
Graph and String Parameters: Connections
Between Pathwidth, Cutwidth and the Locality
Number
Katrin Casel
Hasso Plattner Institute, University of Potsdam, Germany
Katrin.Casel@hpi.de

Joel D. Day
Department of Computer Science, Loughborough University, UK
J.Day@lboro.ac.uk

Pamela Fleischmann
Department of Computer Science, Kiel University, Germany
fpa@informatik.uni-kiel.de

Tomasz Kociumaka
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
Institute of Informatics, University of Warsaw, Poland
kociumaka@mimuw.edu.pl

Florin Manea
Department of Computer Science, Kiel University, Germany
flm@informatik.uni-kiel.de

Markus L. Schmid
Trier University, Germany
mlschmid@mlschmid.de

Abstract
We investigate the locality number, a recently introduced structural parameter for strings (with
applications in pattern matching with variables), and its connection to two important graph-
parameters, cutwidth and pathwidth. These connections allow us to show that computing the
locality number is NP-hard but fixed-parameter tractable (when the locality number or the alphabet
size is treated as a parameter), and can be approximated with ratio O(

√
log opt logn). As a by-

product, we also relate cutwidth via the locality number to pathwidth, which is of independent
interest, since it improves the best currently known approximation algorithm for cutwidth. In
addition to these main results, we also consider the possibility of greedy-based approximation
algorithms for the locality number.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Mathematics of computing → Combinatorics on words; Theory of computation → Approximation
algorithms analysis

Keywords and phrases Graph and String Parameters, NP-Completeness, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.109

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.10983.

Funding Tomasz Kociumaka: Supported by ISF grants no. 824/17 and 1278/16 and by an ERC
grant MPM under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).
Florin Manea: Supported by the DFG grant MA 5725/2-1.

EA
T

C
S

© Katrin Casel, Joel D. Day, Pamela Fleischmann, Tomasz Kociumaka, Florin Manea,
and Markus L. Schmid;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 109; pp. 109:1–109:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Katrin.Casel@hpi.de
https://orcid.org/0000-0003-0738-9816
mailto:J.Day@lboro.ac.uk
https://orcid.org/0000-0002-1531-7970
mailto:fpa@informatik.uni-kiel.de
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0001-6094-3324
mailto:flm@informatik.uni-kiel.de
https://orcid.org/0000-0001-5137-1504
mailto:mlschmid@mlschmid.de
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://arxiv.org/abs/1902.10983
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

109:2 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

1 Introduction

Graphs, on the one hand, and strings, on the other, are two different types of data objects
and they have certain particularities. Graphs seem to be more popular in fields like classical
and parameterised algorithms and complexity (due to the fact that many natural graph
problems are intractable), while fields like formal languages, pattern matching, verification or
compression are more concerned with strings. Moreover, both the field of graph algorithms
as well as string algorithms are well established and provide rich toolboxes of algorithmic
techniques, but they differ in that the former is tailored to computationally hard problems
(e.g., the approach of treewidth and related parameters), while the latter focuses on providing
efficient data-structures for near-linear-time algorithms. Nevertheless, it is sometimes possible
to bridge this divide, i.e., by “flattening” a graph into a sequential form, or by “inflating” a
string into a graph, to make use of respective algorithmic techniques otherwise not applicable.
This paradigm shift may provide the necessary leverage for new algorithmic approaches.

In this paper, we are concerned with certain structural parameters (and the problems
of computing them) for graphs and strings: the cutwidth cw(G) of a graph G (i.e., the
maximum number of “stacked” edges if the vertices of a graph are drawn on a straight line),
the pathwidth pw(G) of a graph G (i.e., the minimum width of a tree decomposition the
tree structure of which is a path), and the locality number loc(α) of a string α (explained
in more detail in the next paragraph). By Cutwidth, Pathwidth and Loc, we denote
the corresponding decision problems and with the prefix Min, we refer to the minimisation
variants. The two former graph-parameters are very classical. Pathwidth is a simple (yet
still hard to compute) subvariant of treewidth, which measures how much a graph resembles
a path. The problems Pathwidth and MinPathwidth are intensively studied (in terms of
exact, parameterised and approximation algorithms) and have numerous applications (see
the surveys and textbook [10, 34, 8]). Cutwidth is the best-known example of a whole class
of so-called graph layout problems (see the survey [17, 39] for detailed information), which
are studied since the 1970s and were originally motivated by questions of circuit layouts.

The locality number is rather new and we shall discuss it in more detail. A word is k-local
if there exists an order of its symbols such that, if we mark the symbols in the respective
order (which is called a marking sequence), at each stage there are at most k contiguous
blocks of marked symbols in the word. This k is called the marking number of that marking
sequence. The locality number of a word is the smallest k for which that word is k-local, or,
in other words, the minimum marking number over all marking sequences. For example, the
marking sequence σ = (x, y, z) marks α = xyxyzxz as follows (marked blocks are illustrated
by overlines): xyxyzxz, xyxyzxz, xyxyzxz, xyxyzxz; thus, the marking number of σ is 3. In
fact, all marking sequences for α have a marking number of 3, except (y, x, z), for which it is
2: xyxyzxz, xyxyzxz, xyxyzxz. Thus, the locality number of α, denoted by loc(α), is 2.

The locality number has applications in pattern matching with variables [14]. A pattern
is a word that consists of terminal symbols (e.g., a, b, c), treated as constants, and variables
(e.g., x1, x2, x3, . . .). A pattern is mapped to a word by substituting the variables by strings
of terminals. For example, x1x1babx2x2 can be mapped to acacbabcc by the substitution
(x1 → ac, x2 → c). Deciding whether a given pattern matches (i.e., can be mapped to) a given
word is one of the most important problems that arise in the study of patterns with variables
(note that the concept of patterns with variables arises in several different domains like
combinatorics on words (word equations [30], unavoidable patterns [36]), pattern matching [1],
language theory [2], learning theory [2, 19, 38, 42, 31, 22], database theory [7], as well as
in practice, e.g., extended regular expressions with backreferences [26, 27, 44, 28], used in

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:3

programming languages like Perl, Java, Python, etc.). Unfortunately, the matching problem is
NP-complete [2] in general (it is also NP-complete for strongly restricted variants [23, 21] and
also intractable in the parameterised setting [24]). As demonstrated in [43], for the matching
problem a paradigm shift as sketched in the first paragraph above yields a very promising
algorithmic approach. More precisely, any class of patterns with bounded treewidth (for
suitable graph representations) can be matched in polynomial-time. However, computing
(and therefore algorithmically exploiting) the treewidth of a pattern is difficult (see the
discussion in [21, 43]), which motivates more direct string-parameters that bound the
treewidth and are simple to compute (virtually all known structural parameters that lead
to tractability [14, 21, 43, 45] are of this kind (the efficiently matchable classes investigated
in [15] are one of the rare exceptions)). This also establishes an interesting connection between
ad-hoc string parameters and the more general (and much better studied) graph parameter
treewidth. The locality number is a simple parameter directly defined on strings, it bounds the
treewidth and the corresponding marking sequences can be seen as instructions for a dynamic
programming algorithm. However, compared to other “tractability-parameters”, it seems to
cover best the treewidth of a string, but whether it can be efficiently computed is unclear.

In this paper, we investigate the problem of computing the locality number and, by doing
so, we establish an interesting connection to the graph parameters cutwidth and pathwidth
with algorithmic implications for approximating cutwidth. In the following, we first discuss
related results in more detail and then outline our respective contributions.

Known Results and Open Questions. For Loc, only exact exponential-time algorithms
are known and whether it can be solved in polynomial-time, or whether it is at least fixed-
parameter tractable is mentioned as open problems in [14]. Approximation algorithms have
not yet been considered. Addressing these questions is the main purpose of this paper.

Pathwidth and Cutwidth are NP-complete, but fixed-parameter tractable with respect
to parameter pw(G) or cw(G), respectively (even with “linear” fpt-time g(k) O(n) [9, 11, 47]).
With respect to approximation, their minimisation variants have received a lot of attention,
mainly because they yield (like many other graph parameters) general algorithmic approaches
for numerous graph problems, i.e., a good linear arrangement or path-decomposition can
often be used for a dynamic programming (or even divide and conquer) algorithm. More
generally speaking, pathwidth and cutwidth are related to the more fundamental concepts of
small balanced vertex or edge separators for graphs (i.e., a small set of vertices (or edges,
respectively) that, if removed, divides the graph into two parts of roughly the same size.
More precisely, pw(G) and cw(G) are upper bounds for the smallest balanced vertex separator
of G and the smallest balanced edge separator of G, respectively (see [20] for further details
and explanations of the algorithmic relevance of balanced separators). The best known
approximation algorithms for MinPathwidth and MinCutwidth (with approximations
ratios of O(

√
log(opt) log(n)) and O(log2(n)), respectively) follow from approximations of

vertex separators (see [20]) and edge separators (see [35]), respectively.

Our Contributions. There are two natural approaches to represent a word α over alphabet
Σ as a graph Gα = (Vα, Eα): (1) Vα = {1, 2, . . . , |α|} and the edges are somehow used to
represent the actual symbols, or (2) Vα = Σ and the edges are somehow used to represent the
positions of α. We present a reduction of type (2) such that |Eα| = O(|α|) and cw(Gα) =
2 loc(α), and a reduction of type (1) such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤ 2 loc(α).
Since these reductions are parameterised reductions and also allow transferring approximation

ICALP 2019

109:4 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

results, we conclude that Loc is fixed-parameter tractable if parameterised by |Σ| or by the
locality number (answering the respective open problem from [14]), and also that there is a
polynomial-time O(

√
log(opt) log(n))-approximation algorithm for MinLoc.

In addition, we also show a way to represent an arbitrary multi-graph G = (V,E) by a
word αG over alphabet V , of length |E| and with cw(G) = loc(α). This describes a Turing-
reduction from Cutwidth to Loc which also allows to transfer approximation results between
the minimisation variants. As a result, we can conclude that Loc is NP-complete (which
solves the other open problem from [14]). Finally, by plugging together the reductions from
MinCutwidth to MinLoc and from MinLoc to MinPathwidth, we obtain a reduction
which transfers approximation results from MinPathwidth to MinCutwidth, which yields
an O(

√
log(opt) log(n))-approximation algorithm for MinCutwidth. This improves, to our

knowledge for the first time since 1999, the best approximation for Cutwidth from [35].
To our knowledge, this connection between cutwidth and pathwidth has not yet been

reported in the literature so far. This is rather surprising since Cutwidth and Pathwidth
have been jointly investigated in the context of exact and approximation algorithms, especially
in terms of balanced vertex and edge separators. More precisely, the approximation of
pathwidth and cutwidth follows from the approximation of vertex and edge separators,
respectively, and the approximation of vertex separators usually relies on edge separators:
the edge separator approximation from [35] can be used as a black-box for vertex separator
approximation, and the best vertex separator algorithm from [20] uses a technique for
computing edge separators from [4] as component. Our improvement, on the other hand,
is achieved by going in the opposite direction: we use pathwidth approximation (following
from [20]) in order to improve the currently best cutwidth approximation (from [35]). This
might be why the reduction from cutwidth to pathwidth has been overlooked in the literature.
Another reason might be that this relation is less obvious on the graph level and becomes more
apparent if linked via the string parameter of locality, as in our considerations. Nevertheless,
since pathwidth and cutwidth are such crucial parameters for graph algorithms, we also
translate our locality based reduction into one from graphs to graphs directly.

2 Preliminaries

Basic Definitions. The set of strings (or words) over an alphabet X is denoted by X∗, by
|α| we denote the length of a word α, alph(α) is the smallest alphabet X with α ∈ X∗. A
string β is called a factor of α if α = α′βα′′; if α′ = ε or α′′ = ε, where ε is the empty string,
β is a prefix or a suffix, respectively. For a position j, 1 ≤ j ≤ |α|, we refer to the symbol at
position j of α by the expression α[j], and α[j..j′] = α[j]α[j + 1] . . . α[j′], 1 ≤ j ≤ j′ ≤ |α|.
For a word α and x ∈ alph(α), let psx(α) = {i | 1 ≤ i ≤ |α|, α[i] = x} be the set of all
positions where x occurs in α. For a word α, let α0 = ε and αi+1 = ααi for i ≥ 0.

Let α be a word and let X = alph(α) = {x1, x2, . . . , xn}. A marking sequence is an
enumeration, or ordering on the letters, and hence may be represented either as an ordered
list of the letters or, equivalently, as a bijection σ : {1, 2, . . . , |X|} → X. Given a word α and
a marking sequence σ, the marking number πσ(α) (of σ with respect to α) is the maximum
number of marked blocks obtained while marking α according to σ. We say that α is k-local
if and only if, for some marking sequence σ, we have πσ(α) ≤ k, and the smallest k such
that α is k-local is the locality number of α, denoted by loc(α). A marking sequence σ with
πσ(α) = loc(α) is optimal (for α). For a marking sequence σ = (xσ(1), xσ(2), . . . , xσ(m)) and a
word α, by stage i of σ we denote the word α with exactly positions

⋃i
j=1 psxσ(j)

(α) marked.
For a word α, the condensed form of α, denoted by cond(α), is obtained by replacing every

maximal factor xk with x ∈ alph(α) by x. For example, cond(x1x1x2x2x2x1x2x2) = x1x2x1x2.
A word α is condensed if α = cond(α).

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:5

I Remark 1. For a word α, we have loc(cond(α)) = loc(α) [14]. Hence, by computing cond(α)
in time O(|α|), algorithms for computing the locality number (and the respective marking
sequences) for condensed words extend to algorithms for general words.

Examples and Word Combinatorial Considerations. The structure of 1-local and 2-local
words is characterised in [14]. The simplest 1-local words are repetitions xk for some k ≥ 0.
Furthermore, if α is 1-local, then y`αyr is 1-local, where y /∈ alph(α), `, r ≥ 0. Marking
sequences for 1-local words can be obtained by going from the “inner-most” letters to the
“outer-most” ones. The English words radar, refer, blender, and rotator are all 1-local.

Generally, in order to have a high locality number, a word needs to contain many
alternating occurrences of (at least) two letters. For instance, (x1x2)n is n-local. In general,
one can show that if loc(w) = k, then loc(wi) ∈ {ik − i+ 1, ik}.

The well-known Zimin words [36] also have high locality numbers compared to their
lengths. These words are important in the domain of avoidability, as it was shown that a
terminal-free pattern is unavoidable (i.e., it occurs in every infinite word over a large enough
finite alphabet) if and only if it occurs in a Zimin word. The Zimin words Zi, for i ∈ N, are
inductively defined by Z1 = x1 and Zi+1 = Zixi+1Zi. Clearly, |Zi| = 2i − 1 for all i ∈ N.
Regarding the locality of Zi, note that marking x2 leads to 2i−2 marked blocks; further,
marking x1 first and then the remaining symbols in an arbitrary order only extends or joins
marked blocks. Thus, we obtain a sequence with marking number 2i−2. In fact, it can be
shown that loc(Zi) = |Zi|+1

4 = 2i−2 for i ∈ N≥2. Notice that both Zimin words and 1-local
words have an obvious palindromic structure. However, in the Zimin words, the letters occur
multiple times, but not in large blocks, while in 1-local words there are at most 2 blocks
of each letter. One can show that if w is a palindrome, with w = uauR or w = uuR, and
loc(u) = k, then loc(w) ∈ {2k − 1, 2k, 2k + 1} (uR denotes the reversal of u).

The number of occurrences of a letter alone is not always a good indicator of the locality
of a word. The German word Einzelelement (a basic component of a construction) has
5 occurrences of e, but is only 3-local, as witnessed by marking sequence (l,m,e,i,n,z,t).
Nevertheless, a repetitive structure often leads to high locality. The Finnish word tu-
tustuttu (perfect passive of tutustua – to meet) is nearly a repetition and 4-local, while
pneumonoultramicroscopicsilicovolcanoconiosis is an (English) 8-local word, and lentokone-
suihkuturbiinimoottoriapumekaanikkoaliupseerioppilas is a 10-local (Finnish) word.

Complexity and Approximation. We briefly summarise the fundamentals of parameterised
complexity [25, 18] and approximation [5].

A parameterised problem is a decision problem with instances (x, k), where x is the actual
input and k ∈ N is the parameter. A parameterised problem P is fixed-parameter tractable if
there is an fpt-algorithm for it, i.e., one that solves P on input (x, k) in time f(k) ·p(|x|) for a
recursive function f and a polynomial p. We use the O∗(·) notation which hides multiplicative
factors polynomial in |x|.

A minimisation problem P is a triple (I, S,m), where I is the set of instances, S is a
function that maps instances x ∈ I to the set of feasible solutions for x, and m is the objective
function that maps pairs (x, y) with x ∈ I and y ∈ S(x) to a positive rational number. For
every x ∈ I, we denote m∗(x) = min{m(x, y) : y ∈ S(x)}. For x ∈ I and y ∈ S(x), the
value R(x, y) = m(x,y)

m∗(x) is the performance ratio of y with respect to x. An algorithm A is
an approximation algorithm for P with ratio r : N→ Q (or an r-approximation algorithm,
for short) if, for every x ∈ I, A(x) = y ∈ S(x), and R(x, y) ≤ r(|x|). We also let r be of
the form Q × N → Q when the ratio r depends on m∗(x) and |x|; in this case, we write
r(opt, |x|). We further assume that the function r is monotonically non-decreasing. Unless
stated otherwise, all approximation algorithms run in polynomial time with respect to |x|.

ICALP 2019

109:6 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

Pathwidth, Cutwidth and Problem Definitions. Let G = (V,E) be a (multi)graph with
the vertices V = {v1, . . . , vn}. A cut of G is a partition (V1, V2) of V into two disjoint subsets
V1, V2, V1∪V2 = V ; the (multi)set of edges C(V1, V2) = {{x, y} ∈ E | x ∈ V1, y ∈ V2} is called
the cut-set or the (multi)set of edges crossing the cut, while V1 and V2 are called the sides of the
cut. The size of this cut is the number of crossing edges, i.e., | C(V1, V2)|. A linear arrangement
of the (multi)graph G is a sequence (vj1 , vj2 , . . . , vjn), where (j1, j2, . . . , jn) is a permutation
of (1, 2, . . . , n). For a linear arrangement L = (vj1 , vj2 , . . . , vjn), let L(i) = {vj1 , vj2 , . . . , vji}.
For every i, 1 ≤ i < n, we consider the cut (L(i), V \ L(i)) of G, and denote the cut-set
CL(i) = C(L(i), V \ L(i)) (for technical reasons, we also set CL(0) = CL(n) = ∅). We define
the cutwidth of L by cw(L) = max{| CL(i)| | 0 ≤ i ≤ n}. Finally, the cutwidth of G is
the minimum over all cutwidths of linear arrangements of G, i.e., cw(G) = min{cw(L) |
L is a linear arrangement for G}.

A path decomposition (see [11]) of a connected graph G = (V,E) is a tree decomposition
whose underlying tree is a path, i.e., a sequence Q = (B0, B1, . . . , Bm) (of bags) with Bi ⊆ V ,
0 ≤ i ≤ m, satisfying the following two properties:

Cover property: for every {u, v} ∈ E, there is an index i, 0 ≤ i ≤ m, with {u, v} ⊆ Bi.

Connectivity property: for every v ∈ V , there exist indices iv and jv, 0 ≤ iv ≤ jv ≤ m,
such that {j | v ∈ Bj} = {i | iv ≤ i ≤ jv}. In other words, the bags that contain v occur
on consecutive positions in (B0, . . . , Bm).

The width of a path decomposition Q is w(Q) = max{|Bi| | 0 ≤ i ≤ m} − 1, and the
pathwidth of a graph G is pw(G) = min{w(Q) | Q is a path decomposition of G}. A path
decomposition is nice if B0 = Bm = ∅ and, for every i, 1 ≤ i ≤ m, either Bi = Bi−1 ∪ {v} or
Bi = Bi−1 \ {v}, for some v ∈ V .

It is convenient to treat a path decomposition Q as a scheme marking the vertices of
the graph based on the order in which the bags occur in the bag sequence. More precisely,
all vertices are initially marked as open. Then we process the bags one by one, as they
occur in Q. When we process the first bag that contains a vertex v, then v becomes active.
When we process the last bag that contains v, it becomes closed. The connectivity property
enforces that vertices that are closed cannot be marked as active again, while the cover
property enforces that adjacent vertices must be both active at some point. The width is
the maximum number of vertices which are marked active at the same time minus one. If
the path decomposition is nice, then whenever a bag is processed as described above, we
change the marking of exactly one vertex.

We next formally define the computational problems of computing the parameters defined
above. By Loc, Cutwidth and Pathwidth, we denote the problems to check for a given
word α or graph G and integer k ∈ N, whether loc(α) ≤ k, cw(G) ≤ k, and pw(G) ≤ k,
respectively. Note that since we can assume that k ≤ |α| and k ≤ |G|, whether k is given
in binary or unary has no impact on the complexity. With the prefix Min, we refer to
the minimisation variants. More precisely, MinLoc = (I, S,m), where I is the set of
words, S(α) is the set of all marking sequences for α and m(α, σ) = πσ(α) (note that
m∗(α) = loc(α)); MinCutwidth = (I, S,m), where I are all multigraphs, S(G) is the set
of linear arrangements of G, and m(G,L) = cw(L) (note that m∗(G) = cw(G)); finally,
MinPathwidth = (I, S,m), where I are all graphs, S(G) is the set of path decompositions
of G, and m(G,Q) = w(Q) (note that m∗(G) = pw(G)).

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:7

a b

c d

$

c b d a $

Figure 1 The graph Hα,k for α = abcbcdbada and k = 2; an optimal linear arrangement of Hα,k
with cutwidth 4 induces the optimal marking sequence (c, b, d, a) for α with marking number 2.

3 Locality and Cutwidth

In this section, we introduce polynomial-time reductions from Loc to Cutwidth and
vice versa. The established close relationship between these two problems lets us derive
several complexity-theoretic and algorithmic results for Loc. We also discuss approximation-
preserving properties of our reductions.

First, we show a reduction from Loc to Cutwidth. For a word α and an integer k ∈ N,
we build a multigraph Hα,k = (V,E) whose set of nodes V = alph(α) ∪ {$,#} consists of
symbols occurring in α and two additional characters $,# /∈ alph(α). The multiset of edges
E contains an edge between nodes x, y ∈ alph(α) for each occurrence of the factors xy and
yx in α, as well as 2k edges between $ and #, one edge between $ and the first letter of α,
and one edge between $ and the last letter of α. An example is given in Figure 1.

I Lemma 2. The graph Hα,k satisfies cw(Hα,k) = 2k if and only if loc(α) ≤ k.

Proof. Suppose firstly that α is k-local, and let σ = (x1, x2, . . . , xn) be an optimal mark-
ing sequence of α. Consider the linear arrangement L = (x1, x2, . . . , xn, $,#). Clearly,
| C({x1, x2, . . . , xn, $}, {#})| = 2k and | C({x1, x2, . . . , xn}, {$,#})| = 2. Now consider a cut
(K1,K2) = ({x1, x2, . . . , xi}, {xi+1, . . . , xn, $,#}) for 1 ≤ i < n. Every edge e ∈ C(K1,K2)
is of the form {xj , xh} with j ≤ i < h, or of the form {α[1], $} or {$, α[|α|]}. Consequently,
every edge e ∈ C(K1,K2) corresponds to a unique factor xjxh or xhxj of α with j ≤ i < h

and, after exactly the symbols x1, x2, . . . , xi are marked, xj is marked and xh is not, or to
a unique factor α[1] or α[|α|] and, after exactly the symbols x1, x2, . . . , xi are marked, α[1]
or α[|α|] is marked. Since there can be at most k marked blocks in α after marking the
symbols x1, . . . , xi, there are at most 2k such factors, which means that | C(K1,K2)| ≤ 2k.
Thus cw(Hα,k) ≤ 2k. Note that any linear arrangement must at some point separate the
nodes $ and #, meaning cw(Hα,k) ≥ 2k, so we get that cw(Hα,k) = 2k.

Now suppose that the cutwidth of Hα,k is 2k and let L be an optimal linear arrange-
ment witnessing this fact. Firstly, we note that L must either start with # followed
by $ (i.e., have the form (#, $, . . .)) or end with # preceded by $ (i.e., have the form
(. . . , $,#). Otherwise, since Hα,k is connected, every cut separating $ and # would be
of size strictly greater than 2k. Because a linear ordering and its mirror image have
the same cutwidth, we may assume that the optimal linear arrangement has the form
L = (xτ(1), xτ(2), . . . , xτ(n), $,#) for some permutation τ of {1, . . . , n}. Let σ be the marking
sequence (xτ(1), xτ(2), . . . , xτ(n)) of α induced by τ . Suppose, for contradiction, that for
some i, with 1 ≤ i < n, after marking xτ(1), . . . , xτ(i), we have k′ > k marked blocks.
Furthermore, let K1 = {xτ(1), . . . , xτ(i)} and K2 = {xτ(i+1), . . . , xτ(n), $,#}. For every
marked block α[s..t] that is not a prefix or a suffix of α, we have α[s], α[t] ∈ K1 and
α[s− 1], α[t+ 1] ∈ K2 and therefore {α[s− 1], α[s]}, {α[t], α[t+ 1]} ∈ C(K1,K2). Moreover,
for a marked prefix α[1..s], we have α[1], α[s] ∈ K1 and $, α[s + 1] ∈ K2 and therefore
{α[1], $}, {α[s], α[s+ 1]} ∈ C(K1,K2). Analogously, the existence of a marked suffix α[t..|α|]

ICALP 2019

109:8 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

leads to {α[|α|], $}, {α[t − 1], α[t]} ∈ C(K1,K2). Consequently, for each marked block, we
have two unique edges in C(K1,K2), which implies | C(K1,K2)| ≥ 2k′ > 2k. This contradicts
the assumption that L is a witness that Hα,k has cutwidth 2k. Thus, α must be k-local. J

In the following, we briefly discuss the complexity of this reduction. Suppose we are given
a word α and an integer k ≤ |α|. It is usual in string algorithmics to assume that α is over
an integer alphabet, i.e., alph(α) ⊆ {1, . . . , |α|}. In this framework, the multigraph Hα,k can
be constructed in O(|α|) time (e.g., represented as a list of vertices and a list of edges).

I Lemma 3. If there is an r(opt, h)-approximation algorithm for MinCutwidth running
in O(f(h)) time for an input multigraph with h edges, then there is an (r(2 opt, |α|) + 1

opt)-
approximation algorithm for MinLoc running in O(f(|α|) + |α|) time on an input word α.

Proof. As already indicated in the proof of Lemma 2, for k = loc(α), every linear arrangement
for Hα,k naturally translates to a marking sequence for α. However, in an approximate linear
arrangement, the vertices # and $ do not have to be at the first (or last) position. Still, the
marking sequence corresponding to the linear arrangement L can have not more than cw(L)

2 +1
blocks, since only suffix and prefix can be marked blocks which correspond to only one instead
of two edges in a cut in Hα,k. This observation remains valid if we do not include the extra
vertices # and $ in Hα,k in the reduction. Let Hα be the graph obtained from Hα,k (for some
k) by removing the extra vertices # and $ (observe that this also removes the dependence on k).
Removing vertices only decreases the cutwidth, so Lemma 2 implies that cw(Hα) ≤ 2m∗(α).
Let α be an instance of MinLoc and A an r(opt, h)-approximation for MinCutwidth
on multigraphs. The approximation algorithm A run on Hα returns a linear arrangement
L = A(Hα) with cw(L) ≤ r(opt, h) cw(Hα). Let σ be the marking sequence corresponding
to L, then R(α, σ) = πσ(α)

m∗(α) ≤
2

cw(Hα) (cw(L)
2 + 1) = cw(L)

cw(Hα) + 1
m∗(α) = R(Hα, L) + 1

m∗(α) . The
performance ratio R(Hα, L) is at most r(opt, h), where h = |α| is the number of edges in
Hα. For the optimum value k = m∗(α), the cutwidth of Hα,k is at least 2k − 2 and σ has
performance ratio at most r(2 opt, |α|) (with respect to the optimum value k for MinLoc).
The approximation procedure builds the graph Hα in O(|Σ|), runs A on Hα in O(f(|α|))
and translates the linear arrangement into a marking sequence σ in O(|Σ|). This gives an
(r(2 opt, |α|) + 1

opt)-approximation for MinLoc running time in O(f(|α|) + |α|) time. J

For a reduction from Cutwidth to Loc, let H = (V,E) be a connected multigraph,
where V is the set of nodes and E the multiset of edges (for technical reasons, we assume
|V | ≥ 2). Let H ′ = (V,E′) be the multigraph obtained by duplicating every edge in H. As
such, each node in H ′ has even degree, so there exists an Eulerian cycle C (i.e., a cycle
visiting each edge exactly once) in H ′, and, moreover, cw(H ′) = 2 cw(H). For each edge
e ∈ E′, let αe be the word over V that corresponds to an arbitrary traversal of the Eulerian
path P obtained from C by deleting e; see Figure 2 for an example.

I Lemma 4. For any edge e in E′, the word αe satisfies cw(H) ≤ loc(αe) ≤ cw(H) + 1.
Moreover, there is a vertex v ∈ V such that loc(αe) = cw(H) for every edge e incident to v.

Consequences. In the following, we overview a series of complexity-theoretic and algorithmic
consequences of the reductions provided above. We first discuss negative results and note
that we can close one of the main problems left open in [14].

I Theorem 5. The Loc problem is NP-complete.

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:9

u v

w x

y

z u v

w x

y

z
9

8

2 5 7 16

10 13

1

4

12

15

3

6

11

14

w u x v y z

Figure 2 A graph H and its multigraph H ′ obtained by doubling the edges; the edge labels
describe a Eulerian cycle that starts and ends in x. Deleting the edge (v, x) in this cycle yields the
word α(v,x) = xwuxwuxvuvyzvyzv, which has an optimal marking sequence (w, u, x, v, y, z) with
marking number 3, and, thus, induces an optimal linear arrangement of H with cutwidth 3.

Theorem 5 follows from the Turing reduction from Cutwidth to Loc, but it can also
be proved using a polynomial-time one-to-many reduction from the well known NP-complete
problem Clique. This alternative approach is more technically involved but has the merit of
emphasising how the combinatorial properties of the locality number can be used to construct
computationally hard instances of Loc. Moreover, by the word-combinatorial observations
about locality made in Section 2, it is clear that Loc is NP-complete also for words with
special structure, e.g., palindromes and repetitions.

With respect to approximation, it is known that, assuming the Small Set Expansion Conjec-
ture (denoted SSE; see [40]), there exists no constant-ratio approximation for MinCutwidth
(see [48]). Consequently, approximating MinLoc within any constant factor is also SSE-hard.
In particular, we point out that stronger inapproximability results for MinCutwidth are
not known. Positive approximation results for MinLoc will be discussed in Section 4.

On certain graph classes, the SSE conjecture is equivalent to the Unique Games Conjecture
[32] (see [40, 41]), which, at its turn, was used to show that many approximation algorithms
are tight [33] and is considered a major conjecture in inapproximability. However, some
works seem to provide evidence that could lead to a refutation of SSE; see [3, 6, 29]. In
this context, we show in Section 4 a series of unconditional results which state that multiple
natural greedy strategies do not provide low-ratio approximations of MinLoc.

As formally stated next, Lemma 2 extends algorithmic results for computing cutwidth to
determining the locality number (we formulate this result so that it also covers fpt-algorithms
with respect to the standard parameters cw(G) and loc(α)). Note that the maximum degree
in a multigraph G is bounded from above by 2 cw(G), so the number of nodes n and the
number of edges h satisfy h ≤ n · cw(G). Hence, we state the complexity in terms of n and
cw(G) rather than with respect to h, which is the actual input size.

I Lemma 6. If MinCutwidth (resp. Cutwidth) can be solved in O(f(cw(G), n)) time
for a multigraph G with n vertices, then the MinLoc (resp., Loc) problem can be solved in
O(f(2 loc(α), |Σ|+ 2) + |α|) time for a word α over an alphabet Σ.

In particular, we can draw the following corollaries using Lemma 6 and known results from
the literature. Due to the algorithms of [12], which also work for multigraphs1, MinLoc
can be solved in O∗(2|Σ|) time and space, or in O∗(4|Σ|) time and polynomial space. In

1 These algorithms actually support weighted graphs without any major modification and in the same
complexity. In this setting, parallel edges connecting two vertices are replaced by a single “super-edge”
whose weight is the number of parallel edges.

ICALP 2019

109:10 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

particular, this also implies that Loc is fixed-parameter tractable with respect to the alphabet
size. Moreover, the fpt-algorithm from [47] directly implies that MinLoc is fixed-parameter
tractable for parameter loc(α) with linear fpt-running-time g(loc(α)) O(n). Since Cutwidth
is NP-complete already for graphs with maximum degree 3 (see [37]), we also derive a stronger
statement compared to Theorem 5: Loc is NP-complete even if every symbol has at most 3
occurrences; if every symbol has at most 2 occurrences, the complexity of Loc is open, while
the case where every symbol has only one occurrence is trivial. If, on the other hand, the
symbols have many occurrences in comparison to |α|, i.e., |Σ| = O(log(|α|)), then Loc can
be solved in polynomial time, e.g., using the O∗(2|Σ|)-time algorithm mentioned above.

4 Locality and Pathwidth

In this section, we consider the approximability of the minimisation problem MinLoc. Since
a marking sequence is just a linear arrangement of the symbols of the input word, this problem
seems to be well tailored to greedy algorithms: until all symbols are marked, we choose an
unmarked symbol according to some greedy strategy and mark it. There are two aspects
that motivate the investigation of such approaches. Firstly, ruling out simple strategies is a
natural initial step in the search for approximation algorithms for a new problem. Secondly,
due to the results of Section 3, the obvious greedy approaches for computing the locality
number may also provide a new angle to approximating the cutwidth of a graph, i.e., some
greedy strategies may only become apparent in the locality number point of view and hard
to see in the graph formulation of the problem. Given the fact that, as formally stated later
as Theorem 10, approximating the cutwidth via approximation of the locality number does,
in fact, improve the best currently known cutwidth approximation ratio, this seems to be a
rather important aspect.

Unfortunately, we can formally show that many natural candidates for greedy strategies
fail to yield promising approximation algorithms (and are therefore also not helpful for
cutwidth approximation). We just briefly mention these negative results. The four considered
basic strategies are the following: (1) prefer symbols with few occurrences, (2) symbols
with many occurrences, (3) symbols leading to fewer blocks after marking, (4) symbols with
earlier leftmost occurrence. All these strategies fail in a sense that there are arbitrarily long
(condensed) words α with constant locality numbers for which these strategies yield marking
sequences with marking numbers Ω(|α|).

A more promising approach is to choose among symbols that extend at least one already
marked block (except when marking the first symbol). We denote this strategy by BlockExt
and marking sequences that can be obtained by it are called BlockExt-marking sequences.
Intuitively, marking a symbol that has only isolated occurrences, and therefore will increase
the current number of marked blocks by the number of its occurrences, seems a bad choice.
This raises a general question of whether every word has a BlockExt-marking sequence that
is also optimal for this word. We answer this question negatively: all BlockExt-marking
sequences for words like x1yx2yx3y . . . x2ky achieve a marking number of at least 2k − 1,
while first marking x2, x3, . . . , xk+1 in this order (which all have only isolated occurrences),
then y, and then the rest of the symbols in some order, yields at most k marked blocks.
However, this only shows a lower bound of roughly 2 for the approximation ratio of algorithms
based on BlockExt, so BlockExt might still be a promising candidate. However, in order to
devise a BlockExt-based approximation algorithm, we still face the problem of deciding which
of the extending symbols should be chosen; trying out all of them is obviously too costly.
Unfortunately, if we handle this decision by one of the basic strategies (1)–(4) from above,

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:11

1 2 3 4 5 6 7 8 9

Figure 3 The graph Gα for α = cabacabac; the three cliques are drawn with different edge-types.

e.g., choosing among all extending symbols one that leads to fewer new blocks, we again
end up with poor approximation ratios. More precisely, we can again find arbitrarily long
words α with constant locality numbers for which these algorithms yield marking numbers
Ω(|α|). Moreover, this is also true if we choose among all extending symbols one that has a
maximum number of extending occurrences or one that maximises the ratio #extending occ.

#occ. .
While we obviously have not investigated all reasonable greedy strategies, we consider

our negative results as sufficient evidence that a worthwhile approximation algorithm for
computing the locality number most likely does not follow from such simple greedy strategies.

In the following, we adopt a more sophisticated approach of approximating the locality
number: we devise a reduction to the problem of computing the pathwidth of a graph. To
this end, we first have to describe how a (condensed) word can be represented as a graph:
For a condensed word α, the graph Gα = (Vα, Eα) is defined by Vα = {1, 2, . . . , |α|} and
Eα = {{i, i+1} | 1 ≤ i ≤ |α|−1}∪{{i, j} | {i, j} ⊆ psx(α) for some x ∈ alph(α)}. Intuitively,
Gα is obtained by interpreting every position of α as a vertex, connecting neighbouring
positions by edges, and turning every set psx(α), x ∈ alph(α), into a clique (see Figure 3).

We use Gα as a unique graph representation for condensed words and whenever we talk
about a path decomposition for α, we actually refer to a path decomposition of Gα and, since
Gα has the positions of α as its vertices, the marking scheme behind a path decomposition
(and its respective terminology) directly translates to a marking scheme of the positions of α.

I Lemma 7. Let α be a condensed word with |α| ≥ 2. Then loc(α) ≤ pw(Gα) ≤ 2 loc(α).

Proof Sketch. We only sketch how a marking sequence translates into a path decomposition
and vice versa. Let σ = (x1, x2, . . . , xm) be a marking sequence for a condensed word α with
πσ(α) = k. We describe a path decomposition Q of Gα as a marking scheme. First, for every
i, 1 ≤ i ≤ m, let pi be a step of Q (corresponding to one of the bags of Q) that represents
stage i of σ: every position that is a border position of a marked block is active, every
other marked position is closed, and all other positions are open. The path decomposition
produces these steps in the order p1, p2, . . . , pm and such a step pi is reached from the
predecessor step pi−1 by a sequence of intermediate steps as follows. Step p1 is obtained
from the initial one by setting all positions in psx1(α) to active, the final step of Q, where
all positions are closed, is obtained from step pm by setting the only active positions 1 and
|α| to closed. In order to produce step pi+1 from step pi, we do the following. For every
j ∈ psxi+1(α) that does not create a new marked block of size 1, we set position j to active
and immediately after that, we set all active neighbours of j to closed if they do not have
open neighbours anymore. Next, we set all remaining positions from psxi+1(α) to active
and, finally, we set all positions from psxi+1(α) that have no open neighbours to closed. It
can be verified with a moderate effort that we have now obtained step pi+1 and also that
Q is, in fact, a valid path decomposition of Gα. In order to see that pw(Q) ≤ 2k, we first
note that the number of active positions in each step pi is clearly bounded by 2k. In going

ICALP 2019

109:12 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

from pi to pi+1, we necessarily reach a step where all positions of psxi+1(α) are now active,
while some of the previous border positions might also still be active. It requires a more
involved and careful counting argument to see that the total number of active positions in
these intermediate steps never exceeds 2k + 1.

For the other direction, let Q = (B0, B1, B2, . . . , B2|α|) be an arbitrary nice path decom-
position of Gα. For every i, 1 ≤ i ≤ m, let pi be the first step of Q where all positions
of psxi(α) are active. We order the characters xi so that p1 < p2 < . . . < pm and define
a marking sequence for α by setting σ = (x1, x2, . . . , xm). It is comparatively easy to
show that at every step pi of Q there is at least one active position per marked block
of stage i of σ. However, this only shows that πσ(α) − 1 ≤ pw(Q) and in order to prove
that, in fact, πσ(α) ≤ pw(Q) holds, we show that either there is a step of Q with at least
πσ(α) + 1 active positions or, if this is not the case, then there must be a marking sequence
σ′ with πσ′(α) = πσ(α) − 1. This implies that, for every path decomposition Q of Gα,
loc(α) ≤ pw(Q) and therefore also loc(α) ≤ pw(Gα). Proving this claim requires a long and
technically involved case analysis. J

Note that Lemma 7 is not true for condensed words α of size 1, since then loc(α) = 1 and
pw(Gα) = 0. The reason why pw(Gα) can range between loc(α) and 2 loc(α) (rather than
pw(Gα) = 2 loc(α)) is that in a marking sequence, every marked block accounts for one unit
of the quantity loc(α), while in the path decomposition, a marked block is represented either
by two active vertices or by only one (if the block has size one). There are (condensed)
examples that reach the extremes loc(α) and 2 loc(α), i.e., the bounds of Lemma 7 are tight.

I Proposition 8. Let α = (x1x2 . . . xnxn−1 . . . x2)kx1 with n ≥ 3, and let β = (x1x2)k. Then
we have loc(α) = k and pw(Gα) = 2k, and loc(β) = pw(Gβ) = k.

Note that the construction of a graph Gα from a word α does not technically provide
a reduction from the decision problem Loc to Pathwidth (due to the fact that pw(Gα)
lies between loc(α) and 2 loc(α)) and therefore cannot be used to solve MinLoc exactly.
Its main purpose is to carry over approximation results from MinPathwidth to MinLoc,
which is formally stated by the next lemma (in this regard, note that exact algorithms for
MinLoc are obtained in Section 3 via a reduction to MinCutwidth instead).

I Lemma 9. If MinPathwidth admits an O(f(n))-time r(opt, n)-approximation algorithm,
then MinLoc admits an O(f(|α|) + |α|2)-time 2r(2 opt, |α|)-approximation algorithm.

Consequently, approximation algorithms for MinPathwidth carry over to MinLoc. To
the knowledge of the authors, the currently best approximation algorithm for MinPathwidth
is due to [20], with an approximation ratio of O(

√
log(opt) log(n)). This implies the following.

I Theorem 10. There is an O(
√

log(opt) log(n))-approximation algorithm for MinLoc.

Another consequence that is worth mentioning is due to the fact that an optimal path
decomposition can be computed faster than O∗(2n). More precisely, it is shown in [46] that for
computing path decompositions, there is an exact algorithm with running time O∗((1.9657)n),
and even an additive approximation algorithm with running time O∗((1.89)n). Consequently,
there is a 2-approximation algorithm for MinLoc with running time O∗((1.9657)n) and an
asymptotic 2-approximation algorithm with running time O∗((1.89)n) for MinLoc.

By combining the reduction from MinCutwidth to MinLoc from Section 3 with the
reduction from MinLoc to MinPathwidth defined above, we obtain a reduction from
MinCutwidth to MinPathwidth that carries over the pathwidth-approximation from [20]
to MinCutwidth as follows (in particular, this improves the state-of-the-art approximation
algorithm for MinCutwidth from [35]).

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:13

u

vw

x

y

z

uw

ux

uv

wu

wx

xw

xu

xv

vu

vx

vy

vz

yv

yz

zv

zy

Figure 4 A graph G and the corresponding graph G′ obtained by the reduction.

I Theorem 11. There is a O(
√

log(opt) log(n))-approximation for MinCutwidth.

Note that Theorem 11 only applies to simple graphs; see Section 5 for the case of multigraphs.
Many existing algorithms constructing path decompositions are of theoretical interest only,

and this disadvantage carries over to the possible algorithms computing the locality number
or cutwidth based on them. However, the reduction of Lemma 7 is also applicable in a purely
practical scenario, since any kind of practical algorithm constructing path decompositions can
be used in order to compute marking sequences (the additional tasks of building Gα and the
translation of a path decomposition for it back to a marking sequence are computationally
simple). This observation is particularly interesting since developing practical algorithms
constructing tree and path decompositions of small width is a vibrant research area.2

5 Pathwidth and Cutwidth

Since pathwidth and cutwidth are classical graph parameters that play an important role for
graph algorithms, independent from our application for computing the locality number, we
also present a direct reduction from MinCutwidth to MinPathwidth.

For a graph G = (V,E), we construct the graph G′ = (V ′, E′) with V ′ = {vu | {u, v} ∈ E}
and E′ = {{uv, vu} | {u, v} ∈ E} ∪ {{vu, vw} | {u, v}, {w, v} ∈ E, u 6= w}; see Figure 4.

I Lemma 12. Let G be a graph with at least one edge. Then cw(G) ≤ pw(G′) ≤ 2 cw(G).

Lemma 12 does not only prove that cw(G) ≤ pw(G′) ≤ 2 cw(G), but also yields a
constructive way to compute a linear arrangement for G of cut at most k from a path
decomposition of width k for G′. Further, Lemma 12 remains true if G is a multigraph;
observe that the reduction still constructs a simple graph G′. This gives the following result.

I Lemma 13. If there is an r(opt, |V |)-approximation algorithm for MinPathwidth with
running-time O(f(|V |)), then there is also an 2r(2 opt, h)-approximation algorithm for
MinCutwidth on multigraphs with running time O(f(h) + h2 + n), where n is the number
of vertices and h is the number of edges.

With the O(
√

log(opt) log(n))-approximation for MinPathwidth from [20], Lemma 13
gives the following approximation for MinCutwidth on multigraphs.

I Theorem 14. There is a (polynomial-time) O(
√

log(opt) log(h))-approximation algorithm
for MinCutwidth on multigraphs with h edges.

In accordance with Theorem 11, Theorem 14 yields an O(
√

log(opt) log(n))-approximation
algorithm for simple graphs. Analogously, Theorem 11 could be formulated for multigraphs,
which would also change the approximation-ratio to O(

√
log(opt) log(h)).

2 See, e.g., the work [13] and the references therein for practical algorithms constructing path decomposi-
tions; also note that designing exact and heuristic algorithms for constructing tree decompositions was
part of the “PACE 2017 Parameterized Algorithms and Computational Experiments Challenge” [16].

ICALP 2019

109:14 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

References
1 Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Algorithms,

5(3):514–523, 2007. doi:10.1016/j.jda.2006.10.001.
2 Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and System

Sciences, 21(1):46–62, 1980. doi:10.1016/0022-0000(80)90041-0.
3 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential Algorithms for Unique Games

and Related Problems. Journal of the ACM, 62(5):42:1–42:25, 2015. doi:10.1145/2775105.
4 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and

graph partitioning. Journal of the ACM, 56(2):5:1–5:37, 2009. doi:10.1145/1502793.1502794.
5 Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gambosi, Marco

Protasi, and Viggo Kann. Complexity and approximation: combinatorial optimization problems
and their approximability properties. Springer, 1999. doi:10.1007/978-3-642-58412-1.

6 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding Semidefinite Programming
Hierarchies via Global Correlation. In Rafail Ostrovsky, editor, 52nd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2011, pages 472–481. IEEE, 2011. doi:10.1109/
focs.2011.95.

7 Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive Languages
for Path Queries over Graph-Structured Data. ACM Transactions on Database Systems,
37(4):1–46, 2012. doi:10.1145/2389241.2389250.

8 Hans L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11(1–
2):1–21, 1993. URL: http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/
Bodlaender_1993_ActaCybernetica.pdf.

9 Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing, 25(5):1305–1317, 1996. doi:10.1137/
s0097539793251219.

10 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1–2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

11 Hans L. Bodlaender. Fixed-Parameter Tractability of Treewidth and Pathwidth. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond, volume 7370 of LNCS, pages 196–227, 2012. doi:
10.1007/978-3-642-30891-8_12.

12 Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M.
Thilikos. A Note on Exact Algorithms for Vertex Ordering Problems on Graphs. Theory of
Computing Systems, 50(3):420–432, 2012. doi:10.1007/s00224-011-9312-0.

13 David Coudert, Dorian Mazauric, and Nicolas Nisse. Experimental Evaluation of a Branch-
and-Bound Algorithm for Computing Pathwidth and Directed Pathwidth. ACM Journal of
Experimental Algorithmics, 21(1):1.3:1–1.3:23, 2016. doi:10.1145/2851494.

14 Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. Local Patterns. In Satya V.
Lokam and R. Ramanujam, editors, Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, volume 93 of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.24.

15 Joel D. Day, Pamela Fleischmann, Florin Manea, Dirk Nowotka, and Markus L. Schmid. On
Matching Generalised Repetitive Patterns. In Mizuho Hoshi and Shinnosuke Seki, editors,
Developments in Language Theory, DLT 2018, volume 11088 of LNCS, pages 269–281. Springer,
2018. doi:10.1007/978-3-319-98654-8_22.

16 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, Parameterized and Exact Computation,
IPEC 2017, volume 89 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2017.30.

17 Josep Díaz, Jordi Petit, and Maria Serna. A Survey of Graph Layout Problems. ACM
Computing Surveys, 34(3):313–356, 2002. doi:10.1145/568522.568523.

http://dx.doi.org/10.1016/j.jda.2006.10.001
http://dx.doi.org/10.1016/0022-0000(80)90041-0
http://dx.doi.org/10.1145/2775105
http://dx.doi.org/10.1145/1502793.1502794
http://dx.doi.org/10.1007/978-3-642-58412-1
http://dx.doi.org/10.1109/focs.2011.95
http://dx.doi.org/10.1109/focs.2011.95
http://dx.doi.org/10.1145/2389241.2389250
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_1993_ActaCybernetica.pdf
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_1993_ActaCybernetica.pdf
http://dx.doi.org/10.1137/s0097539793251219
http://dx.doi.org/10.1137/s0097539793251219
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1007/978-3-642-30891-8_12
http://dx.doi.org/10.1007/978-3-642-30891-8_12
http://dx.doi.org/10.1007/s00224-011-9312-0
http://dx.doi.org/10.1145/2851494
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.24
http://dx.doi.org/10.1007/978-3-319-98654-8_22
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://dx.doi.org/10.1145/568522.568523

K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid 109:15

18 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

19 Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and Thomas Zeugmann.
Learning one-variable pattern languages very efficiently on average, in parallel, and by asking
queries. Theoretical Computer Science, 261(1):119–156, 2001. doi:10.1016/s0304-3975(00)
00136-5.

20 Uriel Feige, MohammadTaghi HajiAghayi, and James R. Lee. Improved Approximation
Algorithms for Minimum Weight Vertex Separators. SIAM Journal on Computing, 38(2):629–
657, 2008. doi:10.1137/05064299x.

21 Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern Matching
with Variables: Fast Algorithms and New Hardness Results. In Ernst W. Mayr and Nicolas
Ollinger, editors, Symposium on Theoretical Aspects of Computer Science, STACS 2015,
volume 30 of LIPIcs, pages 302–315. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.STACS.2015.302.

22 Henning Fernau, Florin Manea, Robert Mercaş, and Markus L. Schmid. Revisiting Shinohara’s
Algorithm for Computing Descriptive Patterns. Theoretical Computer Science, 733:44–54,
2018. doi:10.1016/j.tcs.2018.04.035.

23 Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Information and Computation, 242:287–305, 2015. doi:10.1016/j.ic.
2015.03.006.

24 Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the Parameterised Complexity
of String Morphism Problems. Theory of Computing Systems, 59(1):24–51, 2016. doi:
10.1007/s00224-015-9635-3.

25 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

26 Dominik D. Freydenberger. Extended Regular Expressions: Succinctness and Decidability.
Theory of Computing Systems, 53(2):159–193, 2013. doi:10.1007/s00224-012-9389-0.

27 Dominik D. Freydenberger and Markus L. Schmid. Deterministic regular expressions with
back-references. Journal of Computer and System Sciences, 2019. doi:10.1016/j.jcss.2019.
04.001.

28 Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, 3rd edition,
2006.

29 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre Hierarchy, Higher Eigenvalues, and
Approximation Schemes for Graph Partitioning and Quadratic Integer Programming with
PSD Objectives. In Rafail Ostrovsky, editor, 52nd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2011, pages 482–491. IEEE, 2011. doi:10.1109/FOCS.2011.36.

30 Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of languages
and relations by word equations. Journal of the ACM, 47(3):483–505, 2000. doi:10.1145/
337244.337255.

31 Michael Kearns and Leonard Pitt. A polynomial-time algorithm for learning k-variable pattern
languages from examples. In Ronald L. Rivest, David Haussler, and Manfred K. Warmuth,
editors, Computational Learning Theory, COLT 1989, pages 57–71. Morgan Kaufmann, 1989.
doi:10.1016/b978-0-08-094829-4.50007-6.

32 Subhash Khot. On the power of unique 2-prover 1-round games. In John H. Reif, editor, 34th
Annual ACM Symposium on Theory of Computing, STOC 2002, pages 767–775. ACM, 2002.
doi:10.1145/509907.510017.

33 Subhash Khot. On the Unique Games Conjecture (Invited Survey). In Computational
Complexity, CCC 2010, pages 99–121. IEEE, 2010. doi:10.1109/CCC.2010.19.

34 Ton Kloks, editor. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994. doi:10.1007/BFb0045375.

ICALP 2019

http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1016/s0304-3975(00)00136-5
http://dx.doi.org/10.1016/s0304-3975(00)00136-5
http://dx.doi.org/10.1137/05064299x
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.302
http://dx.doi.org/10.1016/j.tcs.2018.04.035
http://dx.doi.org/10.1016/j.ic.2015.03.006
http://dx.doi.org/10.1016/j.ic.2015.03.006
http://dx.doi.org/10.1007/s00224-015-9635-3
http://dx.doi.org/10.1007/s00224-015-9635-3
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/s00224-012-9389-0
http://dx.doi.org/10.1016/j.jcss.2019.04.001
http://dx.doi.org/10.1016/j.jcss.2019.04.001
http://dx.doi.org/10.1109/FOCS.2011.36
http://dx.doi.org/10.1145/337244.337255
http://dx.doi.org/10.1145/337244.337255
http://dx.doi.org/10.1016/b978-0-08-094829-4.50007-6
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1109/CCC.2010.19
http://dx.doi.org/10.1007/BFb0045375

109:16 Graph and String Parameters: Pathwidth, Cutwidth and the Locality Number

35 Tom Leighton and Satish Rao. Multicommodity Max-flow Min-cut Theorems and Their
Use in Designing Approximation Algorithms. Journal of the ACM, 46(6):787–832, 1999.
doi:10.1145/331524.331526.

36 M. Lothaire, editor. Algebraic Combinatorics on Words. Cambridge University Press, 2002.
doi:10.1017/cbo9781107326019.

37 Fillia Makedon, Christos H. Papadimitriou, and Ivan Hal Sudborough. Topological Bandwidth.
SIAM Journal on Algebraic and Discrete Methods, 6(3):418–444, 1985. doi:10.1137/0606044.

38 Yen Kaow Ng and Takeshi Shinohara. Developments from enquiries into the learnability of
the pattern languages from positive data. Theoretical Computer Science, 397(1–3):150–165,
2008. doi:10.1016/j.tcs.2008.02.028.

39 Jordi Petit. Addenda to the Survey of Layout Problems. Bulletin of the EATCS, 105:177–201,
2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/98.

40 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Leonard J. Schulman, editor, 42nd ACM Symposium on Theory of Computing, STOC 2010,
pages 755–764. ACM, 2010. doi:10.1145/1806689.1806792.

41 Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between Expansion
Problems. In Computational Complexity, CCC 2012, pages 64–73. IEEE, 2012. doi:10.1109/
CCC.2012.43.

42 Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397(1–3):166–193, 2008. doi:10.1016/j.tcs.2008.02.029.

43 Daniel Reidenbach and Markus L. Schmid. Patterns with bounded Treewidth. Information
and Computation, 239:87–99, 2014. doi:10.1016/j.ic.2014.08.010.

44 Markus L. Schmid. Characterising REGEX languages by regular languages equipped with
factor-referencing. Information and Computation, 249:1–17, 2016. doi:10.1016/j.ic.2016.
02.003.

45 Takeshi Shinohara. Polynomial Time Inference of Pattern Languages and Its Application. In
7th IBM Symposium on Mathematical Foundations of Computer Science, pages 191–209, 1982.

46 Karol Suchan and Yngve Villanger. Computing Pathwidth Faster Than 2n. In Jianer Chen
and Fedor V. Fomin, editors, Parameterized and Exact Computation, IWPEC 2009, volume
5917 of LNCS, pages 324–335. Springer, 2009. doi:10.1007/978-3-642-11269-0_27.

47 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.
2004.12.001.

48 Yu (Ledell) Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of Treewidth
and Related Problems. Journal of Artificial Intelligence Research, 49(1):569–600, 2014.
doi:10.1613/jair.4030.

http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1017/cbo9781107326019
http://dx.doi.org/10.1137/0606044
http://dx.doi.org/10.1016/j.tcs.2008.02.028
http://eatcs.org/beatcs/index.php/beatcs/article/view/98
http://dx.doi.org/10.1145/1806689.1806792
http://dx.doi.org/10.1109/CCC.2012.43
http://dx.doi.org/10.1109/CCC.2012.43
http://dx.doi.org/10.1016/j.tcs.2008.02.029
http://dx.doi.org/10.1016/j.ic.2014.08.010
http://dx.doi.org/10.1016/j.ic.2016.02.003
http://dx.doi.org/10.1016/j.ic.2016.02.003
http://dx.doi.org/10.1007/978-3-642-11269-0_27
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1613/jair.4030

	Introduction
	Preliminaries
	Locality and Cutwidth
	Locality and Pathwidth
	Pathwidth and Cutwidth

