
Universal Communication, Universal Graphs, and
Graph Labeling
Nathaniel Harms
University of Waterloo, Canada
https://cs.uwaterloo.ca/~nharms
nharms@uwaterloo.ca

Abstract
We introduce a communication model called universal SMP, in which Alice and Bob receive a
function f belonging to a family F , and inputs x and y. Alice and Bob use shared randomness to
send a message to a third party who cannot see f , x, y, or the shared randomness, and must decide
f(x, y). Our main application of universal SMP is to relate communication complexity to graph
labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other
functions of two vertices x and y can be determined from the labels `(x), `(y). We give a universal
SMP protocol using O(k2) bits of communication for deciding whether two vertices have distance at
most k in distributive lattices (generalizing the k-Hamming Distance problem in communication
complexity), and explain how this implies a O(k2 log n) labeling scheme for deciding dist(x, y) ≤ k on
distributive lattices with size n; in contrast, we show that a universal SMP protocol for determining
dist(x, y) ≤ 2 in modular lattices (a superset of distributive lattices) has super-constant Ω(n1/4)
communication cost. On the other hand, we demonstrate that many graph families known to have
efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit
constant-cost communication protocols for adjacency. Trees also have an O(k) protocol for deciding
dist(x, y) ≤ k and planar graphs have an O(1) protocol for dist(x, y) ≤ 2, which implies a new
O(log n) labeling scheme for the same problem on planar graphs.
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1 Introduction

In the simultaneous message passing (SMP) model of communication, introduced by Yao
[34], Alice and Bob separately receive inputs x and y to a function f . They send messages
a(x), b(y) to a third party, called the referee, who knows f and must output f(x, y) (with
high probability) using the messages a(x), b(y). But what if the referee doesn’t know f? Can
they still compute f(x, y)? Yes: Alice can include in her message a description of f , and then
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the referee knows it; however, if f is restricted, they can sometimes do much better. Here is
a simple example: the players receive vertices x, y ∈ {1, . . . , n} in a graph G of maximum
degree 2, and want to decide if (x, y) is an edge in G. Sharing a source of randomness, Alice
and Bob randomly label each vertex of G with a number up to 200; Alice sends the label
of both neighbors of x and Bob sends the label of y. The referee says yes if one of Alice’s
labels matches the label of y, no otherwise. They will be correct with probability at least
99/100, and the referee never needs to learn G. This is also an example where the referee can
decide many problems using only one strategy. In this work we will see that more interesting
families of graphs, such as trees, planar graphs, and distributive lattices, also exhibit these
phenomena, even when we wish to compute distances instead of just adjacency.

To study this, we introduce the universal SMP model, which operates as follows. Fix
some family F of functions. Alice and Bob receive a function f ∈ F and inputs x, y, and
they use shared randomness to each send one message to the referee. The referee knows the
family F and the size of the inputs, but doesn’t know f, x, y or the shared randomness, and
must compute f(x, y) with high probability. By choosing the family F to be the singleton
family, one sees that this model includes standard SMP. As in the earlier example, we will be
studying communication problems on graphs, but this is not a significant restriction: every
Boolean-valued communication problem f is equivalent to determining adjacency in some
graph (use f as the adjacency matrix), so we will treat F as a family of graphs.

A surprising but intuitive application of universal SMP is that it connects two apparently
disjoint areas of study: communication complexity and graph labeling. For a graph family
F , the graph labeling problem (introduced by Kannan, Naor, and Rudich [23]) asks how
to assign the shortest possible labels `(v) to each vertex v of a graph G ∈ F , so that the
adjacency (or some other function [29]) of vertices x, y can be computed from `(x), `(y) by a
decoder that knows F . We observe the following principle (Theorem 1.1):

If there is a (randomized) universal SMP protocol for the graph family F with communi-
cation cost c, then there is a labeling scheme for graphs G ∈ F with labels of size O(c logn),
where n is the number of vertices.

Common variants of graph labeling are distance labeling [15], where the goal is to compute
dist(x, y) from the labels, and small-distance labeling, where the goal is to compute dist(x, y)
if it is at most k and output “> k” otherwise [24, 2]. This is similar to the well-studied
k-Hamming Distance problem in communication complexity, where the players must decide
if their vertices x, y have distance at most k in the Boolean hypercube graph. A natural
generalization of the Boolean hypercube is the family of distributive lattices (which also
include, for example, the hypergrids). We demonstrate that techniques from communication
complexity can be used to obtain new graph labelings, by adapting the k-Hamming Distance
protocol of Huang et al. [21] to the universal SMP model, achieving an O(k2) protocol
for computing dist(x, y) ≤ k and the corresponding k-distance labeling scheme with label
size O(k2 logn). It is interesting to note that, in contrast to the standard application of
communication complexity as a method for obtaining lower bounds, we are using it to obtain
upper bounds.

Generalizing in another direction, we ask: for which graphs other than the Boolean
hypercube can we obtain efficient communication protocols for k-distance? For constant k,
k-Hamming Distance can be computed with communication cost O(1); which other graphs
admit a constant-cost protocol? To approach this question, we observe that many (but not
all) graph families known to have efficient O(logn) adjacency labeling schemes also admit an
O(1) universal SMP protocol for adjacency. Commonly studied families in the adjacency and
distance labeling literature are trees [23, 24, 2, 5, 3] and planar graphs [23, 15, 14, 16, 6]. We
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study the k-distance problem on these families and find that trees admit an O(k) protocol,
while planar graphs admit an O(1) protocol for 2-distance; this implies a new labeling scheme
for planar graphs.

Further motivation for the universal SMP model comes from universal graphs. Introduced
by Rado [30], an induced-universal graph U for a set F is one that contains each G ∈ F as an
induced subgraph. An efficient adjacency labeling scheme for a set F implies a small induced-
universal graph for that set [23]. Deterministic universal SMP protocols are equivalent
to universal graphs (Theorem 1.7), and we introduce probabilistic universal graphs as the
analogous objects for randomized univeral SMP protocols. We think probabilistic universal
graphs are worthy of study alongside universal graphs, especially since many non-trivial
families admit one of constant-size.

The universal SMP model is also related to a recent line of work studying communication
between parties with imperfect knowledge of each other’s “context”. The most relevant
incarnation of this idea is the recent work [18, 17], who study the 2-way communication
model where Alice and Bob receive functions f and g respectively, with inputs x and y, and
must compute f(x, y) under the guarantee that f and g are close in some metric. In other
words, one party does not have full knowledge of the function to be computed. The universal
SMP model provides a framework for studying a similar problem in the SMP setting, where
the players know the function but the referee does not; the similarity is especially clear when
we define the family F to be all graphs of distance δ to a reference graph G in some metric
(we discuss this situation in more detail at the end of the paper). This could model, for
example, a situation where the clients of a service operate in a shared environment but the
server does not; or, a situation in which the clients want to keep their shared environment
secret from the server, and their inputs secret from each other. This suggests a possible
application to privacy and security. A relevant example is private proximity testing (e.g. [27]),
where two clients should be notified by the server when they are at distance at most k from
each other, without revealing to each other or the server their exact locations.

The Discussion at the end of the paper highlights some interesting questions and open
problems related to universal SMP.

1.1 Results
A universal SMP protocol decides k-distance for a family F if for all graphs G ∈ F and
vertices x, y, the protocol will correctly decide if dist(x, y) ≤ k, with high probability. A
labeling scheme decides k-distance if dist(x, y) ≤ k can be decided from the labels of x, y.
Below, the variable n always refers to the number of vertices in the input graph.

Implicit graph representations. The main principle connecting communication and graph
labeling is:

I Theorem 1.1. Any graph family F with universal SMP cost m has an adjacency labeling
scheme with labels of size O(m logn). In particular, if the universal SMP cost for F is O(1)
then F has an O(logn) adjacency labeling scheme.

Adjacency labeling schemes of size O(logn) are of special interest because logn is the
minimum number of bits required to label each vertex uniquely, and they correspond to
implicit graph representations, as defined by Kannan, Naor, and Rudich [23] (we omit their
requirement that the encoding and decoding be computable in polynomial-time). Section 2.3
elaborates further. To obtain implicit representations, we can relax our requirements:

ITCS 2020
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I Corollary 1.2. For any constant c, any graph family F where each G ∈ F has a public-coin
2-way communication protocol computing adjacency with cost c has an implicit representation.

Distributive & Modular Lattices. Distributive and modular lattices are generalizations of
the Boolean hypercube and hypergrids (see Section 3 for definitions). We define a weakly-
universal SMP protocol as one where the referee shares the randomness of Alice and Bob.
For distributive lattices we get the following:

I Theorem 1.3. The k-distance problem on the family of distributive lattices has: a weakly-
universal SMP protocol with cost O(k log k); a universal SMP protocol with cost O(k2); and
a size O(k2 logn) labeling scheme.

Modular lattices are a superset of distributive lattices, but they do not admit k-distance
protocols with a cost independent of n; we show that any universal SMP protocol (and
any labeling scheme) deciding 2-distance must have cost Ω(n1/4) (Theorem 3.14). To our
knowledge, there are no known labeling schemes for distributive or modular lattices. Our
adjacency labeling scheme (i.e. for k = 1) requires O(n logn) space to store the whole lattice;
this can be compared to Munro and Sinnamon [26], who present a data structures of size
O(n logn) for distributive lattices that supports meet and join operations (and therefore
distance queries, due to our Lemma 3.5). However, these are not labelings, so the result is
not directly comparable.

Planar graphs and other efficiently-labelable families. When they introduced graph la-
beling, Kannan, Naor, and Rudich [23] studied trees, low-arboricity graphs (whose edges can
be partitioned into a small number of trees), and planar graphs, and interval graphs (whose
vertices are intervals in R, with an edge if the intervals intersect), among others. These
families have O(logn) adjacency labeling schemes. Trees, low-arboricity graphs, and planar
graphs have constant-cost universal SMP protocols for adjacency. Trees admit an efficient
k-distance protocol:

I Theorem 1.4. The family of trees has a universal SMP protocol deciding k-distance with
cost O(k) and a O(k logn) labeling scheme deciding k-distance.

Planar graphs admit an efficient 2-distance protocol, which implies a new 2-distance labeling
scheme:

I Theorem 1.5. The 2-distance problem on the family of planar graphs has a universal SMP
protocol with cost O(1) and a labeling scheme of size O(logn).

On the other hand, a universal SMP protocol deciding 2-distance on the family of graphs
with arboricity 2 has cost at least Ω(

√
n) (Proposition 4.4), and a universal SMP protocol

deciding adjacency in interval graphs has cost Θ(logn) (Proposition 4.5).
Gavoille et al. [15] showed that trees have an O(log2 n) labeling allowing dist(x, y) to

be computed exactly from labels of x, y, and gave a matching lower bound; Kaplan and
Milo [24] and Alstrup et al [2] studied k-distance for trees, with the latter achieveing a
logn+O(k2(log logn+ log k)) labeling scheme. For planar graphs, [15] gives a lower bound
of Ω(n1/3) for computing distances exactly, and an upper bound of O(

√
n logn), which was

later improved to O(
√
n) in [16].
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Communication Complexity. Our lower bounds are achieved by reduction from the family
of all graphs, which has complexity Θ(n), in contrast to the upper bound of dlogne for the
standard SMP cost of computing adjacency in any graph (since Alice and Bob can send
dlogne bits to identify their vertices).

I Theorem 1.6. For the family G of all graphs, the universal SMP cost of computing
adjacency in G is Θ(n).

The basic relationships between universal SMP, standard SMP, and universal graphs are as
follows. Below, we use D‖(Adj(G)) and R‖(Adj(G)) for the deterministic and randomized
(standard) SMP cost of computing adjacency on G, and Duniv(F), Runiv(F) for the determin-
istic and randomized universal SMP cost for computing adjacency in the family F . We use
the term “@-universal graph” as opposed to “induced-universal” to denote a slightly different
object that allows non-injective embeddings (see Section 2 for definitions).

I Theorem 1.7. For a set F , the following relationships hold. Let U range over the set of
all @-universal graphs:

max
G∈F

D‖(Adj(G)) ≤ Duniv(Fi) = min
U

D‖(Adj(U)) = min
U
dlog |U |e ,

with equality on the left iff ∃H ∈ F such that ∀G ∈ F , G can be embedded in H. For Ũ
ranging over the set of all probabilistic universal graphs:

max
G∈F

R‖(Adj(G)) ≤ Runiv(F) ≤ min
Ũ

D‖(Adj(Ũ)) ≤ O
(
Runiv(F)

)
.

Randomized and deterministic universal SMP satisfy

Ω
(
Duniv(F)

logn

)
≤ Runiv(F) ≤ Duniv(F) .

The above results on graph labeling are proved through the relationship between randomized
and deterministic universal SMP. We obtain this relationship by adapting Newman’s Theorem
[28], a standard derandomization result in communication complexity. Finally, we note the
interesting fact that universal SMP characterizes the gap between standard SMP models
where the referee does or does not share the randomness with Alice and Bob:

I Proposition 1.8 (Informal). Let F be a family of graphs and let Π be a weakly-universal
SMP protocol for F , which defines a distribution over the referee’s decision functions F ,
which we interpret as the adjacency matrices of graphs. Let UΠ be the family on which this
distribution is supported. Then, taking the minimum over all such protocols Π,

Runiv
ε (F) = min

Π
Duniv(UΠ) .

1.2 Other Related Work
Graph labeling. Randomized labeling schemes for trees have been studied by Fraigniaud
and Korman [12], who give a randomized adjacency labeling scheme of O(1) bits per label
that has one-sided error (i.e. it can erroneously report that x, y are adjacent when they
are not), and they show that achieving one-sided error in the opposite direction requires a
randomized labeling with Ω(logn) bits. They also give randomized schemes for determining
if x is an ancestor of y, but they do not address distance problems. Spinrad’s book [33] has
a chapter on implicit graphs and Alstrup et al. [6] for a recent survey on adjacency labeling
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schemes and induced-universal graphs. We know of no labeling schemes for lattices, but
Fraigniaud and Korman [13] recently studied adjacency labeling schemes for posets of low
“tree-dimension”.

Distance-preserving labeling studies an opposite problem to k-distance labeling, where
distances must be accurately reported when they are above some threshold D. Recent work
includes Alstrup et al. [4].

To our knowledge, k-distance or even 2-distance has not been studied for planar graphs,
but there are many results on other types of planar graph labelings with restrictions at
distance 2. An example is the frequency assignment problem or L(p, q)-labeling problem,
which asks how to construct a labeling ` assigning integers [k] to vertices of a planar graph
so that dist(x, y) ≤ 1 =⇒ |`(x)− `(y)| ≥ p and dist(x, y) ≤ 2 =⇒ |`(x)− `(y)| ≥ q, with
various optimization goals. See [7] for a survey.

Uncertain communication. There are several works studying communication problems
where the parties do not agree on the function to be computed, starting with Goldreich, Juba,
and Sudan [19] who studied communication where parties have different “goals”. Canonne et
al. [8] study communication in the shared randomness setting where the randomness is shared
imperfectly. Haramarty and Sudan [20] study compression (á la Shannon) in situations where
the parties do not agree on a common distribution. As mentioned earlier, Ghazi et al. [17]
and Ghazi and Sudan [18] study 2-way communication where the parties do not agree on the
function to be computed.

1.3 Notation
[k] means {1, . . . , k}. The letter n always denotes the number of vertices in a graph. We
use the notation 1 [E] = 1 iff the statement E holds, and 1 [E] = 0 otherwise. For a graph
G, V (G) is the set of vertices and E(G) is the set of edges. For vertices x, y, we write
G(x, y) = 1 [x, y are adjacent in G] for the entry in the adjacency matrix of G. For an
undirected, unweighted graph G and vertices u, v, dist(u, v) is the length of the shortest path
from u to v.

For any graph G and integer k, we denote by Gk the k-closure of G, where two vertices
u, v are adjacent iff dist(u, v) ≤ k in G; it is convenient to require that each vertex is adjacent
to itself in Gk. For a set of graphs F , Fk = {Gk : G ∈ F}.

D‖(f) is the deterministic SMP cost of the function f and R‖(f) is the randomized
SMP cost of the function f , in the model where Alice and Bob share randomness but the
deterministic referee does not.

2 Universal Communication and Universal Graphs

In this paper we focus on deciding adjacency. Every Boolean communication problem
f : X × Y → {0, 1} on finite domains X ,Y is equivalent to the adjacency problem on the
graph G with vertex set X ∪ Y and G(u, v) = f(u, v). We may either allow self-loops in G if
X = Y or take G to be bipartite. We will generally permit graphs to have self-loops.

I Definition 2.1. A family of graphs F = (Fi) is a sequence of sets Fi indexed by integers
i, along with a strictly increasing size function n(i), so that Fi is a set of graphs with vertex
set [n(i)]. If Fi has size n(i) = i then we write Fn.
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IDefinition 2.2 (Universal SMP and Variations). Let F be a family of graphs with size function
n and let Φ be an operation taking size n(i) graphs to size n(i) graphs. Let c : N→ N and let
ε > 0 be a constant. An ε-error, cost c sequence of universal SMP communication protocols
for F is as follows. For any i ∈ N, a protocol Πi for Fi is a triple (ai, bi, Fi) where:

Alice and Bob receive (G, x), (G, y) respectively, where G ∈ Fi and x, y ∈ V (G) = [n(i)];
Alice and Bob share a random string r and compute messages ai(r,G, x), bi(r,G, y) ∈
{0, 1}c(i), respectively;
For each i, the (deterministic) referee has a function Fi : {0, 1}c(i) × {0, 1}c(i) → {0, 1},
called the decision function. Fi(ai(r,G, x), bi(r,G, y)) must satisfy:
1. If x, y are adjacent in Φ(G) then P

r
[Fi(ai(r,G, x), bi(r,G, y)) = 1] > 1− ε; and

2. If x, y are not adjacent in Φ(G) then P
r

[Fi(ai(r,G, x), bi(r,G, y))] < ε.
A universal SMP protocol is symmetric when the functions ai, bi computed by Alice and Bob
are identical and the function Fi satisfies Fi(a, b) = Fi(b, a) for all messages a, b ∈ {0, 1}c.
We write Runiv

ε (Φ(F)) for the communication complexity in the universal SMP model of
computing adjacency in graphs Φ(F) = {Φ(G) : G ∈ F}, where ε is the allowed probability of
error. We write Runiv(Φ(F)) for Runiv

1/3 (Φ(F)). If no operation Φ is specified, it is assumed to
be the identity.

It is also convenient to define a weakly-universal SMP protocol as a universal SMP
protocol where the referee can see the shared randomness, so the choice function is of the form
Fi(r, a(r,G, x), b(r,G, y)) for random seed r, graph G ∈ F , and x, y ∈ V (G). We denote the
ε-error complexity in this model with Rweak

ε (Φ(F)).
Finally, we write Duniv(Φ(F)) for the deterministic universal SMP complexity.

I Remark 2.3. We include the operator Φ in the definition to emphasize that the players are
given the original graph G, not the graph Φ(G); for example, the players are not given Gk
(from which it may be difficult to compute G), but are instead given G.

2.1 Deterministic Universal Communication and Universal Graphs
We will show that a deterministic universal SMP protocol is equivalent to an embedding into
a @-universal graph, which we we define using the following notion of embedding (following
the terminology of Rado [30]):

I Definition 2.4. For graphs G,H, a mapping φ : V (G) → V (H) is an embedding iff
∀u, v ∈ V (G), G(u, v) = H(φ(u), φ(v)). If such a mapping exists we write G @ H.

For a set of graphs Fi, a graph U is @-universal if ∀G ∈ Fi, G @ U ; i.e. ∀G ∈ Fi there
exists an embedding φG : V (G) → V (U). For a family of graphs F = (Fi), a sequence
U = (Ui) is a @-universal graph sequence if for each i, Ui is @-universal for Fi.

Define an equivalence relation on V (G) by u ≡ v iff ∀w ∈ V (G), G(u,w) = G(v, w),
i.e. u, v have identical rows in the adjacency matrix. For a graph G, define the ≡-reduction
G≡ as a graph on the equivalence classes C of V (G) with U,W ∈ C adjacent iff ∃u ∈ U,w ∈W
such that u,w are adjacent.

An embedding is not the same as a homomorphism since we must map non-edges to non-edges,
and G @ H is not the same as G being an induced subgraph of H since the mapping is not
necessarily injective. Therefore a universal graph by our definition is not the same as an
induced-universal graph, where G must exist as an induced subgraph. We could for example
map the path a — b — c 7→ a′ — b′ — a′. This difference between definitions is captured by
the ≡ relation between vertices. It is necessary to allow self-loops, otherwise the @ relation
is not transitive. The important properties of @,≡, and ≡-reductions are stated in the next
proposition; the proofs are routine and for completeness are included in the appendix. The
relation ' is the isomorphism relation on graphs.

ITCS 2020
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I Proposition 2.5. The following properties are satisfied by the @ relation, the ≡ relation,
and ≡-reductions:
1. @ is transitive.
2. For any graph G and u, v ∈ V (G), u ≡ v iff there exists H and an embedding φ : G→ H

such that φ(u) = φ(v).
3. For any graph G, (G≡)≡ ' G≡.
4. For any graph G,G @ G≡ and G≡ @ G.
5. For any graphs G,H, G @ H iff G≡ @ H≡.
6. For any graphs G,H, G≡ @ H≡ iff G≡ is an induced subgraph of H≡.
These properties allows us to prove relationships between the standard SMP model, deter-
ministic universal SMP, and @-universal graphs. First we show that deterministic universal
SMP protocols can always be made symmetric1.

I Proposition 2.6. If Π is a deterministic universal SMP protocol for the set F , then
there exists a deterministic universal SMP protocol Π′ that is symmetric and has the same
cost as Π.

Proof. Let G ∈ F and let a, b : V (G)→ {0, 1}m be the encoding functions for G and F the
decision function for graphs of size |G|. The restriction of b to the domain V (G≡)→ {0, 1}m
is injective so it has an inverse b−1 : image(b)→ V (G≡) that satisfies b−1b(x) ≡ x; the same
holds for a, a−1. Define the encoding function b′ : V (G)→ {0, 1}m as b′ = ab−1b and define
the decision function F ′(p, q) = F (p, ba−1(q)). Then for any x, y ∈ V (G), F ′(a(x), b′(y)) =
F (a(x), ba−1ab−1b(y)) = F (a(x), b(y)) = G(x, y) so this is a valid protocol. Since image(b′) ⊆
image(a) we can write b′(x) = aa−1b′(x) = aa−1ab−1b(x) = a(x) for every x so b′ = a, thus
F ′(a(x), a(y)) = G(x, y) = G(y, x) = F ′(a(y), a(x)) so the protocol is symmetric. J

The standard deterministic SMP complexity measure can be expressed in terms of ≡-
reductions:

I Proposition 2.7. For all graphs G, D‖(Adj(G)) = dlog |G≡|e.

Proof. It is well-known that for any function f : X × Y → {0, 1}, D‖(f) = dlog min(r, c)e
where r is the number of distinct columns in the communication matrix of f , and c is the
number of distinct rows [34]. The communication matrix of the function Adj(G) is the
adjacency matrix of G, which is symmetric, and two rows (or columns) indexed by u, v are
distinct iff u 6≡ v; so the number of distinct rows is the size of G≡. J

The analogous fact for universal SMP is that the deterministic universal SMP cost is
determined by the size of the smallest universal graph.

I Proposition 2.8. For any graph family F = (Fi),

Duniv(Fi) = min
U
{dlog |U≡|e : ∀G ∈ Fi, G @ U≡} .

Proof. Let U be any graph such that G @ U≡ for all G ∈ Fi and for each G ∈ Fi let g be
the embedding G → U≡. Consider the protocol where on inputs (G, x), (G, y), Alice and
Bob send g(x), g(y) using dlog |U≡|e bits and the referee outputs U≡(g(x), g(y)). This is
correct by definition so Duniv(Fi) ≤ dlog |U≡|e.

1 Note that this does not imply that every deterministic SMP protocol is symmetric, since in this paper
we are only concerned with adjacency on an undirected graph, for which the communication matrix is
symmetric. This proposition shows that for symmetric communication matrices, the deterministic SMP
protocol is symmetric.
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Now suppose there is a protocol Π for Fi with cost c and decision function Fi, and let
G ∈ Fi. By Proposition 2.6 we may assume that on inputs (G, x), (G, y) Alice and Bob
share the encoding function g : V (G) → {0, 1}c. Let U be the graph with vertices {0, 1}c
and U(u, v) = F (u, v). Then U(g(x), g(y)) = F (g(x), g(y)) = G(x, y) so G @ U @ U≡ (by
transitivity). Now |U≡| ≤ 2c so c ≥ log |U≡|. J

It is easy to see that D‖ can be used as a lower bound on Duniv but such lower bounds are
tight only when the family F is essentially a “trivial” family of equivalent graphs.

I Lemma 2.9. For any family F = (Fi), let U = (Ui) be the smallest @-universal graph
sequence for F . Then

max
G∈Fi

D‖(Adj(G)) ≤ Duniv(Fi) = D‖(Adj(Ui)) ,

with equality holding on the left iff ∃H ∈ Fi such that ∀G ∈ Fi, G≡ @ H≡.

Proof. The equality on the right holds by the two prior propositions. The lower bound
follows from the fact that any protocol Πi for Fi in the universal model can be used as a
protocol in the SMP model. Now we must show the equality condition. Let U ∈ Fi be a graph
maximizing |U≡| over all graphs in Fi, and suppose Duniv(Fi) = maxG∈Fi D‖(Adj(G)) =
maxG∈Fidlog |G≡|e = dlog |U≡|e, so dlog |U≡|e = min{dlog |H≡|e : ∀G ∈ Fi, G @ H≡}.
Then there exists H such that U≡ @ H≡ and |U≡| = |H≡|. Since U≡ is an induced subgraph
of H≡ and |U≡| = |H≡| we must have U≡ ' H≡ so ∀G ∈ Fi, G≡ @ U≡. J

2.2 Randomized Universal Communication
Just as deterministic universal communication is equivalent to embedding a family into a
universal graph, we will define probabilistic universal graphs and show that they are tightly
related to universal communication with shared randomness.

I Definition 2.10. For graphs G,H, a random mapping φ : V (G)→ V (H) (i.e. a distribution
over such mappings) is an ε-error embedding iff ∀u, v ∈ V (G),

P
φ

[G(u, v) = H(φ(u), φ(v))] > 1− ε .

We will write G @ε H if there exists an ε-error embedding G → H. A graph U is ε-error
universal for a set of graphs S if ∀G ∈ S,G @ε U . U = (Ui) is an ε-error universal graph
sequence for the family F = (Fi) if for each i, Ui is ε-error universal for Fi.

In the randomized setting we obtain equivalence (up to a constant factor) between universal
SMP protocols and probabilistic universal graphs.

I Lemma 2.11. For any graph family F = (Fi) and any ε > 0, if there exists a ε-error
universal SMP protocols for F with cost c(i), then there exists a 2ε-error symmetric universal
SMP protocols for F with cost at most 2c(i).

Proof. On input G ∈ Fi, x, y ∈ V (G), and random string r, Alice and Bob send the
concatentations gr(x) := ai(r,G, x)bi(r,G, x) and gr(y) := ai(r,G, y)bi(r,G, y). Then the
referee computes

F ′i (gr(x), gr(y)) = max {Fi(ai(r,G, x), bi(r,G, y)), Fi(ai(r,G, y), bi(r,G, x))} .
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It is clear that F ′i is symmetric. If x, y are adjacent then

P
r

[F ′i (gr(x), gr(y)) = 0] ≤ P
r

[Fi(ai(r,G, x), bi(r,G, y)) = 0] < ε ,

and if x, y are not adjacent then, by the union bound,

P
r

[F ′i (gr(x), gr(y)) = 1]

≤ P
r

[Fi(ai(r,G, x), bi(r,G, y)) = 1] + P
r

[Fi(ai(r,G, y), bi(r,G, x)) = 1] < 2ε . J

Applying this symmetrization, we get a relationship between universal SMP protocols and
probabilistic universal graphs.

I Lemma 2.12. Let F = (Fi) be a graph family and ε > 0. Then
1. There is an ε-error universal graph sequence of size at most 22Runiv

ε/2(F); and
2. If there is an ε-error universal graph sequence of size c(i) then Runiv

ε (F) ≤ dlog ce.

Proof. If Πi is an ε-error symmetric universal protocol for Fi then there exists a function
Fi such that for every G ∈ Fi there is a random g such that P

g
[Fi(g(x), g(y)) 6= G(x, y)] < ε.

Using Fi as an adjacency matrix, we get a graph Ui of size at most 2c, where c is the cost of
Πi, such that for all G ∈ Fi, G @ε Ui. Then U = (Ui) is an ε-error probabilistic universal
graph sequence. By Lemma 2.11 we obtain an ε-error symmetric protocol with cost 2Runiv

ε/2 (F),
so we have proved the first conclusion. The second conclusion follows by definition. J

The basic relationships to standard SMP models follow essentially by definition and from
the above lemma.

I Lemma 2.13. Let F be any graph family and let ε > 0. Let U = (Ui) be an @-universal
graph sequence for F , and Ũ = (Ũi) an ε-error universal graph sequence. Then

max
G∈Fi

R‖ε (Adj(G)) ≤ Runiv
ε (Fi) ≤ D‖(Adj(Ũi))

≤ 2Runiv
ε/2 (Fi) and Runiv

ε (Fi) ≤ R‖ε (Adj(Ui)) .

Proof. The inequalities on the left follow the definitions and from the above lemma. On the
right, we can obtain a universal SMP protocol by choosing for each G ∈ Fi a (deterministic)
embedding g : G→ Ui and then using the randomized SMP protocol for Adj(Ui). J

Universal graphs describe an interesting relationship between weakly-universal and universal
SMP protocols (and therefore between standard SMP protocols where the referee does and
does not share the randomness); namely, the optimal universal protocol is obtained by finding
the smallest universal graph for the family of protocol graphs (decision functions) defined by
a weakly-universal protocol.

I Proposition 1.8 (Restated). Let F be a family of graphs, let ε > 0, and let Wε be the set
of all ε-error weakly-universal SMP protocols for F . For each Π ∈ Wε let UΠ = (UΠ,i) be
the family of graphs UΠ,i = {Fi(r, ·, ·) : r is a random seed for Π} where Fi is the decision
function of Π. Then

Runiv
ε (F) = min

Π∈Wε

Duniv(UΠ) .
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Proof. Let Π ∈ Wε; we will construct a universal SMP protocol as follows. On input
(G, x), (G, y), Alice and Bob use shared randomness r to simulate Π and obtain vertices
a(r,G, x), b(r,G, y) in some graph Ur ∈ UΠ with Pr[Ur(a(r,G, x), b(r,G, y)) 6= G(x, y)] < ε.
They now simulate the deterministic universal SMP protocol, i.e. an embedding φ : V (Ur)→
U ′ for some graph U ′ that is @-universal for {Ur}, and send φ(a(r,G, x)), φ(b(r,G, y)) to the
referee who computes U ′(φ(a(r,G, x)), φ(b(r,G, x))) = Ur(a(r,G, x), b(r,G, y)).

Now let Π be an ε-error universal SMP protocol. Then Π ∈Wε and for each i, UΠ,i = {Ui},
where Ui is the graph of the decision function. Duniv(UΠ) ≤ dlog |Ui|e, which is the cost of Π,
so minΠ∈Wε D

univ(UΠ) ≤ Runiv
ε (F). J

Newman’s Theorem for public-coin randomized (2-way) protocols is a classic result that
gives a bound on the number of uniform random bits required to compute a function
f : X ×Y → {0, 1} in terms of the size of the input domain [28]. In the universal model, the
input size can be very large since the graph (function) itself is part of the input. However,
the shared part of the input does not contribute to the number of random bits required in
the universal SMP model.

I Lemma 2.14 (Newman’s Theorem for universal SMP). Let ε, δ > 0 and suppose there is
an ε-error universal SMP protocol Π for the family F = (Fi). Then there is an (ε + δ)-
error universal SMP protocol for the family F that uses at most log log

(
n(i)O(ε/δ2)

)
bits of

randomness and has the same communication cost.

Proof. Fix i, let F be the deterministic decision function for Fi, and let a(r, ·, ·), b(r, ·, ·) be
Alice and Bob’s encoding functions for the random seed r. For G ∈ Fi and x, y ∈ V (G) we
will say a seed r is bad for G, x, y if F (a(r,G, x), b(r,G, y)) 6= G(x, y), and we will call this
event bad(G, x, y, r).

Let r1, . . . , rm be independent random seeds, and let i ∼ [m] be uniformly random, where
m > 3ε

δ2 ln(n2). Then for every G, the expected number of vertex pairs x, y for which the
strings r1, . . . , rm fail is

E
r1,...,rm

[∑
x,y

1

[
P

i∼[m]
[bad(G, x, y, ri)] > ε+ δ

]]
≤ n2 max

x,y
E

r1,...,rm

[
1
[
P
i

[bad(G, x, y, ri)] > ε+ δ
]]

= n2 max
x,y

P
r1,...,rm

[
P
i

[bad(G, x, y, ri)] > ε+ δ
]

= n2 max
x,y

P
r1,...,rm

[
m∑
i=1

1 [bad(G, x, y, ri)] > m(ε+ δ)
]
.

The sum has mean µ =
∑m
i=1 Eri

[1 [bad(G, x, y, ri)]] < mε, so by the Chernoff bound, the
probability is at most

n2 P
r1,...,rm

[
m∑
i=1

1 [bad(G, x, y, ri)] > (1 +mδ/µ)µ
]

≤ n2exp
(
−m

2δ2

3µ

)
≤ n2exp

(
−mδ

2

3ε

)
< 1 .

Since the expected number of pairs x, y where choosing i ∼ [m] fails with probability more
than ε+ δ is less than 1, there must be some values of r1, . . . , rm with no bad pairs for G. So
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for every G ∈ Fi we may choose r1, . . . , rm so that choosing i uniformly at random is the only
random step; since m = 6ε

δ2 lnn = lognO(ε/δ2) this requires at most logm = log log
(
nO(ε/δ2)

)
random bits. J

With this result, we can conclude the proof of Theorem 1.7 in the next lemma.

I Lemma 2.15. For any family F = (Fi) with size function n(i),

Ω
(
Duniv(Fi)
logn(i)

)
≤ Runiv(Fi) ≤ Duniv(Fi) .

Proof. The upper bound is clear, so we prove lower bound. Let Π = (Πi) be a sequence of
randomized universal SMP protocols for F . By Newman’s theorem, we may assume that
Πi uses at most log logn(i)c random bits for some constant c and has error probability 3/8.
Let Fi be the decision function of Πi, let m(i) be the cost of Πi, and let k = dc logn(i)e. To
obtain a deterministic protocol, we can define the decision function F ′i on messages of k ·m(i)
bits as F ′i (a1, b1, a2, b2, . . . , ak, bk) = majority(Fi(aj , bj))j . Alice and Bob iterate over all
k = 2log logn(i)c random strings r and send a(r,G, x), b(r,G, y) for each. Since the probability
of error is at most 3/8 when r is uniform, at least 5k/8 > k/2 of the functions Fi(aj , bj) will
give the correct answer. This proves that Duniv(Fi) = O(Runiv(Fi) logn(i)). J

In this paper we show lower bounds for a family F by giving embeddings of an arbitrary
graph G into F , so we need to know the complexity of the family G = (Gn) of all graphs
with n vertices. For our purposes, it is convenient to require that each graph G ∈ Gn has
G(u, u) = 1 for all u (i.e. all self-loops are present). However, since equality can be checked
with cost O(1), the presence or absence of self-loops does not affect the complexity.

I Theorem 1.6 (Restated). Runiv(G) = Θ(n).

Proof. For the upper bound, consider the (deterministic) protocol where on input G, x, y,
Alice and Bob send x and y and the respective rows of the adjacency matrix of G. This has
cost n+ dlogne = O(n) and the referee can determine G(x, y) by finding y in the row sent
by Alice.

Let Π be any protocol for Gn with cost c. By Lemma 2.11, we may assume that Π
is symmetric. Let F be the decision function for graphs on n vertices and let G ∈ Gn
with vertex set [n]. Π defines a distribution over functions g : [n] → {0, 1}c so that
for all x, y,P

g
[F (g(x), g(y)) 6= G(x, y)] < ε. Therefore, for x, y drawn uniformly from [n],

E
f,x,y

[1 [F (f(x), f(y)) 6= G(x, y)]] < ε. Therefore, for every graph G ∈ Gn there is a function

fG such that for x, y ∼ [n] uniformly at random, P
x,y

[F (fG(x), fG(y)) 6= G(x, y)] < ε. Write

N =
(
n
2
)
. There are at most 2cn functions [n] → {0, 1}c and there are 2N simple graphs

on [n] so there is some function f : [n]→ {0, 1}c where the number of graphs G such that
fG = f is at least 2N

2cn = 2N−cn. Let G,G′ be any two such graphs. Then

P
x,y∼[n]

[G(x, y) 6= G′(x, y)]

≤ P
x,y∼[n]

[G(x, y) 6= F (f(x), f(y)) or G′(x, y) 6= F (f(x), f(y))] < 2ε .

So G,G′ differ on at most 2εN pairs. However, the largest number of graphs that differ from
any graph G on at most 2εN pairs of vertices is at most

2εN∑
k=0

(
N

k

)
≤ 2εN

(
N

2εN

)
≤ εN

(
eN

2εN

)2εN
= 22εN log(e/2ε)+log(2εN) .
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Therefore we must have

N − cn ≤ 2εN log(e/2ε) + log(2εN)

so c = Ω(n). J

Recall the example in the first paragraph of the introduction, for which we observed that
a single decision function would work for many problems. We now make a note about this
phenomenon. A communication protocol for a graph family F = (Fi) is really a sequence of
protocols, one for each set Fi of graphs with n(i) vertices. Our next proposition addresses the
uniformity of the sequence of protocols, that is, the question of how the protocols are related
to one another as the size of the input grows. In general, we ask the question: If the family
F has some relationship between Fi and Fi+1, what does this imply about the relationship
between the protocols for i and i+ 1? The families of graphs we study in this paper have
constant-cost protocols and they are also upwards families, which we define next. These
families have enough structure so that there exists a single, one-size-fits-all probabilistic
universal graph, into which all graphs can be embedded regardless of their size; in other
words, the referee can be ignorant not only of the graph G and vertices x, y, but also of the
size of the graph, without increasing the cost of the protocol.2

I Definition 2.16. We call a graph family F = (Fi) an upwards family if for every i and
every G ∈ Fi there exists G′ ∈ Fi+1 such that G is an induced subgraph of G′.

Many graph families are upwards families, for example: bounded-degree graphs, bounded-
arboricity graphs, planar graphs, and transitive reductions of distributive lattices.

I Proposition 2.17. If F is an upwards graph family with an ε-error randomized universal
graph sequence U = (Ui) satisfying |V (Ui)| ≤ c for some constant c (which may depend on
ε), then there exists a graph U∗ of size c such that ∀G ∈ F , G @ε U∗. Furthermore, for any
i < j and any G ∈ Fi, there exists G′ ∈ Fj with ε-error embedding g′ : V (G′) → V (U∗)
such that G is an induced subgraph of G′ and the restriction of g′ to the domain V (G) is an
ε-error embedding V (G)→ V (U∗).

Proof. Let G ∈ Fi and let G′ ∈ Fi+1 be such that G is an induced subgraph of G′. Let
g′ : V (G′)→ V (Ui+1) the random function determined by the randomized universal graph
sequence. Then g′ restricted to the domain V (G) ⊂ V (G′) satisfies

P
g′

[Ui+1(g′(x), g′(y)) = G(x, y)] = P
g′

[Ui+1(g′(x), g′(y)) = G′(x, y)] > 1− ε .

Therefore we may replace Ui with Ui+1 in the sequence, for any i.
Since each Ui has size at most c, there are at most 2c2 graphs Ui appearing in the sequence

U . Thus there is some graph U∗ that occurs an infinite number of times in the sequence.
For every i there exists j > i such that Uj = U∗. By applying the above argument, we may
replace Ui with Uj = U∗ in the sequence. We arrive at the sequence U ′ = (U ′i) with U ′i = U∗

for every i. J

2 Any family F with a constant-cost protocol can be turned into a protocol ignorant of the size by
requiring that Alice and Bob tell the referee which of the 2c2

possible decision functions to use, where
c = 2Runiv(F).
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2.3 Implicit Graph Representations and Induced-Universal Graphs
Kannan, Naor, and Rudich [23] call a family of graphs an implicit graph family if each of the
n vertices can be given a label of O(logn) bits so that adjacency can be determined from the
labels of two vertices. They observe that an implicit encoding gives an upper bound on the
size of an induced-universal graph. We define these terms below in slightly more generality
(and omit the requirement that encoding and decoding be done in polynomial time):

I Definition 2.18. Let F = (Fi) be a graph family and m(i) a function of the graph size. The
family F has an m-implicit encoding if ∀i,∃Fi : {0, 1}m(i) × {0, 1}m(i) → {0, 1} such that Fi
is symmetric and ∀G ∈ Fi,∃g : V (G)→ {0, 1}m(i) satisfying ∀x, y ∈ V (G), Fi(gi(x), gi(y)) =
G(x, y).

For a graph family F = (Fi), an induced-universal graph sequence is a sequence U = (Ui)
such that for each i and all G ∈ Fi, G is an induced sugraph of Ui.

Our notion of @-universal graphs differs from induced-universal graphs, since the embedding
relation G @ Ui allows non-injective mappings (two vertices of G may be mapped to the
same vertex in Ui). This difference accounts for the extra factor n(i) in the next theorem.

I Theorem 2.19 ([33]). Let F = (Fi) be a graph family with size n(i). If there exists an
m-implicit encoding of F there is an induced-universal graph sequence U = (Ui) such that
|Ui| ≤ n(i)2m(i) = 2m(i)+logn(i).

Due to the fact that a deterministic universal SMP protocol may always be assumed to be
symmetric (Proposition 2.6), it follows by definition and from Lemma 2.15 that:

I Theorem 1.1 (Restated). A graph family F = (Fi) is m-implicit iff Duniv(Fi) ≤ m(i) for
every i. Therefore, F is O(Runiv(F) · logn)-implicit.

If one’s goal is merely to obtain an O(1)-cost universal SMP protocol for a family F , the
next observation shows that it suffices to find an O(1)-cost, public-coin, 2-way protocol for
each member of F . Therefore the family of all graphs with an O(1)-cost 2-way protocol is
an implicit graph family with a polynomial-size induced-universal graph.

I Corollary 1.2 (Restated). Let F = (Fi) be a family of graphs with size n(i) and suppose
that for every graph G ∈ Fi there is an ε-error 2-way randomized communication protocol
with cost at most c(i). Then Runiv

ε (F) ≤ 2c(i). Furthermore, for any fixed constant c, the
family F of graphs with R↔(Adj(G)) ≤ c is O(logn)-implicit.

Proof. Every 2-way, deterministic cost c protocol can be represented as a binary tree with
at most 2c nodes, where each node is owned by either Alice or Bob and the message sent
at each step is a 0 or 1 informing the other player of which branch to take in the tree. A
randomized 2-way protocol is a distribution over such trees. To obtain a universal SMP
protocol for the family F , Alice and Bob do the following. On input G ∈ F and x, y ∈ V (G),
Alice and Bob use shared randomness to draw the deterministic cost c protocol for G from
the distribution defined by the randomized 2-way protocol. Alice sends the size 2c protocol
tree and for each node she owns she identifies the branch to be taken. Bob does the same.
The referee may then simulate the protocol. The conclusion follows from Theorem 1.1. J

3 Distance Labeling of Distributive Lattices

Distributive lattices and distances on these lattices will be defined in the next subsection,
where we also give a necessary lemma characterizing the distances in terms of the meet and
join. We will then present an O(k log k) weakly-universal protocol and an O(k2) universal
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communication protocol for the family Dk, where D are the distributive lattices. This implies
a O(k2 logn)-implicit encoding Dk of the family D of distributive lattices. The O(k log k)
weakly-universal protocol is optimal for sufficiently small values of k, since it applies to
the k-Hamming Distance problem as a special case, for which Saǧlam [31] recently gave a
matching lower bound (even for 2-way communication). We obtain this result by adapting
the optimal O(k log k) communication protocol for k-Hamming Distance originally presented
by Huang et al. [21].

We also consider modular lattices, a generalization of distributive lattices, and show that
deciding dist(x, y) ≤ 2 requires a protocol with cost Ω(n1/4).

3.1 Preliminaries on Distributive Lattices
A lattice is a type of partial order. We briefly review distributive lattices (see e.g. [9] for a
good introduction) and then give a characterization of distances in modular and distributive
lattices. The undirected graphs we study are the cover graphs of partial orders. For x, y in a
partial order P , we say that y covers x and write x ≺ y if ∀z ∈ P : if x ≤ z < y then x = z.
The cover graph (which is the undirected version of the transitive reduction) is the graph
cov(P ) on vertex set P with an edge {x, y} iff x ≺ y or y ≺ x.

We will define a few types of lattices.

I Definition 3.1. Let (P,<) be a partial order. For a pair x, y ∈ P :
If the set {z ∈ P : x, y ≥ z} has a unique maximum, we call that maximum the join of
x, y and write it as x ∧ y;
If the set {z ∈ P : x, y ≤ z} has a unique minimum, we call that minimum the meet of
x, y and write it as x ∨ y.

If ∀x, y ∈ P the elements x ∧ y, x ∨ y exist, then P is a lattice. A lattice L is ranked if
there exists a rank function such that x ≺ y =⇒ rank(x) + 1 = rank(y) and the minimum
element 0L satisfies rank(0L) = 0. A finite lattice L is upper-semimodular if for every
x, y ∈ L, x ∧ y ≺ x, y =⇒ x, y ≺ x ∨ y. L is lower-semimodular if for every x, y ∈ L,
x, y ≺ x ∨ y =⇒ x ∧ y ≺ x, y. L is modular if it is both upper- and lower-semimodular. A
lattice L is distributive if for all x, y, z ∈ L, x∧ (y ∨ z) = (x∧ y)∨ (x∧ z). Every distributive
lattice is modular and every modular lattice is ranked [9].

A point x in a lattice L is join-irreducible if there is no set S ⊆ L such that x =
∨
S

and meet-irreducible if there is no set S ⊆ L such that x =
∧
S. Write J(L) for the set of

join-irreducible elements.
A subset D of a partial order P is a downset or ideal if: for all x, y ∈ L, if x ∈ D and

y ≤ x then y ∈ D. We will write D(P ) for the set of ideals of P .

I Theorem 3.2 (Birkhoff (see e.g. [9])). Every distributive lattice L is isomorphic to the
lattice of downsets of the partial order on its join-irreducible elements, ordered by inclusion;
i.e. L ' D(J(L)), with the meet and join operations given by set union and intersection
respectively.

We need to prove some facts about distances in modular lattices.

I Proposition 3.3. Let L be a graded lattice and let x, y ∈ L. Then dist(x, y) ≥ | rank(x)−
rank(y)|, with equality if x < y or y < x.

Proof. This follows from the fact that for every edge u ≺ v in the path from x to y has
rank(u) + 1 = rank(v). J

To prove our characterization of distance, we define inversions in the path.
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I Definition 3.4. Let L be a lattice and let c1, . . . , cm be a path in cov(L), so that ci ≺ ci+1
or ci+1 ≺ ci for each i. If ci−1, ci+1 ≺ ci or ci ≺ ci−1, ci+1 we call ci an inversion on the
path.

I Lemma 3.5. The following holds for any x, y in a latticeM:
1. IfM is lower-semimodular then dist(x, y) = dist(x, x ∧ y) + dist(y, x ∧ y);
2. IfM is upper-semimodular then dist(x, y) = dist(x, x ∨ y) + dist(y, x ∨ y);
3. If M is distributive then dist(x, y) = |X∆Y | where X,Y ∈ D(J(M)) are isomorphic

images of x, y in Birkhoff’s representation.

Proof. It suffices to prove the first statement: the second follows by the analogous argument
and the third follows from the modulartiy of distributive lattices and Birkhoff’s representation.

LetM be lower-semimodular, let x, y ∈M, and let x = c0, c1, . . . , cm = y be a shortest
path between x and y, so that dist(x, y) = dist(x, ci) + dist(y, ci) for any i. The statement
holds trivially when x < y or y < x (since x ∧ y = x or x ∧ y = y), so we assume x, y are
incomparable. We prove the statement by induction on the largest rank of an inversion of
the form ci−1, ci+1 ≺ ci in the path.

First suppose that ci is any element of the path and assume for contradiciton that
rank(ci) < rank(x ∧ y). Then

dist(x, x ∧ y) = rank(x)− rank(x ∧ y) < rank(x)− rank(ci) ≤ dist(x, ci),

a contradiction. Thus rank(ci) ≥ rank(x ∧ y) for each element of the path.
Suppose there are no inversions of the form ci−1, ci+1 ≺ ci. Then ci < x, y and therefore

ci ≤ x∧y so rank(ci) ≤ rank(x∧y), and by the above inequality we have rank(ci) ≥ rank(x∧y),
so rank(ci) = rank(x ∧ y). Therefore, as desired,

dist(x, y) = dist(x, ci) + dist(y, ci) = rank(x)− rank(ci) + rank(y)− rank(ci)
= rank(x)− rank(x ∧ y) + rank(y)− rank(x ∧ y)
= dist(x, x ∧ y) + dist(y, x ∧ y) .

Now let ci be an inversion of the form ci−1, ci+1 ≺ ci with rank(ci) > rank(x ∧ y). Then by
lower-semimodulariity there is an element c′i = ci−1 ∧ ci+1 ≺ ci−1, ci+1. Then replacing ci
with c′i maintains the length of the path. Performing the same operation on all such inversions
of maximum rank reduces the maximum rank by 1 and the result holds by induction. J

3.2 A Universal Protocol for Distributive Lattices
Write D = (Dn) for the family of cover graphs of distributive lattices on n vertices. We
first give an optimal protocol for distances in distributive lattices in the weak universal
model (recall that in this model, the referee sees the shared randomness). This protocol is
adapted from a simplified presentation of Huang et al.’s k-Hamming Distance protocol ([21])
communicated to us by E. Blais.

I Theorem 3.6. For any ε > 0 and integer k, Rweak
ε (Dk) = O (k log(k/ε)).

Proof. For any distributive lattice L ' D(J(L)), identify each vertex x ∈ L with its ideal
X ⊆ J(L) of join-irreducibles. Write e1, . . . , em for the basis vectors of Fm2 . Consider the
following protocol. On the distributive lattice L and vertices x, y, Alice and Bob perform
the following:
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1. Define m = d (k+2)2

ε e, q = dlog 1
ε + log

∑
i=0
(
m
i

)
e.

2. Let S = (s1, . . . , sm) be a multiset of uniformly random elements of Fq2.
3. For each join-irreducible element j ∈ J(L) assign a uniformly random index ij ∼ [m].
4. For each vertex v ⊆ J(L) there is an indicator vector a(v) ∈ Fm2 defined by a(v) =∑

j∈v eij . Label v with `(v) =
∑m
i=1 a(v)isi.

5. Alice sends `(x) and Bob sends `(y) to the referee.
6. The referee accepts iff `(x) + `(y) is a sum of at most k elements of S.
By Lemma 3.5 and Birkhoff’s theorem, dist(x, y) = dist(x, x∧y)+dist(x∧y, y) = |X\Y |+|Y \
X| = |X∆Y |, where ∆ denotes the symmetric difference. Suppose dist(x, y) = |X∆Y | ≤ k.
Then `(x) + `(y) =

∑
j∈X∆Y c(j) is a sum of at most k elements of S, so the protocol accepts

with probability 1 (so this protocol has 1-sided error).
Now suppose dist(x, y) = |X∆Y | ≥ k+1. The correctness of the protocol follows from the

next two claims along with the observations that a(x)+a(y) = a(x∧y) and `(x)+`(y) = `(x∧y)
(with arithmetic in F2) and that dist(x, y) ≥ k+ 1 implies rank(x∧ y) ≥ k+ 1. We will write
|a(v)| for the number of 1’s in the vector a(v).

B Claim 3.7. Any vertex v ⊆ J(L) with rank(v) ≥ k + 1 has |a(v)| ≥ k + 1 with probability
at least 1− ε/2.

Proof of claim. If rank(v) = k+ 1, so v is a set of k+ 1 join-irreducibles, then the probability
that any two indices ij , ij′ collide, for j, j′ ∈ v, is by the union bound at most(

k + 1
2

)
P [ij = ij′ ] = k(k + 1)

2
1
m
≤ (k + 1)2

2
ε

(k + 2)2 = ε/2 .

For rank(v) > k + 1 choose v′ ≺ v so k + 1 ≤ rank(v′) < rank(v), so using induction and the
assumption ε < 1/2,

P [|a(v)| ≤ k] = k + 1
m

P [|a(v′)| = k + 1] + k

m
P [|a(v′)| ≤ k] < ε

k + 2 + ε

k + 2 ·
ε

2

= ε

(
1

k + 2 + ε

2(k + 2)

)
≤ ε

(
1
3 + 1

12

)
< ε/2 . C

B Claim 3.8. For any vertex v ⊆ J(L), if the indicator vector a(v) has weight ≥ k + 1 then,
with probability at least 1− ε/2, `(v) is not a sum of at most k vectors in S.

Proof of claim. Write kS for the set of all sums of at most k vectors of S. Fix any a(v) with
weight ≥ k + 1 and let A = {i : a(v)i = 1} so |A| ≥ k + 1. Let b ∈ kS be any sum of k
vectors in S, and let B ⊂ [m] be a set of indices of size |B| ≤ k such that b =

∑
i∈B si.

Since |B| ≤ k < |A| we must always have A \ B 6= ∅ and `(v) + b =
∑
i∈A\B si, so

P [`(v) + b = 0] = 2−q. Therefore, by the union bound over all such vectors b,

P [`(v) ∈ kS] ≤
k∑
i=0

(
m

i

)
2−q < ε/2 . C

We can put a bound on q by using
k∑
i=0

(
m

i

)
≤ k

(
m

k

)
≤ k

(em
k

)k
so

q ≤ 1 + log 1
ε

+ log k + k log em
k
≤ log 2k

ε
+ k logdek

ε
e = O

(
k log k

ε

)
. J

ITCS 2020



33:18 Universal Communication

Observe that the referee must see the set S for the above protocol to work. We can easily
modify the above protocol to get O(k2).

I Theorem 3.9. For any ε > 0 and any integer k, Runiv
ε (Dk) = O

(
k2 log(1/ε)

)
.

Proof. The protocol is the same as above, with the following modification: Alice and Bob
each send the indicator vectors a(x), a(y) ∈ Fm2 .

The correctness of this protocol for error 1/3 follows from Claim 3.7. Observe that Alice
and Bob use the same strategy to send their messages and that the decision function is
symmetric. The communication cost is now at most m = d3(k + 2)2/2e.

This protocol is one-sided, so to achieve error ε we can run the protocol r = dlog3(1/ε)e
times and take the AND of the results. The probability of failure is (1/3)r = 3−r < ε. J

Now we apply Theorem 1.1 to obtain Theorem 1.3.
Since the family of distributive lattices is an upwards family (simply append a new

least element to obtain a larger distributive lattice), we see from Proposition 2.17 that
lattices in Dk can be randomly embedded into a constant-size graph, for any constant k. In
fact, by inspection of the protocol, we see that the family D can be randomly embedded
into a small-dimensional hypercube, while Dk can be embedded into the k-closure of the
O(k2)-dimensional hypercube.

I Corollary 3.10. For any ε > 0 and any k, there exists a graph U of size 2O(k2 log(1/ε)) such
that for all L ∈ Dk, L @ε U .

3.3 Lower Bound for Modular Lattices
Since Lemma 3.5 works for any modular lattices, it is natural to ask whether we can achieve a
similar constant-cost protocol for computing distance thresholds in modular lattices. However,
we show that this is impossible.

I Lemma 3.11. There is a function m(n) = O(n4) such that if G is any graph with n

vertices (where G(u, u) = 1 for all u), there exists a modular lattice M with size m(n) such
that G is an induced subgraph of cov(M)2.

Proof. Construct the lattice M as follows:
1. Start with vertices V , which are all incomparable.
2. For each edge e = {u, v} ∈ E, add vertices ae, be such that ae < u, v < be.
3. ∀e = {u, v}, e′ = {u′, v′} ∈ E such that e ∩ e′ = ∅ add a vertex ce,e′ with ae, ae′ < ce,e′ <

be, be′ .
4. Add vertices 0M and 1M such that 0M < ae and be < 1M for all e ∈ E.
First we prove that M is a modular lattice and then we prove the bound on the size.

B Claim 3.12. M is a modular lattice.

Proof of claim. Observe that all orderings < directly imposed by this process are covering
orders ≺. Let A = {ae}e∈E , B = {be}e∈E , C = {ce}e∈E and V the original set of vertices.
By construction, M is graded with rank(0M ) = 0, rank(A) = 1, rank(V ) = rank(C) =
2, rank(B) = 3, rank(1M ) = 4. Note that for every pair of vertices x, y ∈M, 0M ≤ x, y ≤ 1M
so upper- and lower-bounds exist.

Assume for contradiction that M is not a modular lattice, so there exist incomparable
x, y ∈M such that either x ∧ y or x ∨ y does not exist, or such that x ∧ y ≺ x, y 6≺ x ∨ y or
x ∧ y 6≺ x, y ≺ x ∨ y.
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Case 1: Suppose rank(x) 6= rank(y). Then x∧y = 0M and x∨y = 1M so x∧y 6≺ x, y 6≺ x∨y.
Case 2: Suppose x, y ∈ A so x = ae, y = ae′ . Then 0M = ae ∧ ae′ ≺ ae, ae′ . If ae, ae′ < u, v

for u, v ∈ V then u, v ∈ e ∩ e′ so u = v. If ae, ae′ < v, cd,d′ for v ∈ V and cd,d ∈ C then
v ∈ e ∩ e′ and cd,d′ = ce,e′ so e ∩ e′ = ∅, a contradiction. Finally, if ae, ae′ < cd,d′ , cd′,d′′

then cd,d′ = cd′,d′′ = ce,e′ . So ae ∨ ae′ exists and ae ∧ ae′ ≺ ae, ae′ ≺ ae ∨ ae′ . The same
argument holds for x, y ∈ B.

Case 3: Suppose x, y ∈ V and assume ae, ae′ < x, y. Then x, y ∈ e ∩ e′ so ae = ae′ . A
similar argument holds for x, y < be, be′ . So x ∧ y ≺ x, y ≺ x ∨ y.

Case 4: Suppose x, y ∈ C so x = ce,e′ , y = cd,d′ . Suppose as, at < ce,e′ , cd,d′ . Then
s, t ∈ {e, e′} ∩ {d, d′} so either {e, e′} = {d, d′} or s = t. The same argument holds for
ce,e′ , cd,d′ < bs, bt so x ∧ y ≺ x, y ≺ x ∨ y.

Case 5: Suppose x ∈ V, y ∈ C so y = ce,e′ which implies e ∩ e′ = ∅. If x /∈ e ∪ e′
then x ∧ ce,e′ = 0M and x ∨ ce,e′ = 1M so x ∧ ce,e′ 6≺ x, ce,e′ 6≺ x ∨ ce,e′ ; so suppose
x ∈ e ∪ e′. If ae, ae′ < x, ce,e′ then x ∈ e ∩ e′ which is a contradiction. Then x ∈ e

or x ∈ e′; say x ∈ e. Then ae = x ∧ ce,e′ . The same argument holds for B so
ae = x ∧ ce,e′ ≺ x, ce,e′ ≺ x ∨ ce,e′ = be. C

B Claim 3.13. G is an induced subgraph of cov(M)2.

Proof of claim. Suppose {u, v} ∈ E. Then there is ae ≺ u, v so dist(u, v) ≤ 2 in cov(M).
Now let u, v ∈ V (G) and suppose dist(u, v) ≤ 2 in cov(M) so that, by Lemma 3.5, u ∧ v ≺
u, v ≺ u ∨ w. By construction, either u = v so G(u, v) = G(u, u) = 1, or u ∧ v = ae for some
e ∈ E(G) so u, v ∈ e and therefore G(u, v) = 1. C

The size of M is at most 2 + |E(G)|+ |E(G)|2 = O(n4). Let m(n) be the maximum size of a
modular lattice obtained in this way from a graph of size n. We want all constructions to be
of the same size, so repeatedly append new least elements until the size reaches m(n); this
maintains the modular lattice property. J

I Theorem 3.14. Let M = (Mn) be the family of cover graphs of modular lattices.
Runiv(M2) ≥ Ω(n1/4).

Proof. Suppose there is a protocol for M2 with cost o(n1/4). Given a graph G of size
n, Alice and Bob construct the modular lattice of size m(n) = O(n4) with G an induced
subgraph of cov(M)2 and run the protocol forM2 with size m(n) (observe that all possible
constructions must be of the same size, since the referee does not know which lattice Alice
and Bob construct). This has cost o(m(n)1/4) = o(n), which contradicts Theorem 1.6. J

4 Communication on Efficiently Labelable Graphs

In this section we take inspiration from the field of implicit graphs and graph labeling and
show that one may often, but not always, obtain constant-cost adjacency and k-distance
protocols for families that are commonly studied in the graph labeling literature.

4.1 Trees, Forests, and Interval Graphs
In this section we pick the low-hanging fruit from trees and forests (and interval graphs).
Applying Theorem 1.1 with the next lemma, we get Theorem 1.4.

I Lemma 4.1. Let T = (Tn) be the family of trees of size n. Runiv
ε (T k) = O

(
k log 1

ε

)
, and

this protocol will correctly compute the distance in the case dist(x, y) ≤ k.
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Proof. Consider the following protocol. On input (T, x), (T, y) for a tree T , Alice and Bob
perform the following.
1. Partition the vertices of T into sets T1, . . . , Tm such that Ti = {v ∈ V (T ) : (i − 1)k ≤

depth(v) < ik}. For each v ∈ V (T ) let t(v) be the index of the unique set satisfying
v ∈ Tt(v).

2. For each vertex v ∈ V (T ) assign a uniformly random color `(v) in [m] for m = d6/εe.
Let x′ be root of the subtree of Tt(x) that contains x, and let x′′ be the root of the
subtree of Tt(x)−1 that contains x. Let x0, x1, . . . , xk, . . . , xk1 = x be the path from x′′

to x (with xk = x′) and let y0, . . . , yk, . . . , yk2 be the path from y′′ to y. Alice and Bob
send `(x0), . . . , `(xk1) and `(y0), . . . , `(yk2) respectively.

3. If `(x′) = `(y′), let p be the maximum index such that `(xi) = `(yi) for each k < i ≤ p.
Let d = (k1 − p) + (k2 − p). If `(x′′) = `(y′′), let p be the maximum index such that
`(xi) = `(yi) for each i ≤ p and let d = (k1 − p) + (k2 − p). If `(x′′) = `(y′) let p be the
maximum index such that `(xi) = `(yk+i) for each i ≤ p and let d = (k1−p)+(k2−k−p).
If `(x′) = `(y′′) do the same with x, y reversed. In each case, if d ≤ k, the referee outputs
d, otherwise they output “> k”. If none of the above cases hold, output “> k”.

The cost of this protocol is 2kdlogme = O(k log(1/ε)). With probability at least 1− 4/m >

1 − ε/2, each of the possible equalities x′′ = y′′, x′ = y′, x′′ = y′, x′ = y′′ will be correctly
observed by the referee. If {x′, x′′} ∩ {y′, y′′} = ∅ then x, y are not in the same subtree
rooted at depth depth(x′′), so the distance from x to any common ancestor of x, y is at least
dist(x, x′′) > k. Therefore if dist(x, y) ≤ k, one of these equalities will hold. If x′′ = y′′ and q
is the maximum integer such that xi = yi for all i ≤ q then dist(x, y) = (k1 − q) + (k2 − q),
because the deepest common ancestor of x, y is at depth depth(x0) + q. Conditional on
the 4 equalities being correctly observed, we will have d = (k1 − p) + (k2 − p) ≤ k since
p ≥ q. If p > q then `(xq+1) = `(yq+1) even though xq+1 6= yq+1, which occurs with
probability 1/m < ε/2. Therefore the probability that d 6= dist(x, y) is at most 2(ε/2) = ε

when dist(x, y) ≤ k. A similar argument holds in the other 3 cases.
If dist(x, y) > k then still with probability at least 1 − ε/2 all 4 possible equalities are

correctly observed. Following the same argument as in the equality case, we see that if any
of the equalities hold we will have d = dist(x, y) with probability greater than 1− ε/2, for
total error probability less that ε. If none of the 4 equalities hold then the probability of
error is at most ε/2. J

Since trees have efficient protocols, one might wonder about generalizations of trees. The
arboricity of a graph is one such generalization, which measures the minimum number of
forests required to partition all the edges.

I Definition 4.2. A graph G = (V,E) has arboricity α iff there exists an edge partition of
G into forests T1, . . . , Tα. Equivalently, for S ranging over the set of subgraphs of G, G has

max
S

⌈
E(S)

V (S)− 1

⌉
≤ α .

Low-arboricity graphs easily admit an efficient universal SMP protocol for adjacency.

I Proposition 4.3. Let F be any family of graphs with arboricity at most α. For all
ε > 0, Runiv

ε (F) = O
(
α log α

ε

)
.

Proof. On the graph G and vertices x, y, Alice and Bob perform the following:
1. Compute a partition of G into α forests T1, . . . , Tα.
2. Assign to each vertex v a uniformly random number `(v) ∼ [m] for m = d2α/εe.
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3. Let xi be the parent of x in tree i and let yi be the parent of y. Alice sends `(x) and
`(xi) for each i, and Bob does this same with y.

4. The referee accepts iff `(x) = `(yi) or `(y) = `(xi) for any i.
This protocol has one-sided error since if x, y are adjacent then either xi = y or yi = x for
some i, so the referee will accept with probability 1. If x, y are not adjacent then the referee
will accept with probability at most 2α · 1

m < ε. J

However, even graphs of arboricity 2 do not admit efficient protocols or labeling schemes
for distance 2, which we can show by embedding an arbitrary graph of size Ω(

√
n) into the

2-closure of an arboricity 2 graph of size n:

I Proposition 4.4. Let F be the family of arboricity-2 graphs. Then Runiv(F2) ≥ Ω(
√
n).

Proof. The lower bound is obtained via Theorem 1.6 in the same way as in Theorem 3.14,
using the following construction. For all simple graphs G = (V,E) with n vertices, there
exists a graph A of size n+

(
n
2
)
and arboricity 2 such that G is an induced subgraph of A2.

Let A be the graph defined as follows:
1. Add each vertex v ∈ V to A;
2. For each pair of vertices {u, v} add a vertex e{u,v} and add edges {u, e{u,v}}, {v, e{u,v}}

iff {u, v} ∈ E.
This graph has arboricity 2 since for each e{u,v} we may assign each of its 2 incident edges a
color in {1, 2} (if the edges exist). Then the edges with color i ∈ {1, 2} form a forest with
roots in V . J

Now we give an example of a family, the interval graphs, with size O(logn) adjacency labels
but with no constant-cost universal SMP protocol; in fact, randomization does not give more
than a constant-factor improvement for this family. An interval graph of size n is a graph
G where for each vertex x there is an interval X ⊂ [2n] such that any two vertices x, y are
adjacent in G iff X ∩ Y 6= ∅. These have an O(logn) adjacency labeling scheme [23] (one
can simply label a vertex with its two endpoints in [2n]).

There is a simple reduction from the Greater-Than communication problem, in
which Alice and Bob receive integers x, y ∈ [n] and must decide if x < y. It is known
that the one-way public-coin communication cost of Greater-Than is Ω(logn) [25], so
R‖(Greater-Than) = Ω(logn).

I Proposition 4.5. For the family F of interval graphs, Runiv(F) = Ω(logn).

Proof. We can use a universal SMP protocol for F to get a protocol for Greater-Than as
follows. Alice and Bob construct the interval graph with intervals [1, i], [i, n] for each i ∈ [n],
so there are 2n vertices in G. On input x, y ∈ [n], Alice and Bob compute adjacency on the
intervals [1, x], [1, y] and then again on [1, x], [y, n]. Assume both runs of the protcol succeed.
Then when the output is 1 for both runs we must have y ∈ [1, x] so y ≤ x and otherwise we
have y /∈ [1, x] so x < y. J

4.2 Planar Graphs
Write Pn for the set of planar graphs of size n and write P = (Pn) for the family of planar
graphs. Gavoille et al. [15] gave an O(

√
n logn) labeling scheme where dist(x, y) can be

computed from the labels of x, y, and Gawrychowski and Uznański [16] improved this to
O(
√
n). These labeling schemes recursively identify size-O(

√
n) sets S and record the distance

of each vertex v to each u ∈ S, so the
√
n factor is unavoidable using this technique. We

want to solve k-distance with a cost independent of n, so we need a new method. Our main
tool is Schnyder’s elegant decomposition of planar graphs into trees:
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I Theorem 4.6 (Schnyder [32], see [11]). Define the dimension dim(G) of a graph G as is
the minimum d such that there exist total orders <1, . . . , <d on V (G) satisfying:

(*) For every edge {u, v} ∈ E and w /∈ {u, v} there exists <i such that u, v <i w.
G is planar iff dim(G) ≤ 3. If G is planar then there exists a partition T1, T2, T3 of the

edges into directed trees satisfying the following. Let T−1
i be edge-induced directed graph

on V (G) obtained by reversing the direction of each edge in Ti. The graphs with edges
Ti ∪ T−1

i−1 ∪ T
−1
i+1 have linear extensions <i such that <1, <2, <3 satisfy (*).

Schnyder’s Theorem implies that the arboricity of planar graphs is at most 3, so we may use
the protocol for low-arboricity graphs (Proposition 4.3) to determine adjacency in P, so we
move on to P2, which may have large arboricity (arboricity is within a constant factor of
degeneracy):

I Theorem 4.7 ([1]). There are planar graphs P for which the degeneracy of P 2 is Θ(degP ),
where degP is the maximum degree of any vertex in P .

We avoid this blowup in arboricity by treating edges of the form a← b→ c separately (with
directions taken from the Schnyder wood). The proof uses the following split operation:

I Definition 4.8. Let G ∈ P and fix a planar map and a Schnyder wood T1, T2, T3. Define
the graph split(G) by the following procedure (see Figure 1):
1. For each vertex s ∈ V (G) add vertices s, s1, s2, s3 to split(G) (excluding si if s has no

incoming edge in Ti). Add edges (si, s) to T ′i ;
2. For each (directed) edge (u, v) ∈ Ti add the edges (ui−1, vi), (ui+1, vi) (arithmetic mod 3)

to T ′i ;
3. For the unique (directed) edge (v, u) ∈ Ti add the edges (vi−1, u), (vi+1, u) to T ′i .

s s

s1

s3s2

Figure 1 Splitting vertex s, with T1, T2, T3 in blue, red, and green respectively (1,2, and 3
arrowheads).

I Proposition 4.9. split(G) is planar.

Proof. We prove that splitting any vertex s results in a planar graph. By induction we may
then split each vertex in sequence and obtain a planar graph. Let <i be any total order on
V (G) extending Ti ∪ T−1

i−1 ∪ T
−1
i+1, which satisfies condition (*) by Schnyder’s theorem. Let

<′1, <
′
2, <

′
3 be the same total orders, extending T ′1, T ′2, T ′3, and augmented to include s1, s2, s3

as follows:
1. For each u ∈ V (G), si <′j u iff s <j u and u <′j iff u <j s;
2. For each i, set si <′i s <′i si+1 <

′
i si−1. This is possible since {si} do not have a defined

ordering in <i and remain incomparable after the previous step.
Note that for any edge (u, v) ∈ T ′i we have u <′i v and v <′j u for j 6= i. It suffices to prove
that condition (*) is satisfied by the new orders. Let {u, v} ∈ E(split(G)) and let w /∈ {u, v}.
We will show that there exists i such that u, v <′i w.
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If u, v, w ∈ V (G) then we are done since the orders <′i are the same as <i on these
vertices.

If u = si then either v ∈ V (G) \ s, in which case v <i s so v <′i u and therefore u <′j v for
j 6= i, or v = s so u <′i v and therefore v <′j u for j 6= i. Let v 6= s. For any w ∈ V (G) \ {v}
we have, by (*), either v, s <i w so v <′i u <′i s <′i w, or v, s <j w so u <′j v <′j w. If v = s

then by construction there exists (u′, u) ∈ Ti. By (*), either u′, v <i w so u <′i v <′i w, or
u′, v <j w so v <′j u <′j u′ <′j w.

The only case remaining is if w = si and u, v ∈ V (G). By construction there exists
(w′, w) ∈ Ti. Either u, v <i w′ <′i w <′i s or by (*) there exists j such that u, v <j s and
since (w, s) is an edge in T ′i , s <′j w for j 6= i. J

I Definition 4.10. Let G = (V,E) be a planar graph. Fix a planar map and a Schnyder wood
T1, T2, T3. For each i, define the graph Gi = (V,E \ Ti) as the graph obtained by removing
each edge in Ti. Define the head-to-head closure of Gi, written G←→i , as the graph with an
edge {u, v} iff there exists w ∈ V such that u← w →v in Gi. (Observe that the two outgoing
edges of w must be in Ti−1, Ti+1.) Let G←→ be the subgraph of G2 containing all edges
occuring in G←→i for each i.

I Lemma 4.11. Let G be a planar graph. For any graph M , if M is a minor of G←→i then
M is a minor of split(G).

Proof. We will prove the following claim.

B Claim 4.12. For any set P = {Pj} of simple paths Pj ⊆ V (G←→i ), with endpoints {(sj , tj)}
such that no two paths Pj , Pk have the same endpoints and Pj ∩ Pk ⊆ {sj , sk, tj , tk}, there
exists a set of paths Q = {Qj} of paths in split(G) with the same endpoints such that

Qj ∩Qk ⊆
{sj , sk, tj , tk} ∪ {(sj)i−1, (sk)i−1, (tj)i−1, (tk)i−1} ∪ {(sj)i+1, (sk)i+1, (tj)i+1, (tk)i+1} ,

where the vertices si, si+1, si−1 are defined as in the split operation.

Proof of claim. For each path Pj , perform the following. For each edge {u,w} in the path
Pj , there is some (not necessarily unique) vertex v such that either (v, u) ∈ Ti−1 and (v, w) ∈
Ti+1, or the same holds with u,w reversed. Add the edges {u, ui−1}, {ui−1, vi}, {vi, wi+1},
{wi+1, w} to Qj . If Pj is a singleton Pj = {u} so sj = tj then add u to Qj .

Consider two paths Qj , Qk constructed this way. G←→i has vertex set V and split(G) has
vertex set V ′ ⊃ V . By construction, Pj ⊆ Qj and Pk ⊆ Qk and (Qj ∩ V ) = Pj . Suppose
there exists z ∈ Qj ∩ Qk that is not an endpoint, so z /∈ {sj , sk, tj , tk}. If z ∈ V then
z ∈ Pj ∩ Pk ⊆ {sj , sk, tj , tk}, so we only need to worry about z ∈ V ′ \ V .

If z = vi for some vertex v then there are unique distinct vertices ui−1, wi+1 ∈ V ′ adjacent
to vi such that ui−1, wi+1 ∈ Qj ∩Qk. Then u,w ∈ Qj ∩Qk also, so u,w ∈ Pj ∩Pk; but then
u 6= w are the start and end points of Pj , Pk, so Pj = Pk, a contradiction.

If z = vi−1 for some vertex v ∈ V then v ∈ Qj∩Qk, so by the case above, v ∈ {sj , sk, tj , tk}
and z ∈ {(sj)i−1, (sk)i−1, (tj)i−1, (tk)i−1}. Likewise for z = vi+1. C

Let M be a minor of G←→i , so a subdivision of M occurs as a subgraph of G←→i . Therefore
there is a set of paths P in G←→i satisfying the conditions of the claim, so that by contracting
each path into a single edge, and deleting the rest of the graph, we obtain M . Let Q = {Qj}
be the set of paths given by the claim. For endpoints sj , tj ∈ Qj , contract the edges
{sj , (sj)i±1} and {tj , (tj)i±1}. The result is a contraction of split(G) and a set of paths Q′
that is a subdivision of M , so M is a minor of split(G), which proves the lemma. J
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I Corollary 4.13. G←→i is planar and G←→ has arboricity at most 9.

Proof. A graph is planar iff it does not contain K5 or K3,3 as a minor (Kuratowski’s
Theorem). If G←→i is not planar then it contains K5 or K3,3 as a minor, so by the above
lemma, split(G) contains K5 or K3,3 as a minor, so split(G) is not planar, a contradiction.
Since planar graphs have arboricity at most 3, the edge union G←→ of 3 planar graphs has
arboricity at most 9. J

By separating the ←→ edges from the remaining edges of P2, we obtain a constant-cost
universal SMP protocol for P2, and then by applying Theorem 1.1 we obtain Theorem 1.5.

I Lemma 4.14. For all ε > 0, Runiv
ε (P2) = O

(
log 1

ε

)
.

Proof. For a planar graph G = (V,E) with a fixed planar map and a Schnyder wood
T1, T2, T3, define the graph Gi = (V,E \ Ti) as the graph obtained by removing the edges in
tree Ti.

On planar graph G ∈ Pn and vertices x, y, Alice and Bob perform the following:
1. For each i define xi, yi to be the parents of x, y in Ti. Run the protocol for adjacency

with error ε/7 on (x, yi) and (xi, y) for each i.
2. Run the protocol for low-arboricity graphs on G←→ with error ε/7.
3. Accept iff one of the above sub-protocols accepts.
By Corollary 4.13, G←→ has arboricity at most 9, we may apply the protocol for low-
arboricity graphs in step 2. If dist(x, y) > 2 then the protocol will correctly reject with
probability at least 1− ε since there are 7 applications of ε/7-error protocols. It remains to
show that if dist(x, y) = 2 then the algorithm will accept.

Suppose x, y are of distance 2. Then the paths between them are of the following forms
(with edge directions taken from the Schnyder wood).
1. x→ v → y or x→ v ← y. This is covered by step 1.
2. x← v → y. This is covered by step 2. J
Since planar graphs are an upwards family (just insert a new vertex), we obtain a constant-size
probabilistic universal graph for P2.

I Corollary 4.15. For any ε > 0, there is a graph U of size O(log(1/ε)) such that for every
G ∈ P2, G @ε U .

5 Discussion and Open Problems

Error-tolerance. In the introduction we mentioned that the universal SMP model allows
us to study error-tolerance in the SMP model. This could be done as follows: suppose the
referee knows a reference graph G and the players are guaranteed to see a graph that is “close”
to G by some metric. How much does this change the complexity of the problem, compared
to computing G? One common distance metric in, say, the property testing literature, is
to count the number of edges that one must add or delete. That is, for two graphs G,H
on vertex set [n], write dist(G,H) = 1

n2

∑
i,j∈[n] 1 [G(i, j) 6= H(i, j)]. The distance is usually

thought of as a constant. We can easily give a strong negative result for this situation:

I Proposition 5.1. Let F be any family of graphs and Fδ the family of graphs G such that
minF∈F dist(G,F ) ≤ δ. Then

Runiv(Fδ) = Ω(
√
δn) .
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Proof. Let G be any graph on
√
δn vertices and let F ∈ F . Choose any set S ⊆ V (F ) with

|S| = |G|. Construct F ′ by replacing the subgraph induced by S with the graph G. Then
dist(F, F ′) ≤ |G|

2

n2 = δ so F ′ ∈ Fδ. Then the conclusion follows from Theorem 1.6. J

This suggests that this is not the correct way to model contextual uncertainty in the SMP
model, but universal SMP gives a framework for studying many other error tolerance settings.
For example, we could suppose that the referee knows a reference planar graph G, and the
players are guaranteed to see a graph G′ that is close to G and also planar; this would not
increase the cost of the protocol due to our results on planar graphs.

Implicit graph conjecture. A major open problem in graph labeling is the implicit graph
conjecture of Kannan, Naor, and Rudich [23], which asks if every hereditary graph family
F (where for each G ∈ F , every induced subgraph of G is also in F) containing at most
2O(n logn) graphs of size n has an O(logn) adjacency labeling scheme. Not much progress
has been made on this conjecture (see e.g. [33, 10]). We ask a weakened version of this
conjecture:

I Question 5.2. For every hereditary family F = (Fn) such that |Fn| ≤ 2O(n logn), is
Runiv(F) = O(logn)?

Good candidates for disproving the implicit graph conjecture are geometric intersection
graphs, like disk graphs (intersections of disks in R2) or k-dot product graphs (graphs whose
vertices are vectors in Rk, with an edge if the inner product is at least 1) [33]. These are
good candidates because encoding the coordinates of the vertices as integers will fail [22].
Randomized communication techniques may be able to make progress.

Modular lattices. We have shown that there is no constant-cost universal protocol for
distance 2 in modular lattices but, like low-arboricity graphs, adjacency (and therefore
O(logn)-implicit encodings) may still be possible.

Planar graphs. Our protocol for computing distance 2 on planar graphs did not generalize
in a straightforward fashion to distance 3. Nevertheless, we expect that there is a method for
computing k-distance on planar graphs with complexity dependent only on k; given that a
Schnyder wood partitions each edge into 3 groups, we expect that Õ(3k) should be possible,
and maybe only poly(k), considering that there is a O(

√
n) distance-labeling scheme.

Sharing randomness with the referee. Finally, it seems to be unknown what the relation-
ship is between SMP protocols where the referee shares the randomness, and protocols where
the referee is deterministic, even though both models are used extensively in the literature.
Our Proposition 1.8 relates these two models via universal SMP but does not yet give a
general upper bound on the universal cost in terms of the weakly-universal cost.

I Question 5.3. What general upper bounds can we get on universal SMP in terms of
weakly-universal SMP?
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A Appendix

Proof of Proposition 2.5.
1. If A @ B and B @ C with φ, ψ being the respective embeddings then for all u, v ∈ V (A)

we have

C(ψφ(u), ψφ(v)) = B(φ(u), φ(v)) = A(u, v) .

2. In the “only if” direction, it suffices to choose G≡. In the other direction, if φ : V (G)→
V (H) is an embedding and φ(u) = φ(v) then for all w ∈ V (G), G(u,w) = H(φ(u), φ(w)) =
H(φ(v), φ(w)) = G(v, w) so u ≡ v.

3. Let g map a vertex of G to its equivalence class and let u, v ∈ V (G). If G(u, v) = 1 then
G≡(g(u), g(v)) = 1 by definition. If G≡(g(u), g(v)) = 1 then there exists u′ ∈ g(u), v′ ∈
g(v) such that G(u′, v′) = 1, so G(u, v) = G(u′, v) = G(u′, v′) = 1.

4. Let g map vertices in V (G) to their equivalence class and let g(u), g(v) ∈ V (G≡). If
g(u) ≡ g(v) then for any w,G(u,w) = G≡(g(u), g(w)) = G≡(g(v), g(w)) = G(v, w) so
u ≡ v and therefore g(u) = g(v). Therefore the map g(u) 7→ {g(u)} is an isomorphism
G≡ → (G≡)≡.

5. If G @ H then by transitivity, G≡ @ G @ H @ H≡. Likewise, if G≡ @ H≡ then
G @ G≡ @ H≡ @ H.

6. If G≡ is an induced subgraph of H≡ then clearly there is an embedding. On the other
hand, let g(u), g(v) ∈ V (G≡) be the equivalence classes of u, v ∈ V (G) and suppose there
is an embedding φ : G≡ → H≡. If φ(g(u)) = φ(g(v)) then g(u) ≡ g(v) so g(u) = g(v)
since (G≡)≡ ' G≡. Therefore G≡ is an induced subgraph of H≡. J
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