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Abstract
In this paper we study how to optimally balance cheap inflexible resources with more expensive,
reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the
MinEMax model to study “build versus rent” problems. In our model different scenarios appear
independently. Before knowing which scenarios appear, we may build rigid resources that cannot
be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent
reconfigurable but expensive resources to use across scenarios. Although computing the objective in
our model might seem to require enumerating exponentially-many possibilities, we show it is well
estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate
objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this
objective we design algorithms that approximately-optimally balance inflexible and reconfigurable
resources for several NP-hard covering problems. For example, we study variants of minimum
spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation
guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage
models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate
between previous demand-robust and stochastic two-stage problems.
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4:2 Prepare for the Expected Worst

1 Introduction

Optimizing for reconfigurable resources under uncertainty formalizes the challenges of balan-
cing expensive, flexible resources with cheap, inflexible ones. For example, such optimization
problems formalize the challenges in “build versus rent” problems. Concretely, consider the
algorithmic challenges faced by an Internet service provider (ISP). An ISP must provide
content to its customers while balancing between rigid and reconfigurable resources. In
particular, it can build out its own network – a rigid resource – or choose to support traffic
on a competitor’s network – a flexible resource – at a marked up premium. This latter
resource is reconfigurable since an ISP can change which edges in a competitor’s network
it uses at any given time. To minimize the additional load on its network, the competitor
charges the ISP for the maximum extra bandwidth it must support at any given moment.
Furthermore, an ISP only has probabilistic knowledge of where customer demands will occur:
Based on where previous demands have occurred an ISP estimates future demands, but it
does not exactly know the future demands. If a demand occurs which the ISP’s network
cannot service, it must use the competitor’s network to support it. Thus, an ISP balances
rigid and flexible resources in the face of uncertainty, and pays for the cost of its own network
plus the cost of supporting the expected maximum traffic routed on its competitor’s network.

In this paper, we introduce the MinEMax model to study the algorithmic challenges
associated with optimizing reconfigurable resources under uncertainty. In our model we are
given a set of scenarios that might occur. In the preceding example these scenarios were
the sets of possible demands. We think of problems in our model as being divided between
a first stage where we “build” rigid resources and a second stage where we “rent” flexible
resources. In particular, in the first stage we can build non-reconfigurable resources without
knowing which scenarios occur. In the second stage, each scenario independently realizes
according to its specified Bernoulli probability, and we can rent reconfigurable resources at an
increased cost to use among any of our scenarios. For instance, in the preceding example the
ISP first built its own network and then, once it learned where demands occurred, it could
rent bandwidth to support different demands over time. In fact, this example is exactly our
MinEMax Steiner tree problem. Thus, the objective we minimize is the first stage cost plus
the expected maximum cost of additional reconfigurable resources required for any realized
scenario; hence the name of our model.

Since every scenario is an independent Bernoulli, there are exponentially-many ways
in which scenarios realize. It is not even clear how to efficiently compute the expected
second-stage cost. Nonetheless, we provide techniques to simplify and reason about the
MinEMax cost, and therefore solve various MinEMax problems.

The primary contributions of our work are as follows.
1. We introduce the MinEMax model for optimization of reconfigurable resources under

uncertainty.
2. We show that, although evaluating the MinEMax objective function may seem difficult,

a MinEMax problem can be approximately reduced to a “TruncatedTwoStage” problem
whose objective is representable by an LP.

3. Armed with 2, we adapt various rounding techniques to give approximation algorithms
for a variety of two-stage MinEMax problems including spanning and Steiner trees, cuts,
and facility location problems.

4. Lastly, we show that the MinEMax model captures the commonly studied two-stage
models for optimization under uncertainty: the stochastic and demand-robust models. We
even show that it generalizes a “Hybrid” problem that interpolates between these models.
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1.1 Related Work

Significant work has been done in two-stage optimization under uncertainty. The two most
commonly studied models are the stochastic model [22, 15, 24] and the demand-robust
model [9, 4, 14, 13]. In the stochastic two-stage model a probability distribution is given
over scenarios and our objective is the expected total cost. In the demand-robust two-stage
model we are given scenarios and our objective is the cost of the worst-case scenario given
our first stage solution.

Another related model is Distributionally robust optimization (DRO) [23, 12, 8, 5]. In
DRO we are given a distribution along with a ball of “nearby” distributions, and we must
pay the worst-case expectation over all these distributions. Similarly to our model, DRO
generalizes both the stochastic and demand-robust two-stage models. Our model can be seen
as a “flip” of the DRO model: while the DRO model takes the worst-case over distributions
our model takes a distribution over worst cases. Like DRO, our model is also sufficiently
general to capture stochastic and demand-robust optimization. A recent result [20] – which
shows that approximation algorithms are possible in DRO – complements our approximation
algorithms in MinEMax.

A well studied measure for risk-aversion from stochastic programming is conditional value
at risk (CVaR) [1]. Roughly, CVaR gives the average cost in the worst-case case α tail of a
distribution. A notable recent work in CVaR presents a data-driven approach to two-stage
risk aversion [18]. Theorem 1 in their work is reminiscent of our reduction of MinEMax
to Hybrid; this theorem shows that their objective can be reformulated as a combination
of the CVaR cost and the worst-case distribution. We emphasize that while CVaR might
appear similar to the TruncatedTwoStage metric studied in this work, these two metrics are
distinct and not readily comparable. Two salient differences are: (1) the threshold in the
TruncatedTwoStage objective is the minimizing threshold while in CVaR the threshold is
fixed, and (2) the TruncatedTwoStage objective sums up the truncated cost over a set of
Bernoulli random variables whereas CVaR takes a truncated average cost with respect to a
single distribution. Moreover, to the best of our knowledge, CVaR has not been studied in
the context of approximation algorithms.

Several additional models for optimization under uncertainty – some of which even
interpolate between stochastic and demand-robust – have also been studied. A series of
papers [26, 25, 27] examined various models of two-stage optimization that capture risk-
aversion. Notably, the model of [27] interpolates between stochastic and demand-robust while
also accommodating black-box distributions. Other papers (e.g., [15]) studied algorithms for
stochastic optimization given access to black-box distributions. There has also been work on
two-stage stochastic models in which – as in our model – independent stochastic outcomes
factor prominently. For example, Immorlica et al. [17] study a two-stage stochastic model in
which each “client” activates independently and the realized scenario consists of all activated
clients. The primary difference between their model and ours is that for us entire scenarios –
rather than clients – activate independently. Moreover, reconfigurability of resources is not
factored in their model.

Lastly, in our reduction from MinEMax to TruncatedTwoStage, we make use of a bound
which has appeared before in other settings [19, 21, 6, 11]. For example, [6] use this bound
to tightly estimate the optimum value in an optimization problem where the cost function is
random and only marginal distributions for the coefficients of the cost function are known.
Unlike our work, these works do not design approximation algorithms for two-stage problems.

APPROX/RANDOM 2019
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1.2 Models
We now formally define our new MinEMax model and the prior models that we generalize.
We study two-stage covering problems, defined as follows.

1.2.1 Two-Stage Covering
Let U be the universe of clients (or demand requirements), and let X be the set of elements
that we can purchase. Every scenario S1, S2, . . . , Sm is a subset of clients. Let sol(Ss)
for s ∈ [m] denote the sets in 2X which are feasible to cover scenario Ss. In covering
problems if A ⊆ B and A ∈ sol(Ss), then B ∈ sol(Ss). We are also given a cost function
cost : 2X × 2X → R. For a given a specification of cost, scenarios, clients, and feasibility
constraints, we must find a set of elements X1 ⊆ X to be bought in the first stage, and a set
of elements X(s)

2 ⊆ X to be bought in the second stage s.t. X1 ∪X(s)
2 ∈ sol(Ss) for every s.

Our goal is to find a solution of minimal cost where the cost of a solution is discussed below.
This paper makes the common assumption that cost is linear, i.e., cost(X1, X

(s)
2 ) equals

cost(∅, X(s)
2 ) + cost(X1, ∅) for any X1, X

(s)
2 ⊆ 2X . Let X2X2X2 := (X(1)

2 , . . . , X
(m)
2 ); throughout

the paper a bold variable denotes a vector.
We now describe and discuss how different cost functions yield different two-stage

covering models.

1.2.2 Prior Models
In the demand-robust two-stage covering model the cost of solution (X1,X2X2X2) is the maximum
cost over all the scenarios:

costRob(X1,X2X2X2) := max
s∈[m]

{
cost(X1, X

(s)
2 )
}
. (1)

In the stochastic two-stage covering model we are given a probability distribution D
over m scenarios with which exactly one of them realizes; i.e.

∑
s∈[m]D(s) = 1. The cost of

solution (X1,X2X2X2) is the expected cost:

costStoch(X1,X2X2X2) := Es∼D[cost(X1, X
(s)
2 )]. (2)

1.2.3 Our New MinEMax Model
In the MinEMax two-stage covering model we are given probabilities p = {p1, . . . , pm} with
which each scenario independently realizes. The cost of solution (X1,X2X2X2) is the expected
maximum cost among the realized scenarios:

costEMax(X1,X2X2X2) := EA∼p

[
max
s∈A

{
cost(X1, X

(s)
2 )
}]

(3)

where A contains each s independently w.p. ps. To avoid confusion, we reiterate that
unlike the stochastic model, in MinEMax multiple scenarios may simultaneously appear in A
because each of them independently realizes. We shall assume without loss of generality that∑
s ps ≥ 1 throughout this paper since one can always ensure this without affecting solutions

to the problem by adding dummy scenarios of cost 0 and probability 1.
As a concrete example of these models, consider the following star covering problem.

We are given a star graph with root r and leaves v1, . . . , vm. Each edge ei = (r, vi) can be
purchased in the first stage at cost ci and in the second stage at an inflated cost σ · ci for
σ > 1. Our goal is to connect r to an unknown vertex vs with minimum total two-stage cost.
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Figure 1 Star graph MinEMax for m = 4. Green edges: edges bought by solution. ei labeled
by its cost in each stage for σ = 2. Non-opaque second-stage node: realized scenario. Blue square:
probability of scenario. Dashed red nodes: nodes chosen by an adversary.

In particular, vs is only revealed after we purchase our first-stage edges, X1, at which point
we must purchase es in a second stage at cost σ · cs if es was not already purchased in the
first stage. In all three models we initially buy some set of edges. In the stochastic version of
this problem a single vs then appears according to a distribution and we must pay to connect
vs if we have not already. In the demand-robust version of this problem, vs is always chosen
so as to maximize our second stage cost. However, in our MinEMax version of this problem
several vs appear and we must pay for a budget of reconfigurable edge resources to be reused
for every vs. See Figure 1 for an illustration.

1.3 Technical Results and Intuition
We now discuss our technical results. As earlier noted, capturing the MinEMax objective
seems challenging: scenarios may realize in exponentially-many ways and so even computing
the objective seems computationally infeasible. We solve this issue by showing that to solve
a MinEMax problem, PEMax, it suffices to solve its TruncatedTwoStage version, PTrunc. A
TruncatedTwoStage problem is identical to a MinEMax problem but the cost of a solution
(X1,X2X2X2) is its truncated sum:

costTrunc(X1,X2X2X2) := minB
[
B +

∑
s∈[m] ps · (cost(X1, X

(s)
2 )−B)+

]
. (4)

We will later see that PTrunc can be represented by an LP and, therefore, can be efficiently ap-
proximated by various rounding techniques. The following theorem shows that to approximate
a MinEMax problem, it suffices to consider its TruncatedTwoStage version.

I Theorem 1. Let PEMax be a MinEMax problem and let PTrunc be its TruncatedTwoStage
version. An α-approximation algorithm for PTrunc is a

(
α

1−1/e

)
-approximation algorithm

for PEMax.

The main observation we use to show this theorem is that a set of expensive scenarios with
large total probability mass dominates the cost of a given MinEMax solution. We illustrate
this observation with an example. Let (X1,X2X2X2) be a solution for a MinEMax problem. Now
WLOG let cost(X1, X

(s)
2 ) ≥ cost(X1, X

(s+1)
2 ) for all s, i.e., the sth scenario is more expensive

than the (s + 1)th scenario for our solution. Let M := [k] be the indices of the first k
scenarios such that

∑
s≤k ps is large; say, at least 1. Let the border B := cost(X1, X

(k)
2 ) be

the cost of the least expensive scenario with an index in M . Because there is a great deal of

APPROX/RANDOM 2019



4:6 Prepare for the Expected Worst

probability mass among scenarios in M we know that with large probability some scenario
in M will always appear. Whenever a scenario of cost less than B appears we know that
with good probability something in M has also appeared of greater cost. Thus, as far as the
expected max is concerned, a scenario that costs less than B can be ignored. Lastly, while it
is not immediately clear how to represent costTrunc function in an LP, we show using a simple
convexity argument how this can accomplished.

Next, we design approximation algorithms for two-stage covering problems in the
MinEMax model.

I Theorem 2. For two-stage covering problems there exist polynomial-time approximation
algorithms with the following guarantees.1

MinEMax Problem Steiner tree UFL MST Min-cut k-center

Approximation 30
1−1/e

8
1−1/e

O(logn+ logm) 4
1−1/e

O(1)

Our earlier Theorem 1 demonstrated that to solve a MinEMax problem, PEMax, we need
to only solve its TruncatedTwoStage version, PTrunc. While it is not clear how to represent
PEMax with an LP, PTrunc can be represented with an LP. Furthermore, by adapting previous
two-stage optimization rounding techniques to the TruncatedTwoStage setting, we are able to
approximately solve the TruncatedTwoStage versions of uncapacitated facility location (UFL),
Steiner tree, minimum spanning tree (MST), and min-cut. We defer details on min-cut to
the full version of our paper.

We use different techniques to give an approximation algorithm for k-center. The intuition
for our k-center proof is similar to that of Theorem 1: Truncated costs approximate MinEMax
cost. However, for k-center we truncate more aggressively. Rather than truncating costs of
scenarios, we truncate distances in the input metric. To do this, we draw on methods of
Chakrabarty and Swamy [7].2

It is also worth noting that Anthony et al. [4] proved hardness of approximation for a
two-stage k-center problem. In particular, they show stochastic k-center where scenarios
consist of multiple clients is as hard to approximate as dense k-subgraph. Thus, since our
MinEMax model generalizes the stochastic model, we restrict our attention in k-center to
scenarios consisting of single clients; otherwise our problem would be prohibitively hard to
approximate. Since our scenarios consist of single clients the stochastic and demand-robust
versions of the k-center problem we solve correspond to k-median and k-center respectively.
We defer details on our k-center results to the full version of our paper.

Our last theorem shows that MinEMax generalizes the stochastic and demand-robust
models as well as a Hybrid model which smoothly interpolates between stochastic and
demand-robust optimization.

I Theorem 3. An α-approximation for a two-stage covering algorithm in the MinEMax
model implies an α-approximation for the corresponding two-stage covering problem in the
stochastic, demand-robust, and Hybrid models.

We defer a formal definition and discussion of the Hybrid model as well as the intuition and
proof for Theorem 3 to the full version of our paper. As a corollary of Theorems 2 and 3,
we immediately recover polynomial-time approximations for Hybrid MST, UFL, Steiner tree
and min-cut.3

1 The O(1) in the k-center approximation is roughly 57.
2 We also note here that, unlike the previous problems we study, the cost function in k-center is not linear

as described in §1.2.
3 Though not k-center since its cost function is not linear.



D. E. Hershkowitz, R. Ravi, and S. Singla 4:7

M(X1,X2X2X2)

.4
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(1)
2 ) ≥

.4
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(2)
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.3

cost(X1, X
(3)
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.6

cost(X1, X
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.7

cost(X1, X
(5)
2 ) ≥

1

cost(X1, X
(6)
2 ) ≥

.2

cost(X1, X
(7)
2 )

Figure 2 M(X1,X2X2X2). B(X1,X2X2X2) = cost(X1, X
(3)
2 ). Red circles: scenarios in M(X1,X2X2X2). Green

circles: all other scenarios. Numbers in circles: probabilities. Scenarios arranged left to right in
descending order of cost(X1, X

(s)
2 ).

2 Reducing MinEMax to TruncatedTwoStage

In this section, we demonstrate a technique to simplify both computing and reasoning about
costEMax by reducing a MinEMax problem to a TruncatedTwoStage problem with only a small
loss in the approximation factor. Specifically, we show the following theorem.

I Theorem 1. Let PEMax be a MinEMax problem and let PTrunc be its TruncatedTwoStage
version. An α-approximation algorithm for PTrunc is a

(
α

1−1/e

)
-approximation algorithm

for PEMax.

As earlier noted, we show this by observing that a set of expensive scenarios with “large”
total probability mass dominates the cost of a given MinEMax solution.

We begin by observing that the expected max of a set of independent random variables is
approximately bounded by the most expensive of these random variables whose probabilities
sum to 1. We remark that this result can be seen to follow from results regarding the
“correlation gap” [2, 3] which show a similar bound where instead of max we have any
sub-modular function. We give a different proof in §A for completeness that we find simpler
in our setting where we consider the max and not any sub-modular function.

I Lemma 4. Let YYY = {Y1, . . . , Ym} be a set of independent Bernoulli r.v.s, where Ys is 1
with probability ps, and 0 otherwise. Let vs ∈ R≥0 be a value associated with Ys. WLOG
assume vs ≥ vs+1 for s ∈ [m− 1]. Let b = min{a :

∑a
s=1 ps ≥ 1}. Then(

1− 1
e

)(
vb +

∑
s

ps · (vs − vb)+
)
≤ EYYY

[
max
s
{Ys · vs}

]
≤ vb +

∑
s

ps · (vs − vb)+,

where x+ := max{x, 0}.

For a given solution (X1,XXX2) to MinEMax, Lemma 4 yields a computationally tractable
form of costEMax. Specifically, let our scenarios be indexed such that cost(X1, X

(s)
2 ) ≥

cost(X1, X
(s+1)
2 ) and let b be the smallest positive integer such that

∑b
s=1 ps ≥ 1. We define

the following terms analogous to those in the lemma (see Figure 2 for an illustration):

M(X1,XXX2) := [b] and B(X1,XXX2) := cost(X1, X
(b)
2 ). (5)

Notice that
∑
s∈M(X1,X2X2X2) ps < 2. Now, by letting B(X1,X2X2X2) be vb in Lemma 4, we can

approximate costEMax(X1,X2X2X2). However, we would like to estimate costEMax(X1,XXX2) within
an LP where (X1,XXX2) are variables since our algorithms are LP based. Unfortunately, it is
not clear how to capture vb in an LP and so it is not clear how to directly use Lemma 4 to
estimate costEMax(X1,XXX2) within an LP.

APPROX/RANDOM 2019



4:8 Prepare for the Expected Worst

For this reason, we derive an even simpler form of the above approximation of the
expected max which can be computed using an LP. In particular, we show that the expected
max is approximately the costTrunc objective. We remind the reader that, as per Eq.(4),
costTrunc(X1,X2X2X2) := minB[B +

∑
s∈[m] ps · (cost(X1, X

(s)
2 ) − B)+]. The following lemma

shows that the B achieving the minimum in costTrunc(X1,X2X2X2) is B(X1,X2X2X2) and therefore
shows that costTrunc is a good approximation of costEMax.

I Lemma 5. Let (X1,X2X2X2) be a solution to a TruncatedTwoStage or MinEMax problem.
We have

B(X1,X2X2X2) = arg min
B

[
B +

∑
s∈[m]

ps · (cost(X1, X
(s)
2 )−B)+

]
,

where the arg min takes the largest B minimizing the relevant quantity.

Proof Sketch. The rough idea of the proof is to show that B+
∑
s ps(cost(X1, X

(s)
2 −B)+ is

convex in B and that B(X1,X2X2X2) is a local minimum. In particular, imagine that B is currently
set at B(X1,X2X2X2) and consider what happens to B +

∑
s ps(cost(X1, X

(s)
2 −B)+ if we shift

B to be smaller. Recall that we have at least one probability mass across elements which are
larger than B by definition of B(X1,X2X2X2). Thus, when we shift B to be smaller, B decreases
slower than

∑
s ps(cost(X1, X

(s)
2 − B)+ increases and so B +

∑
s ps(cost(X1, X

(s)
2 − B)+

becomes larger overall. The case when B is made larger is symmetric. The full proof is
available in §A. J

Using Lemma 4 and Lemma 5, it is easy to show the following two lemmas. These lemmas
– proved in §A – upper and lower bound the MinEMax cost of a solution with respect to its
TruncatedTwoStage solution respectively.

I Lemma 6. For feasible solution (X1,XXX2) of any PEMax we have, costEMax(X1,XXX2) ≤
costTrunc(X1,XXX2).

I Lemma 7. Let PEMax be a MinEMax problem and PTrunc be its truncated version. Let
(E1,E2E2E2) and (T1,T2T2T2) be optimal solutions to PEMax and PTrunc respectively. We have that
costTrunc(T1,T2T2T2) ≤

(
1

1−1/e

)
costEMax(E1,E2E2E2).

The preceding lemmas allow us to conclude that an α-approximation algorithm for
a TruncatedTwoStage problem is an O(α)-approximation algorithm for the corresponding
MinEMax problem.

Proof of Theorem 1. Let (T̂1, T̂2̂T2̂T2) be the solution returned by an α-approximation algorithm
for PTrunc. Let (E1,E2E2E2) and (T1,T2T2T2) be the optimal solutions to PEMax and PTrunc respect-
ively. By Lemma 6 we have costEMax(T̂1, T̂2̂T2̂T2) ≤ costTrunc(T̂1, T̂2̂T2̂T2). Since (T̂1, T̂2̂T2̂T2) is an α-
approximation we have this is at most α · costTrunc(T1,T2T2T2). Applying Lemma 7 this is at
most

(
α

1−1/e

)
costEMax(E1,E2E2E2). Since any solution that is feasible for PTrunc is also feasible

for PEMax, we conclude that (T̂1, T̂2̂T2̂T2) is a feasible solution for PEMax with cost in PEMax at
most

(
α

1−1/e

)
costEMax(E1,E2E2E2), giving our theorem. J

3 Applications to Linear Two-Stage Covering Problems

In this section we give an O(logn+ logm)-approximation algorithm for MinEMax MST and
O(1) approximation algorithms for MinEMax Steiner tree, MinEMax facility location, and
MinEMax min-cut. Our algorithms are LP based. To derive our algorithms we use our
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reduction from §2 to transform a MinEMax problem into a TruncatedTwoStage problem with
only a small constant loss in the approximation factor. This transformation allows us to
adapt existing LP rounding techniques in which every scenario has a rounding cost close to
its fractional cost [22, 15, 24] to solve our TruncatedTwoStage problems and, therefore, our
MinEMax problems.

We first give two general techniques to solve a TruncatedTwoStage problem.

3.1 General Techniques

Our first technique is to represent costTrunc as an LP objective. For this technique we need to
extend the definition of costTrunc from an integral solution (X1,X2X2X2) to a fractional solution
(x1,x2x2x2). To do so, in each of our problems we locally define cost(x1, x

(s)
2 ) for fractional

solution (x1, x
(s)
2 ) to scenario s and let costTrunc(x1,x2x2x2) be defined similarly to the integral

case, i.e. for fractional (x1,x2x2x2),

costTrunc(x1,x2x2x2) := min
B

[
B +

∑
s

ps(cost(x1, x2(s))−B)+
]
. (6)

Given a minimization LP, it is easy to see that by introducing an additional variable
to represent B and additional variables to represent (cost(x1, x2(s))−B)+ for every s, we
can represent costTrunc(x1,x2x2x2) in an LP. For cleanliness of exposition, when we write our
LPs we omit these additional variables and simply write our objective as “costTrunc(x1,x2x2x2).”
Moreover, even though some of our LPs have an exponential number of constraints, we rely
on the existence of efficient separation oracles for these LPs. It is easy to verify that this
holds even after one introduces the additional variables needed to represent costTrunc(x1,x2x2x2).

We also extendM and B from the integral case as defined in §2 to the fractional case in the
following natural way. Given a fractional solution (x1,x2x2x2) and a cost function on fractional
solutions, cost, WLOG let our scenarios be indexed such that cost(x1, x

(s)
2 ) ≥ cost(x1, x

(s+1)
2 ).

Let b be the smallest positive integer such that
∑b
s=1 ps ≥ 1. For fractional (x1,x2x2x2), we define

M(x1,xxx2) := [b] (7)

B(x1,xxx2) := min
s∈M(x1,xxx2)

cost(x1, x
(s)
2 ). (8)

I Remark 8. It is easy to verify that the proof of Lemma 5 also holds for costTrunc(x1,x2x2x2) for
fractional (x1,x2x2x2). We will therefore invoke it on fractional (x1,x2x2x2), even though it is stated
only for integral (X1,X2X2X2).

Our second technique is a generic rounding technique for TruncatedTwoStage problems.
Several past works in two-stage optimization show that it is possible to round an LP solution
such that the resulting integral solution has cost roughly the same as the fractional solution
for every scenario. We prove the following lemma to make use of such rounding algorithms.

I Lemma 9. Let PTrunc be a TruncatedTwoStage problem. Let (X1,X2X2X2) and (Y1,Y2Y2Y2) be
integral or fractional solutions to PTrunc. If for every scenario s we have cost(X1, X

(s)
2 ) ≤

c · cost(Y1, Y
(s)
2 ) then

costTrunc(X1,X2X2X2) ≤ c · costTrunc(Y1,Y2Y2Y2).
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Proof. We have

costTrunc(X1,X2X2X2) = min
B

[
B +

∑
s

ps · (cost(X1, X
(s)
2 )−B)+)

]
(9)

≤ c ·B(Y1,Y2Y2Y2) +
∑
s

ps · (cost(X1, X
(s)
2 )− c ·B(Y1,Y2Y2Y2))+) (10)

≤ c ·B(Y1,Y2Y2Y2) +
∑
s

ps · (c · cost(Y1, Y
(s)
2 )− c ·B(Y1,Y2Y2Y2))+) (11)

= c ·

(
B(Y1,Y2Y2Y2) +

∑
s

ps · (cost(Y1, Y
(s)
2 )−B(Y1,Y2Y2Y2))+)

)
(12)

= c · costTrunc(Y1,Y2Y2Y2) (13)

where Eq.(10) is by letting B = c ·B(Y1,Y2Y2Y2), Eq.(11) is by cost(X1, X
(s)
2 ) ≤ c · cost(Y1, Y

(s)
2 )

and Eq.(13) is by Lemma 5. J

3.2 Steiner Tree
In this section we give a

(
30

1−1/e

)
-approximation for MinEMax rooted Steiner tree.

I Definition 10 (MinEMax Rooted Steiner tree). We are given a graph G = (V,E), a root
r ∈ V , a cost ce for each edge e. We are also given scenarios S1, . . . , Sm ⊆ V , each with an
associated probability ps and an inflation factor σs > 0. We must find a first stage solution
X1 ⊆ E and a second-stage solution for every scenario, X(j)

2 ⊆ E. A solution is feasible if for
every s we have X1 ∪X(s)

2 connects {r} ∪ Ss. The cost for scenario s in solution (X1,X2X2X2) is

cost(X1, X
(s)
2 ) :=

∑
e∈X1

ce + σs ·
∑

e∈X(s)
2

ce. (14)

The total cost we pay for (X1,X2X2X2) is costEMax(X1,X2X2X2) := EA∼ppp

[
maxs∈A{cost(X1, X

(s)
2 )}

]
.

Our algorithm is based on an LP rounding algorithm of Gupta et al. [16] for two-stage
stochastic Steiner tree. Roughly, we use Lemma 9 to argue that the first stage solution for
every optimal TruncatedTwoStage solution is, up to small constants, a tree rooted at r. This
structural property allows us to write an LP that approximately captures TruncatedTwoStage
Steiner tree. Gupta et al. [16] showed that this LP can be rounded s.t. every scenario has
a good cost. We then combine this rounding with Lemma 9 to derive an approximation
algorithm for TruncatedTwoStage Steiner tree, which is sufficient for approximating MinEMax
Steiner tree by Theorem 1.

We begin by arguing that up to small constants, the optimal first stage solution is a tree
rooted at r.

I Lemma 11. There exists an integral solution (X̂1, X̂2X̂2X̂2) to TruncatedTwoStage Steiner tree
s.t. G[X̂1] is a tree rooted at r and costTrunc(X̂1, X̂2X̂2X̂2) ≤ 2 · costTrunc(O1,O2O2O2), where (O1,O2O2O2)
is the optimal solution to TruncatedTwoStage Steiner tree.

Proof. Lemma 4.1 of Dhamdhere et al. [9] shows that given (O1,O2O2O2) it is possible to modify
it to a feasible solution (X̂1, X̂2X̂2X̂2) such that G[X̂1] is a tree rooted at r and cost(X̂1, X̂

(s)
2 ) ≤ 2 ·

cost(O1, O
(s)
2 ) for every s. It follows by Lemma 9 that costTrunc(X̂1, X̂2X̂2X̂2) ≤ 2·costTrunc(O1,O2O2O2).

J
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We now describe how to formulate an LP that leverages the structural property in
Lemma 11. In particular, this indicates that as one gets closer to r, one must fractionally
buy edges to a greater and greater extent. This constraint can be captured in an LP.
Specifically, every node in a scenario (a.k.a. terminal) is the source of one unit of flow
that is ultimately routed to r; this flow follows a path whose fractional “first stage-ness” is
monotonically increasing.

More formally, we copy each edge e = {u, v} into two directed edges (u, v) and (v, u).
Let ~e be either one of these directed edges. Next, for each such directed edge ~e and every
terminal in t ∈

⋃
s Ss, we define variables r1(t, ~e) and r(s)

2 (t, ~e) for every s to represent how
much t is connected to r by e in the first stage and in scenario s, respectively. Also, for
undirected edge e, define variables x1(e) and x(s)

2 (e) to stand for how much we buy e in the
first stage and scenario s, respectively. For fractional (x1,x2x2x2), we define

costTrunc(x1, x
(s)
2 ) :=

∑
e

ce · x1(e) + σs · ce · x2(e),

which as described by Eq.(6) also defines costTrunc(x1,xxx2). Letting δ−(v) and δ+(v) stand
for all directed edges going into and out of v, respectively. The following is our LP.

min costTrunc(x1,x2x2x2) (ST LP)

s.t.
∑

~e∈δ+(v)

r1(t, ~e) + r
(s)
2 (t, ~e) =

∑
~e∈δ−(v)

r1(t, ~e) + r
(s)
2 (t, ~e) ∀s, t ∈ Ss, v 6∈ {t, r}

∑
~e∈δ+(t)

r1(t, ~e) + r
(s)
2 (t, ~e)−

∑
~e∈δ−(t)

r1(t, ~e) + r
(s)
2 (t, ~e) ≥ 1 ∀s, t ∈ Ss

∑
~e∈δ−(v)

r1(t, ~e) ≤
∑

~e∈δ+(v)

r1(t, ~e) ∀s, t ∈ Ss, v 6∈ {t, r}

r1(t, ~e) ≤ x1(e); r(s)
2 (t, ~e) ≤ x(s)

2 (e) ∀s, t ∈ Ss, ~e
r, x1,x2x2x2 ≥ 0

Notably, the third family of constraints enforces that terminal t is serviced by the first
stage more and more as one moves closer to the root. The characteristic vector of (X̂1, X̂2X̂2X̂2) as
described in Lemma 11 gives a feasible solution to ST LP. As a result, Lemma 11 demonstrates
that ST LP has nearly optimal objective as stated in the following corollary.

I Corollary 12. Let (x1,x2x2x2) be the optimal solution of ST LP. We have costTrunc(x1,x2x2x2) ≤
2 ·costTrunc(O1,O2O2O2), where (O1,O2O2O2) is the optimal solution to TruncatedTwoStage Steiner tree.

Proof. Let (x̂1, x̂2x̂2x̂2) be the characteristic vector of (X̂1, X̂2X̂2X̂2) from Lemma 11. Fix an arbitrary
terminal t. Let P2 for terminal t be the shortest path from t to X̂1 in G[X̂2]. Let ut be the
sink of P2 and let P1 be the shortest path from ut to r in G[X̂1]. Notice that (x̂1, x̂2x̂2x̂2) along
with r2 which sends one unit of flow from t to ut along P2 and r1 which sends one unit of flow
from ut to r along P1 for every t is a feasible solution to ST LP. Moreover, notice that cost of
this solution is costTrunc(x̂1,x2x2x2) = costTrunc(X1,X2X2X2) ≤ 2 · costTrunc(O1,O2O2O2) by Lemma 11. J

Previous work of Gupta et al. [16] shows that it is possible to round a fractional solution
of ST LP such that every scenario has a good cost.

I Lemma 13 ([16]). A fractional solution (x1,x2x2x2) to ST LP can be rounded in polynomial
time to a feasible integral solution (X1,X2X2X2) s.t. cost(X1, X

(s)
2 ) ≤ 15 ·cost(x1, x

(s)
2 ) for every s.
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Since Corollary 12 gives ST LP has a good optimal solution, we can round ST LP such
that every scenario has a low cost. Now Lemma 9 tells us that such a rounding preserves the
cost of a solution for TruncatedTwoStage optimization. This gives the following theorem.

I Theorem 14. MinEMax Steiner tree can be
(

30
1−1/e

)
-approximated in polynomial time.

Proof. Our algorithm first solves ST LP to get fractional solution (x1,x2x2x2). Next, we apply
Lemma 13 to round (x1,x2x2x2) in polynomial time to give (X1,X2X2X2) as our solution. Thus,
we have

costTrunc(X1,X2X2X2) ≤ 15 · costTrunc(x1,x2x2x2) (by Lemma 9, Lemma 13)
≤ 30 · costTrunc(O1,O2O2O2), (by Corollary 12)

where (O1,O2O2O2) is the optimal TruncatedTwoStage Steiner tree solution. This implies we have
a 30-approximation algorithm for TruncatedTwoStage Steiner tree. Now by Theorem 1, we
have a

(
30

1−1/e

)
-approximation for MinEMax Steiner tree.

Lastly, each of our subroutines has a polynomial runtime by previous lemmas, and so we
conclude that our algorithm has a polynomial runtime. J

3.3 Uncapacitated Facility Location

In this section we give a polynomial-time
(

8
1−1/e

)
-approximation algorithm for MinEMax

uncapacitated facility location (UFL).

I Definition 15 (MinEMax UFL). We are given a set of facilities F and a set of clients
D with a metric cij specifying the distances between every client j and facility i. We are
also given scenarios S1, . . . , Sm ⊆ D, where in scenario Ss client j has demand dsj ∈ {0, 1}4,
and a probability ps for each scenario. Facility i’s opening cost is f1,i in the first stage and
f

(s)
2,i in scenario Ss. These opening costs can be ∞, which indicates the facility cannot be

opened. A feasible solution consists of a set of first and second stage facilities (X1,X2X2X2) s.t.
X1 ∪

⋃
sX

(s)
2 6= ∅. The cost for scenario s in solution (X1,X2X2X2) is

cost(X1, X
(s)
2 ) :=

∑
i∈X1

f1,i +
∑
i∈X(s)

2

f
(s)
2,i +

∑
j∈Ss

min
i∈X1∪X(s)

2

cij .

The total cost of solution (X1,X2X2X2) is costEMax(X1,X2X2X2) := EA∼ppp
[
maxs∈A{cost(X1, X

(s)
2 )}

]
.

Our algorithm is based on the work of Ravi and Sinha [22] on two-stage stochastic
UFL. This work shows how to round an LP such that every scenario has a “good” cost
after rounding. Applying Lemma 9 to this rounding gives an algorithm that approximates
TruncatedTwoStage UFL, which by Theorem 1 is sufficient to approximate MinEMax UFL.

We use the following LP. Variable z(s)
ij corresponds to whether client j is served by facility

i in scenario s. Variables x1(i) and x(s)
2 (i) corresponds to whether facility i is opened in the

first stage or scenario s, respectively. For a fractional solution (x1,x2x2x2), we define

cost(x1, x
(s)
2 ) :=

∑
i∈F

[
x1(i) · f1,i + x

(s)
2 (i) · f (s)

2,i +
∑
j∈D

ẑ
(s)
ij · cij

]
,

4 This easily generalizes to more demand.
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where ẑ(s)
ij is the natural fractional assignment given fractional facilities (x1, x

(s)
2 ); namely,

one that sends clients to their nearest fractionally opened facilities. As described by Eq.(6),
this definition of cost(x1, x

(s)
2 ) defines costTrunc(x1,xxx2) for fractional (x1,x2x2x2), which allows us

to define our LP.

min costTrunc(x1,x2x2x2) (UFL LP)

s.t.
∑
i∈F

z
(s)
ij ≥ d

(s)
j ∀j ∈ D,∀s

z
(s)
ij ≤ x1(i) + x

(s)
2 (i) ∀i ∈ F,∀j ∈ D,∀s

0 ≤ x1,x2x2x2, zzz

Note that an integral solution to the above LP is a feasible solution for MinEMax UFL. Ravi
and Sinha showed how to round this LP.

I Lemma 16 (Theorem 2, Lemma 1 in [22]). Given a fractional solution (x1,x2x2x2) to UFL LP,
it is possible to round it to integral (X1,X2X2X2) in polynomial-time s.t. for every scenario s we
have cost(X1, X

(s)
2 ) ≤ 8 · cost(x1, x

(s)
2 ).

We now give our approximation algorithm for MinEMax UFL.

I Theorem 17. MinEMax UFL can be
(

8
1−1/e

)
-approximated in polynomial time.

Proof. Our algorithm starts by solving UFL LP to get a fractional (x1,x2x2x2). Next, round
(x1,x2x2x2) using Lemma 16 to integral (X1,X2X2X2). Return (X1,X2X2X2).

Let (O1,O2O2O2) be the optimal integral solution to the TruncatedTwoStage instance of
our problem and let (o1, o2o2o2) be its corresponding characteristic function. By definition,
costTrunc(o1, o2o2o2) = costTrunc(O1,O2O2O2). Now using Lemma 9 and Lemma 16 it follows that

costTrunc(X1, X2) ≤ 8 · costTrunc(x1,x2x2x2).

Since (o1, o2o2o2) feasible for UFL LP, we get

costTrunc(X1, X2) ≤ 8 · costTrunc(o1, o2o2o2) = 8 · costTrunc(O1,O2O2O2).

Thus, our algorithm is an 8-approximation for TruncatedTwoStage UFL. Applying Theorem 1
gives a

(
8

1−1/e

)
-approximation for MinEMax UFL.

Lastly, notice that our algorithm is trivially polynomial-time. J

3.4 MST
In this section we give a randomized polynomial-time algorithm which with high probability
has expected cost O(logn + logm) times the optimal MinEMax minimum spanning tree
(MST) on an n-node graph with m different scenarios.

I Definition 18 (MinEMax MST). We are given a graph G = (V,E) where |V | = n, a
set of m scenarios S1, . . . Sm where each scenario Ss has an associated second-stage cost
function cost(s)

2 : E → Z+ and a probability ps. We are also given a first-stage cost function,
cost1 : E → Z+. We must provide a first stage solution X1 ⊆ E and a solution X(s)

2 ⊆ E for
every scenario s, which is feasible if G[X1 ∪X(s)

2 ] spans V for every s. The cost for scenario
s in solution (X1,X2X2X2) is

cost(X1, X
(s)
2 ) :=

∑
e∈X1

cost1(e) +
∑

e∈X(s)
2

cost(s)
2 (e). (15)

The total cost for solution (X1,X2X2X2) is costEMax(X1,X2X2X2) := EA∼ppp
[
maxs∈A{cost(X1, X

(s)
2 )}

]
.
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Our algorithm is based on the work of Dhamdhere et al. [10] on two-stage stochastic
MST. They give a rounding technique that produces integral solutions where every scenario
has a cost close to the fractional cost. Using this rounding, and applying Lemma 9, we get an
approximation algorithm for TruncatedTwoStage MST, which by Theorem 1 is also sufficient
to approximate MinEMax MST.

Notice that since MinEMax generalizes two-stage robust optimization, our MinEMax result
gives a O(logn+ logm) approximation for two-stage robust MST as a corollary. To the best
of our knowledge, this is the first non-trivial algorithm for two-stage robust MST.

Our algorithm is based on an LP. We have m+ 1 variables for each edge e, namely x1(e)
and x(s)

2 (e) for s ∈ [m] indicating if we take e in the first stage and in the second stage for
scenario s, respectively. For a fractional solution (x1,x2x2x2), we define

cost(x1, x
(s)
2 ) :=

∑
e

x1(e) · cost1(e) + x
(s)
2 (e) · cost2(e), (16)

which as described in Eq.(6), defines costTrunc(x1,xxx2) for fractional (x1,x2x2x2). Letting δ(S) be
all edges with exactly one endpoint in S ⊆ V . The following is our LP.

min costTrunc(x1,x2x2x2) (MST LP)

s.t.
∑
e∈δ(S)

(
x1(e) + x

(s)
2 (e)

)
≥ 1 ∀∅ ⊂ S ⊂ V, s ∈ [m]

x1,x2x2x2 ≥ 0

Note that an integral solution to MST LP is a feasible solution for the TruncatedTwoStage
MST problem as a set of edges with at least one edge leaving every cut is a spanning tree.5
Also, although this LP has super-polynomial constraints, it is easy to obtain an efficient
separation by solving min-cut; see Dhamdhere et al. [10].

We need the following result of Dhamdhere et al. [10] to round MST LP such that every
scenario has a low cost.

I Lemma 19 ([10]). It is possible to randomly round a feasible fractional solution (x1,x2x2x2)
to MST LP to an integral solution (X1,X2X2X2) in polynomial time s.t. with probability at least
1− 1

mn2 for every scenario s we have E[cost(X1, X
(s)
2 )] ≤ cost(x1, x

(s)
2 ) · (40 logn+ 16 logm).

Here the expectation is taken over the randomness of our rounding and m is the number
of scenarios.

We can now design our approximation algorithm for MinEMax MST.

I Theorem 20. There exists a randomized polynomial-time algorithm that with probability
at least 1− 1

mn2 in expectation O(logn+ logm)-approximates MinEMax MST where n = |V |
and m is the number of scenarios.

Proof. Our algorithm starts by following MST LP to get a fractional solution (x1,x2x2x2). Next,
apply Lemma 19 to round (x1,x2x2x2) to an integral solution (X1,X2X2X2). Return (X1,X2X2X2).

Next consider the cost of (X1,X2X2X2). Let (O1,O2O2O2) be the optimal integral solution to
our TruncatedTwoStage MST problem and let (o1, o2o2o2) be the corresponding characteristic
vector. Notice that (o1, o2o2o2) is a feasible solution to MST LP. Moreover, it is easy to

5 If such a solution has any cycles it is not necessarily an MST, though one can always delete an edge
from such a cycle and improve the cost of the solution.
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verify that costTrunc(o1, o2o2o2) = costTrunc(O1,O2O2O2). Taking expectations over the randomness
of our algorithm and applying Lemma 9 and Lemma 19, we have with probability at least
1− 1

mn2 that

E[costTrunc(X1,X2X2X2)] ≤ (40 logn+ 16 logm) · costTrunc(o1, o2o2o2)
= (40 logn+ 16 logm) · costTrunc(O1,O2O2O2).

Thus, with probability at least 1− 1
mn2 our algorithm’s expected TruncatedTwoStage cost is

within (40 logn+ 16 logm) of the cost of the optimal TruncatedTwoStage MST solution. We
conclude by Theorem 1 that with high probability in expectation our algorithm O(logn+
logm)-approximates MinEMax MST.6

Our algorithm is trivially polynomial-time by the separability of our LP and Lemma 19.
J
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A Deferred Proofs of §2

I Lemma 4. Let YYY = {Y1, . . . , Ym} be a set of independent Bernoulli r.v.s, where Ys is 1
with probability ps, and 0 otherwise. Let vs ∈ R≥0 be a value associated with Ys. WLOG
assume vs ≥ vs+1 for s ∈ [m− 1]. Let b = min{a :

∑a
s=1 ps ≥ 1}. Then(

1− 1
e

)(
vb +

∑
s

ps · (vs − vb)+
)
≤ EYYY

[
max
s
{Ys · vs}

]
≤ vb +

∑
s

ps · (vs − vb)+,

where x+ := max{x, 0}.
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Proof. We begin by showing the lower bound on EA∼YYY [maxs∈A vs]. Let M := [b]. Consider
the new set of probabilities

p′s =
{

1−
∑
s<b ps if s = b

ps otherwise
(17)

and let YYY ′ be the corresponding Bernoulli r.v.s. Notice that
∑
s∈M p′s = 1.

Since p′s ≤ ps, clearly we have that EA∼YYY [maxs∈A vs] ≥ EA∼YYY ′ [maxs∈A vs]. Thus, we
will focus on lower bounding EA∼YYY ′ [maxs∈A vs]. The probability that no element of M is in
A when drawn from YYY ′ is∏

s∈M
(1− p′s) ≤ e

−
∑

s∈M
p′s = 1

e

because 1− x ≤ e−x and
∑
s∈M p′s = 1. It follows that

EA∼YYY
[

max
s∈A

vs

]
≥ EA∼YYY ′

[
max
s∈A

vs

]
≥
(

1− 1
e

)
EA∼YYY ′

[
max
s∈A

vs | at least 1 element from M in A
]

≥
(

1− 1
e

)
EA∼YYY ′

[
max
s∈A

vs | exactly 1 element from M in A
]

=
(

1− 1
e

) ∑
s∈M

vs
p′s∑
i∈M p′s

=
(1− 1/e

1

) ∑
s∈M

p′svs

where the last line follows since
∑
s∈M p′s = 1.

Thus, we have that

EA∼YYY
[

max
s∈A

vs

]
≥
(

1− 1
e

) ∑
s∈M

p′svs

=
(

1− 1
e

)∑
s∈M

p′s

(
(vs − vb)+ + vb

)
(by vs ≥ vb for s ∈M)

≥
(

1− 1
e

)(
vb +

∑
s∈M

p′s

(
(vs − vb)+

)) (
by 1 =

∑
s∈M

p′s

)

≥
(

1− 1
e

)(
vb +

∑
s∈M

ps

(
(vs − vb)+

)) (
by (vb − vb)+ = 0

)
=
(

1− 1
e

)(
vb +

∑
s

ps

(
(vs − vb)+

))
(by vs > vb iff s ∈M)

which gives our lower bound.
We now show the upper bound. Recall x+ := max(x, 0). Notice that we have for any t,

max(x, y) ≤ t+ (x− t)+ + (y − t)+. (18)

In particular, Eq. (18) follows because the RHS in each of the following cases is always
≥ max{x, y}.

if t ≥ max{x, y} we get t for the RHS.
if t ≥ x and t < y we get t+ y− t = y = max{x, y} for the RHS; the symmetric case also
holds.
if t < x and t < y we get t+ x− t+ y − t = x+ y − t ≥ max{x, y} for the RHS.
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It is easy to verify that this holds for a max of more than two inputs; i.e. for a set S of reals
we have max(S) ≤ t+

∑
s∈S(s− t)+. Thus, we have

EA∼YYY
[

max
s∈A

vs

]
≤ EA∼YYY

[
vb +

∑
s∈A

(vs − vb)+
]

= vb + EA∼YYY
[∑
s∈A

(vs − vb)+
]

(19)

= vb + EA∼YYY
[ ∑
s∈A∩M

(vs − vb)+ +
∑

s∈A\M

(vs − vb)+
]

(20)

= vb + EA∼YYY
[ ∑
s∈A∩M

(vs − vb)+
]

(21)

= vb + EA∼YYY
[ ∑
s∈A∩M

(vs − vb)
]

(22)

= vb +
∑
s∈M

ps · (vs − vb) (23)

= vb +
∑
s

ps · (vs − vb)+, (24)

where Eq.(19) is by Eq.(18), Eq.(21) is by vs > vb iff s ≤ b, Eq.(22) is by vs ≥ vb for s ∈M
and Eq.(24) is by vs > vb iff s ∈M . This is exactly the desired upper bound. J

I Lemma 5. Let (X1,X2X2X2) be a solution to a TruncatedTwoStage or MinEMax problem.
We have

B(X1,X2X2X2) = arg min
B

[
B +

∑
s∈[m]

ps · (cost(X1, X
(s)
2 )−B)+

]
,

where the arg min takes the largest B minimizing the relevant quantity.

Proof. To clear our notation we let B̄ := B(X1,X2X2X2), cs := cost(X1, X
(s)
2 ) and M̄ :=

M(X1,X2X2X2). Let f(B) := B +
∑
s∈[m] ps · (cs − B)+. We argue that B̄ is the largest

global minimum of f by showing that for any ε > 0 we know that f(B̄) < f(B̄ + ε) and
f(B̄) ≤ f(B̄ − ε).

We begin by noting that for any reals a ≤ b we have

a+ − b+ ≥ a− b (25)

by casing on which of a and b are larger than 0.
Let M̂ := {s ∈ M̄ : cs > B̄}. Notice that

∑
s∈M̂ ps < 1. For fixed and arbitrary ε > 0

consider the relative values of f(B̄) and f(B̄ + ε). We have

f(B̄ + ε)− f(B̄) = ε+
∑
s∈[m]

ps ·
(
(cs − B̄ − ε)+ − (cs − B̄)+)

= ε+
∑
s∈M̂

ps ·
(
(cs − B̄ − ε)+ − (cs − B̄)+) , (26)

where Eq.(26) follows since for s 6∈ M̂ we have cs ≤ B̄ and so
(
(cs − B̄ − ε)+ − (cs − B̄)+) = 0

for s 6∈ M̂ . Now noticing that for every s we have (cs − B̄ − ε) ≤ (cs − B̄), applying (25) to
(26) gives

f(B̄ + ε)− f(B̄) ≥ ε+
∑
s∈M̂

ps · (−ε) = ε

1−
∑
s∈M̂

ps

 > 0,

where the last inequality uses
∑
s∈M̂ ps < 1. Thus, we have f(B̄ + ε) > f(B̄).
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Now consider the relative values of f(B̄) and f(B̄ − ε). We have

f(B̄ − ε)− f(B̄) = −ε+
∑
s

ps ·
(
(cs − B̄ + ε)+ − (cs − B̄)+)

≥ −ε+
∑
s∈M̄

ps ·
(
(cs − B̄ + ε)+ − (cs − B̄)+) (27)

≥ −ε+
∑
s∈M̄

ps ·
(
(cs − B̄ + ε)− (cs − B̄)

)
(28)

≥ ε
(

1−
∑
s∈M̄

ps

)
≥ 0 (29)

where Eq.(27) is by (cs − B̄ + ε)+ ≥ (cs − B̄)+, Eq.(28) is by cs ≥ B̄ for s ∈ M̄ and Eq.(29)
is by

∑
s∈M̄ ps ≥ 1. Thus, for any ε > 0 we know that f(B̄) < f(B̄+ ε) and f(B̄) ≤ f(B̄− ε).

It follows that, not only is B̄ a global minimum of f but it is the largest global minimum.
The lemma follows immediately. J

I Lemma 6. For feasible solution (X1,XXX2) of any PEMax we have, costEMax(X1,XXX2) ≤
costTrunc(X1,XXX2).

Proof. We have

costEMax(X1,X2X2X2) = EA[max
s∈A
{cost(X1, X

(s)
2 )}] (30)

≤ B(X1,X2X2X2) +
∑
s

ps ·
(

cost(X1, X
(s)
2 )−B(X1,X2X2X2)

)+
(31)

= costTrunc(X1,XXX2) (32)

where Equation (31) is by Lemma 4 and Equation (32) is by Lemma 5. J

I Lemma 7. Let PEMax be a MinEMax problem and PTrunc be its truncated version. Let
(E1,E2E2E2) and (T1,T2T2T2) be optimal solutions to PEMax and PTrunc respectively. We have that
costTrunc(T1,T2T2T2) ≤

(
1

1−1/e

)
costEMax(E1,E2E2E2).

Proof. We have that

costTrunc(T1,T2T2T2)
≤ costTrunc(E1,E2E2E2) (by (T1,T2T2T2) minimizes costTrunc)

= min
B

[
B +

∑
s

ps · (cost(E1, E
(s)
2 )−B)+

]
≤ B(E1,E2E2E2) +

∑
s

ps · (cost(E1, E
(s)
2 )−B(E1,E2E2E2))+

≤
(

1
1− 1/e

)
EA[max

s∈A
{cost(E1, E

(s)
2 )}] (by Lemma 4)

=
(

1
1− 1/e

)
costEMax(E1,E2E2E2). J
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