largest value. After O(1) many rounds, the entire assignment of the O(logn) bits of the seed
are revealed. Every yet uncolored vertex v ∈ Vi uses this seed to simulate the random choice
of Alg. SimpleRandColor, that is selecting a color in {0, 1, 2, . . . ,∆ + 1} \ Fv and broadcasts
its decision to its neighbors. If the color cv 6= 0 is legal, v is finally colored and it notifies
its neighbors. By the correctness of the conditional expectation approach, we have that
least 1/4 · |Vi| vertices got colored. Hence, after O(logn) = O(log ∆) rounds, all vertices are
colored. In the full version, we also show a deterministic O(∆2) coloring in O(1) rounds.
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