
Equivalence of Systematic Linear Data Structures
and Matrix Rigidity
Sivaramakrishnan Natarajan Ramamoorthy
University of Washington, Seattle, USA
sivanr@cs.washington.edu

Cyrus Rashtchian
University of California, San Diego, USA
crashtchian@eng.ucsd.edu

Abstract
Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds for
linear data structures would imply new bounds for rigid matrices. However, their result utilizes an
algorithm that requires an NP oracle, and hence, the rigid matrices are not explicit. In this work,
we derive an equivalence between rigidity and the systematic linear model of data structures. For
the n-dimensional inner product problem with m queries, we prove that lower bounds on the query
time imply rigidity lower bounds for the query set itself. In particular, an explicit lower bound
of ω

(
n
r

logm
)
for r redundant storage bits would yield better rigidity parameters than the best

bounds due to Alon, Panigrahy, and Yekhanin. We also prove a converse result, showing that rigid
matrices directly correspond to hard query sets for the systematic linear model. As an application,
we prove that the set of vectors obtained from rank one binary matrices is rigid with parameters
matching the known results for explicit sets. This implies that the vector-matrix-vector problem
requires query time Ω(n3/2/r) for redundancy r ≥

√
n in the systematic linear model, improving

a result of Chakraborty, Kamma, and Larsen. Finally, we prove a cell probe lower bound for the
vector-matrix-vector problem in the high error regime, improving a result of Chattopadhyay, Koucký,
Loff, and Mukhopadhyay.

2012 ACM Subject Classification Theory of computation → Cell probe models and lower bounds;
Theory of computation → Circuit complexity

Keywords and phrases matrix rigidity, systematic linear data structures, cell probe model, commu-
nication complexity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.35

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.11921.

Funding Sivaramakrishnan Natarajan Ramamoorthy: Supported by the National Science Foundation
under agreement CCF-1420268.

Acknowledgements We thank Paul Beame, Sajin Koroth, Pavel Hrubeš, Pavel Pudlák, Anup Rao,
Makrand Sinha, Amir Yehudayoff and Sergey Yekhanin for useful discussions. Special thanks to
Paul, Anup, Makrand and Amir for the encouragement to write up these results.

1 Introduction

A matrix is rigid if it is far in Hamming distance from low rank matrices; it is explicit
if its entries are computable in polynomial time. A classic result of Valiant proves that
explicit rigid matrices imply super-linear lower bounds for linear circuits [35], a major
open problem in computational complexity [34, 37]. Implications of new lower bounds for
communication complexity and other models are also known [24, 39]. Unfortunately, the
current bounds for explicit matrices are very far from the required parameters [16, 33],
and natural candidates (e.g., Fourier and Hadamard matrices) have been discovered to

© Sivaramakrishnan Natarajan Ramamoorthy and Cyrus Rashtchian;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 35; pp. 35:1–35:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sivanr@cs.washington.edu
mailto:crashtchian@eng.ucsd.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.35
https://arxiv.org/abs/1910.11921
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

be less rigid than desired [3, 12, 14]. This motivates alternative avenues for constructing
rigid matrices. Recently, multiple connections between data structures and circuits have
arisen [7, 11, 13, 38]. The premise of these results is that hard problems for these models may
shed new light on rigid matrices and circuits. We take a similar angle, studying a generic
linear problem for a model that resembles a depth-two circuit with linear gates.

Valiant’s result concerns arithmetic circuits computing the linear map v 7→ Mv for a
matrix M . In other words, the circuit computes the inner products between v and the rows
of M . We study a related data structure problem, the inner product problem. The task is
to preprocess an n-bit vector v to compute inner products 〈q, v〉 over F2 for queries q ∈ Q,
where Q ⊆ Fn2 is the query set. This problem generalizes the prefix-sum problem [17] and
vector-matrix-vector problem [8, 23].

We consider solving this problem using a restricted data structure model, the systematic
linear model. This model may only store v verbatim along with a small number r � n of
redundant bits, which are the evaluations of r linear functions of v. To compute 〈q, v〉 for
q ∈ Q, the query algorithm must output a linear function of these r bits along with any t
bits of v, where t is the query time. We motivate this model with a simple upper bound.
Suppose that the query set Q happens to be close to an r-dimensional subspace U . More
precisely, assume that dH (q, U) ≤ t for any q ∈ Q, where dH (q, U) := minu∈U dH (q, u) and
dH (q, u) denotes the Hamming distance. The systematic linear model will store r bits that
correspond to inner products between v and some r vectors that form a basis for U . The
query algorithm computes 〈q, v〉 by invoking the identity 〈q, v〉 = 〈u, v〉+ 〈q − u, v〉, using
any vector u ∈ U with dH (q, u) ≤ t. Indeed, the r precomputed bits suffice to determine
〈u, v〉, and at most t bits of v are needed to calculate 〈q − u, v〉.

We observe that rigidity exactly captures the complexity of the inner product problem in
the above model. This connection uses a notion of rigid sets, defined by Alon, Panigrahy
and Yekhanin [5]. Our result shows that an efficient algorithm exists in the above model if
and only if the query set is not rigid in their sense. Conversely, it is possible to derive new
rigidity lower bounds by proving lower bounds for the systematic linear model. A parameter
of interest is the size of the rigid set, which corresponds to the number of queries in the inner
product problem.

Dvir, Golovnev, and Weinstein also demonstrate a connection between rigidity and a
different linear model, which is a restriction of the cell probe model [13]. This model stores
s ≥ n linear functions, and the query algorithm outputs a linear function of t of these s bits.
For the inner product problem with query set Q, they show that a lower bound for linear
data structures leads to a semi-explicit rigid set. When |Q| = m, their result uses a poly(m)
time algorithm that requires access to an NP oracle. Compared to their work, our connection
preserves explicitness and offers a two-way equivalence via the systematic linear model. In
particular, when c′n ≤ r ≤ cn for constants c′, c < 1, a lower bound of t = ω(logm) in the
systematic linear model implies that Q is rigid with better parameters than known results.
Their work requires a lower bound of t = ω(logm logn) against the linear model, and the
resulting set is not explicit. Our results also extend to show that linear data structure lower
bounds lead to explicit rigid matrices. However, compared to the work of Dvir, Golovnev,
and Weinstein, we require stronger lower bounds to achieve new rigidity parameters.

As an application of our framework, we provide new results for the vector-matrix-vector
problem. The task is to preprocess a 0-1 matrixM to compute uᵀMv when given vectors u, v
as the query. The boolean semiring version of this problem has received much recent attention
due to connections to the online matrix-vector multiplication conjecture [18]. Moreover, this
problem has motivated the study of data structures for a super polynomial number of queries,

S. Natarajan Ramamoorthy and C. Rashtchian 35:3

even when the output is binary [8, 9]. Other prior work has either studied binary output
problems with poly(n) queries (see e.g. [28, 30]) or achieved better lower bounds by looking
at multi-output problems (see e.g. [10, 20]). In general, the vector-matrix-vector problem is
a good testbed for proving better data structure lower bounds, because linear algebraic tools
could provide new insights.

The F2 variant of this problem specializes the inner product problem because uᵀMv

equals the inner product of uvᵀ andM (viewed as vectors). The query set consists of
√
n×
√
n

matrices with rank one; its size m satisfies logm = Θ(
√
n). As another contribution, we

lower bound the rigidity of this set, and consequently, we obtain a query time lower bound
of Ω(nr logm) = Ω(n3/2/r) for the systematic linear model with redundancy r ≥

√
n. Any

asymptotically better lower bounds for this problem (in the systematic linear model) would
directly imply that this query set is rigid with better parameters than the currently known
results for explicit matrices [4, 5].

As a final result, we prove a new cell probe lower bound for the vector-matrix-vector
problem, without restrictions on the data structure. Our result improves the current best
lower bound due to Chattopadhyay, Koucký, Loff, and Mukhopadhyay [9]. Our lower bound
matches the limit of present techniques and achieves the current best time-space trade-off in
terms of query set size.

1.1 Rigid sets, systematic linear model, and the inner product partial
function

Throughout, let m = m(n) and t = t(n) and r = r(n) denote positive integers, with
m ≥ n ≥ t, r. Alon, Panigrahy and Yekhanin defined the following notion of a rigid set [5].

I Definition (Rigid Set). A set Q ⊆ Fn2 is (r, t)-rigid if for every subspace U ⊆ Fn2 with
dimension at most r, some vector q ∈ Q has Hamming distance at least t from all vectors in
U , that is, dH (q, U) ≥ t.

We define (r′, t′)-rigid for non-integral r′, t′ to mean (br′c , dt′e)-rigid. It will be convenient
to equate a set Q with a matrix MQ by arranging vectors in Q as rows in MQ in any order.
If Q is (r, t)-rigid and |Q| = m, then the corresponding matrix MQ ∈ Fm×n2 is rigid in the
usual sense: for any rank r matrix A, some row in (MQ − A) contains at least t nonzero
entries. Hence, we may refer to rigid sets and rigid rectangular matrices interchangeably. A
matrix in Fm×n2 (or a set of n-dimensional vectors) is explicit if every entry can be computed
in poly(n) time.

A randomm×nmatrix withm = poly(n) will be (εn, δn/ logn)-rigid with high probability
for some constants ε, δ ∈ (0, 1). The key challenge here is to construct explicit rigid matrices,
because they provide circuit lower bounds for functions that can be described in polynomial
time [35]. Alon, Panigrahy and Yekhanin [5] followed by Alon and Cohen [4] exhibit multiple
examples of explicit m× n matrices that are (r, t)-rigid with

t ≥ min
{cn
r

log m
r
, n
}

(1)

where m ≥ n and c is a constant. Note that when r = εn, the current best bound is
t = Ω

(
log m

n

)
. For m = poly(n), this amounts to t = Ω(logn), exponentially far from the

ideal bounds (i.e., matching random constructions). It is an important open problem to
improve the dependence on m in Eq. (1) and to find other candidate sets that may be rigid
with better parameters.

ITCS 2020

35:4 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

Our connection between rigidity and data structures arises via the inner product problem.
The task is to preprocess a vector v ∈ Fn2 to compute inner products. The queries are
specified by Q ⊆ Fn2 , which is called the query set. The data structure must compute the
inner product of v and any q ∈ Q, that is, 〈q, v〉 :=

∑n
i=1 q[i] · v[i] mod 2, where q[i] denotes

the ith coordinate of q.
Consider the following model for solving this problem, known as a systematic linear data

structure. During preprocessing, the data structure stores v along with the evaluations of r
linear functions 〈a1, v〉 , . . . , 〈ar, v〉, where these inner products are single bits, and a1, . . . , ar
denote vectors in Fn2 . To compute the answer on query q, the data structure accesses these r
bits in addition to any t entries of v. That is, the r linear functions are fixed, and the t bits
from v may depend on q and the linear functions. Finally, the query algorithm must output a
linear function of these r bits and the t entries of v. In this fashion it must be able to correctly
compute 〈q, v〉 for all queries q ∈ Q. We note that a result of Jukna and Schnitger [19] shows
that the {a1, . . . , ar} vectors do not depend on v without loss of generality. Letting T (Q, r)
denote the minimum value t of the best data structure for this problem (over worst-case v),
we formalize the model as follows.

I Definition (Systematic Linear Model). Let Q ⊆ Fn2 be a set. Define T (Q, r) to be the
maximum over all v ∈ Fn2 of the minimum t sufficient to compute the inner product 〈q, v〉 for
every q ∈ Q when only allowed to output a linear function of r precomputed linear functions
of v along with any t bits of v.

Note that the model does not charge the query time for accessing the r precomputed bits,
even if t� r. This coincides with the systematic model studied by Chakraborty, Kamma
and Larsen [8].

1.2 Equivalence between rigidity and data structures
We prove that the rigidity of a set Q corresponds to the time complexity T (Q, r) in the
systematic linear data structure model. Some aspects of this result are implicit in prior work
[19, 31], but no previous work seems to show this exact correspondence.

I Theorem 1. A set Q ⊆ Fn2 is (r, t)-rigid if and only if T (Q, r) ≥ t.

Proof. We first prove that T (Q, r) ≥ t implies that Q is (r, t)-rigid. Assume for contradiction
that there is an r-dimensional subspace U such that dH (q, U) < t for all q ∈ Q. Let v ∈ Fn2
be the input data. Store v along with the r bits 〈b1, v〉 , . . . , 〈br, v〉, where b1, . . . , br form a
basis for U . For every q ∈ Q, there exists uq ∈ U such that q − uq has Hamming weight
less than t. Using the r redundant bits, the algorithm on query q can compute 〈uq, v〉 by
writing uq in terms of the stored basis vectors. Then, it computes 〈q − uq, v〉 by accessing
fewer than t coordinates of v. Since 〈q, v〉 = 〈uq, v〉+ 〈q − uq, v〉, we have that T (Q, r) < t,
which is a contradiction.

We now prove that if Q is (r, t)-rigid, then T (Q, r) ≥ t. Let e1, . . . , en denote the standard
basis, and let k = T (Q, r) be the query time. We show that k ≥ t. Consider a systematic
linear data structure whose redundant bits are given by 〈a1, v〉 , . . . , 〈ar, v〉. Let U denote the
span of {a1, . . . , ar}. As Q is (r, t)-rigid, there exists q∗ ∈ Q with dH (q∗, U) ≥ t. When q∗ is
the query, assume that the query algorithm accesses the bits vi1 , . . . , vik for indices i1, . . . , ik
to compute 〈q∗, v〉. Now, define U ′ to be the span of {a1, . . . , ar, ei1 , . . . , eik}. Observe that
all points in U ′ are at distance at most k from U . Thus, dH (q∗, U) ≤ dH (q∗, U ′) + k. We
will show that dH (q∗, U ′) = 0, which implies that k ≥ t. We claim that if dH (q∗, U ′) ≥ 1,
then the query algorithm makes an error. Since dH (q∗, U ′) ≥ 1, there exists a vector y with

S. Natarajan Ramamoorthy and C. Rashtchian 35:5

〈y, q∗〉 = 1. Moreover, this vector can be taken to be orthogonal to U ′ so that 〈y, x〉 = 0 for
every x ∈ U ′. In other words, for every x ∈ U ′ we have 〈y + v, x〉 = 〈y, x〉+ 〈v, x〉 = 〈v, x〉.
Hence, the query algorithm sees the same values on input data y + v and v because it only
accesses the input via vectors in U ′, and we have x ∈ U ′. Thus, the algorithm on query q∗
must err either on input y + v or v because 〈q∗, y + v〉 6= 〈q∗, v〉. J

1.3 Relationship to the cell probe model and other models
The systematic linear model specializes the systematic model [8, 17]. The latter model still
stores the input data x ∈ Fn2 verbatim, and it also stores r < n bits that can be precomputed
from x, where these need not be linear functions of the input data. The query time is t if
the query algorithm reads at most t bits from x to compute a query. The output can also
be an arbitrary function of these t bits along with the r precomputed bits. The systematic
linear model only makes sense for linear queries, whereas the systematic model applies to
arbitrary query functions.

Yao’s cell probe model is the most general data structure model [40]. On input data
x ∈ Fn2 , the data structure stores s cells, containing w bits that are arbitrary functions of x.
Here, w is the word size and s is the space. The query time is t if the algorithm accesses at
most t cells to answer any query about x from a set of m possible query functions. There is
a rich collection of lower bounds for this model (see e.g. [2, 15, 20, 26, 27, 28, 29]). The best
lower bounds known are of the form

t ≥ min
{
c log m

n

log sw
n

,
cn

w

}
, (2)

where m ≥ n is the number of queries and c is a constant. It is a long-standing problem to
prove that t = ω(logm) for any explicit problem, even in the linear space regime s = O(n)
and w = O(1).

A special case of the cell probe model is the linear model [1, 13]. The latter model stores
s ≥ n linear functions of x (implicitly w = 1 is fixed). The query time is t if the query
algorithm reads at most t of these s bits to compute a query. The output is restricted to
be a linear function of these t bits. A distinguishing aspect between linear and systematic
linear is that in the latter model, the query algorithm is not charged for accessing the r
precomputed bits. In Section 2, we compare the linear and systematic linear models in the
context of rigidity and previous work [13].

Equivalences all the way down

We note that the systematic data structure model is identical to the common bits model
defined by Valiant [36]. Corrigan-Gibbs and Kogan [11] demonstrate a relationship between
the common bits model and a variant of the systematic model defined by Gal and Miltersen [17].
The common bits model is nothing but a certain depth two circuit, and the systematic linear
model is simply the common bits model with the restriction that the common bits and
output gates are linear functions [31]. Hence, in language of data structures, the linearization
conjecture of Jukna and Schnitger posits that the systematic linear model is asymptotically
as powerful as the systematic model for answering linear queries [19].

1.4 The vector-matrix-vector problem
We now define the vector-matrix-vector problem, which we call “the uᵀMv problem” for
short. Let n be a perfect square. After preprocessing a matrix M ∈ F

√
n×
√
n

2 , the goal is
to output the binary value uᵀMv for vectors u, v ∈ F

√
n

2 . It will be convenient to consider

ITCS 2020

35:6 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

a
√
n ×
√
n matrix as an n-bit vector vec(M) by concatenating consecutive rows. More

formally, let x = vec(M), and for i ∈ {1, 2, . . . , n}, set x[i] = M [a, b], where a and b satisfy
i = (a− 1)

√
n+ b and a, b ∈ {1, 2, . . . ,

√
n}. Then, uᵀMv = 〈vec(uvᵀ), vec(M)〉. In this way

we consider the uᵀMv problem a special case of the inner product problem. The query set is
the collection of rank one binary matrices. Let Υ ⊆ Fn2 denote the set of vectors obtained
from rank one binary matrices via M 7→ vec(M), that is,

Υ :=
{

vec(uvᵀ)
∣∣∣ u, v ∈ F

√
n×
√
n

2

}
⊆ Fn2 . (3)

This set has size |Υ| = 22
√
n − 2

√
n+1 + 1.

A classic result of Artazarov, Dinic, Kronrod and Faradzev [6] provides a data structure
with space s = poly(n), word size w = O(logn), and time t = O(n/ logn). In fact, this
algorithm operates in the linear cell probe model. It is a central open question to determine
whether t = Ω(n) is necessary in linear space regime, that is, when s = O(n) and w = O(1).

The current best cell probe lower bound for the uᵀMv problem is due to Chattopadhyay,
Koucký, Loff, and Mukhopadhyay [9]. Moreover, their lower bound holds for a randomized
model with high error. For constants c and c′, they prove that if for every matrix M and
every query uvᵀ, the query algorithm correctly computes uᵀMv with probability at least
1
2 + 1

2c′√
n , then

t ≥ min
{

c
√
n

log sw√
n

,
cn

w

}
(4)

We know better lower bounds for the uᵀMv problem in the systematic model. Chakraborty,
Kamma, and Larsen [8] prove that t and r must satisfy t · r = Ω(n3/2/ logn) as long as
r ≥
√
n. In the case of r ≤

√
n, they prove that t = Ω(n/ logn). As the systematic model

subsumes the linear version of this model, combining their result with Theorem 1 implies
that Υ is (r, t)-rigid with

t = Ω
(

n3/2

max{
√
n, r} · logn

)
. (5)

1.5 New results on the rigidity of Υ and the cell probe complexity of
the uᵀMv problem

We lower bound the rigidity of Υ, defined in Eq. (3). This also implies a lower bound in
the systematic linear model. The proof is inspired by a result of Alon, Panigrahy, and
Yekahnin [5].

I Theorem 2. Let n ≥ 1024. The set Υ ⊆ Fn2 of rank one matrices is (r, t)-rigid with
t ≥ n3/2

128·max{
√
n,r} .

We improve the prior bound in Eq. (5) by an Ω(logn) factor. For example, when r ≤
√
n,

then t = Ω(n), and when r = n/2, then t = Ω
(
n1/2). Theorem 2 matches Eq. (1), the

current best bound for explicit rigid sets. We do not know whether there is a subspace U of
linear dimension such that all elements of Υ are at distance o(n) from U (unlike for some set
rigidity results, where the bounds are tight). As a corollary of Theorem 1, we immediately
get that

T (Υ, r) ≥ n3/2

128 ·max{
√
n, r}

.

S. Natarajan Ramamoorthy and C. Rashtchian 35:7

In other words, we prove a lower bound for the uᵀMv problem in the systematic linear model
that improves the prior bound by an Ω(logn) factor. The proof of Theorem 2 appears
in Section 3.

We also prove a general cell probe lower bound for the uᵀMv problem in the high error
regime. Our result improves the previous lower bound in Eq. (4). For example, in the linear
space regime, when s = O(n) and w = O(1), we show that t = Ω(

√
n) while the prior result

gives only t = Ω(
√
n/ logn).

I Theorem 3. Let M ∈ F
√
n×
√
n

2 be a matrix. If a randomized data structure with space s,
word size w, and time t correctly computes queries for the uᵀMv problem with probability at
least 1

2 + 1
2

√
n/64 , then

t ≥ min
{
c
√
n

log sα
n

,
cn

α

}
where 0 < c ≤ 1/36 is a universal constant and α := 2(w + log sw

n).

The prior work utilizes a general lifting result for two-way communication complexity from
parity decision trees [9]. To obtain the improved bound, we use a variant of the cell sampling
technique [21, 27] combined with a reduction to a new lower bound on one-way communication
(via discrepancy). The modifications over standard techniques are needed to handle the high
error regime for a binary output problem. We note that a recent result of Larsen, Weinstein
and Yu also uses one-way communication to prove lower bounds for binary output problems
for dynamic data structures [22]. However, their method seems limited to only handling
zero error query algorithms. The proof of Theorem 3 appears in Section 4. Specifically, see
Lemma 14 in Section 4 for the variant of cell sampling and see Theorem 11 in Section 4.1 for
the discrepancy argument.

2 Linear Data Structures and Rigidity

In this section, we relate linear data structures and rigidity. As linear data structures are
a special case of the cell probe model, we may obtain rigidity lower bounds from strong
enough static data structure lower bounds (when the queries are linear). We also compare
with Dvir, Golovnev, and Weinstein, who exhibit a similar connection [13]. We first provide
some notation.

I Definition. Let Q ⊆ Fn2 be a set. Define LT(Q, s) to be the maximum over all v ∈ Fn2
of the minimum t sufficient to compute the inner product 〈q, v〉 for every q ∈ Q when the
query algorithm’s output is a linear function of t bits chosen from the s precomputed linear
functions of v.

Table 1 provides a glimpse of our results on linear data structures along with a comparison
to [13]. Recall that a set Q ⊆ Fn2 is explicit if each coordinate of an arbitrary element of the set
can be computed in poly(n) time. The prior work shows that sufficiently strong lower bounds
against linear data structures will imply semi-explicit rigid sets. A bit more formally, consider
a data structure query set Q ⊆ Fn2 of size m for the inner product problem. They show the
following: If LT(Q, c · n) ≥ t for some constant c, then there is a (n′/2, t/ logn)-rigid set Q′
of size at most m contained in Fn′

2 , where n′ ≥ t. However, the set Q′ is only semi-explicit in
that it is in PNP – every element can be computed by a poly(m) time algorithm with access
to an NP oracle.

ITCS 2020

35:8 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

Table 1 Comparison with [13, Theorem 7.1]: Let Q ⊆ Fn2 of size m be a query set, c ≥ 1 and δ > 0
be constants, and let k = LT(Q, 3n/2). The second column states the lower bound on LT(Q, 3n/2)
that implies existence of rigid sets whose parameters are given in the third column. All rigid sets
have size at most poly(m) and are contained in Fk2 .

m vs n k = LT(Q, 3n/2) Rigidity Bounds Explicitness Reference

m = nc
k = ω

(√
n logn

)
(k/2, ω (logn))-rigid poly(n) time This work

k = ω
(
log2 n

)
(k/2, ω (logn))-rigid poly(n) time + NP oracle calls [13]

m = nc
k = Ω

(
n(1+δ)/2) (

k/2,Ω
(
nδ
))
-rigid poly(n) time This work

k = Ω
(
nδ logn

) (
k/2,Ω

(
nδ
))
-rigid poly(n) time + NP oracle calls [13]

m = 2c
√
n

k = ω
(
n3/4) (

k/2, ω
(√

n
))
-rigid poly(n) time This work

k = ω
(√

n · logn
) (

k/2, ω
(√

n
))
-rigid poly

(
2

√
n
)
time + NP oracle calls [13]

We now summarize a few differences between our work and [13]. Our result proves that
polynomial lower bounds on the query time imply the existence of an explicit rigid set, which
is in contrast to semi-explicit sets obtained by [13]. On the other hand, explicitness comes
with a cost; when m = poly(n), we need much stronger data structure lower bounds to
produce explicit rigid sets. When m� poly(n), the algorithm of [13] takes poly(m) time with
access to an NP oracle to compute an element of the semi-explicit rigid set. For problems
such as the uᵀMv problem, this is super polynomial time. The rest of this section concerns
proving the following theorem, which implies all of our results in Table 1.

I Theorem 4. Let k = LT(Q, 3n/2) and let Q ⊆ Fn2 of size m be an explicit query set. There
exists a set Q′ ⊆ Fk2 with size at most m ·

⌈
n
k

⌉
, whose elements can be computed in poly(n)

time. Moreover, if k ≥ 2
√
n, then Q′ is explicit and

(
k
2 ,

k2

4n

)
-rigid.

Note that for every s ≥ 3n/2, we have that LT(Q, 3n/2) ≥ LT(Q, s). Hence, a sufficiently
strong lower bound on LT(Q, s) for any s ≥ 3n/2 will imply a rigidity lower bound. The
following corollary shows the consequence of Theorem 4 for specific values of k.

I Corollary 5. Let k = LT(Q, 3n/2) and let Q ⊆ Fn2 of size m be an explicit query set. There
exists a set Q′ ⊆ Fk2 with size at most m ·

⌈
n
k

⌉
, whose elements can be computed in poly(n)

time. Moreover,
(a) If k = ω

(√
n logm

)
, then Q′ is explicit and (k/2, ω(logm))-rigid.

(b) If k = Ω
(
n(1+δ)/2) for some δ > 0, then Q′ is explicit and

(
k/2,Ω

(
nδ
))
-rigid.

Corollary 5(a) explains the first and last rows in Table 1, and Corollary 5(b) explains
the middle row. Using Corollary 5(a) applied to Υ with m = 22

√
n − 2

√
n+1 + 1, we obtain

that a lower bound of LT(Υ, 3n/2) ≥ ω(n3/4) would imply the existence of an explicit set
Q′ ⊆ Fk2 of size 2O(

√
n) that is (k/2, ω(

√
n))-rigid. We note that it is an open question to

prove LT(Υ, 3n/2) ≥ ω(
√
n).

2.1 Proof of Theorem 4
We already know the equivalence between systematic linear data structures and rigidity (from
Theorem 1). Therefore, it is sufficient to design a linear data structure from a systematic
linear data structure to relate the former with rigidity.

S. Natarajan Ramamoorthy and C. Rashtchian 35:9

I Proposition 6. Let Q ⊆ Fn2 be a query set. If T (Q, r) ≤ t, then LT(Q,n+ r) ≤ t+ r.

Proof. Let v ∈ Fn2 be the input data and 〈a1, v〉 , . . . , 〈ar, v〉 be the r redundant bits stored by
the systematic linear data structure. We now describe a linear data structure for Q with space
n+ r and query time t+ r. The data structure stores 〈a1, v〉 , . . . , 〈ar, v〉 , 〈e1, v〉 , . . . , 〈en, v〉,
where e1, . . . , en are the standard basis vectors. The query algorithm on q ∈ Q first accesses
〈a1, v〉 , . . . , 〈ar, v〉 and then simulates the query algorithm of the systematic linear data
structure on q. Since the systematic linear data structure accesses at most t bits from
〈e1, v〉 , . . . , 〈en, v〉, we can conclude that the query time is at most t+ r. J

We prove that if a set contained in a n-dimensional space is (r, t)-rigid, then there is
another (r, tr/n)-rigid set which is contained in a 2r-dimensional space.

I Lemma 7. Let r, n be positive integers. If S ⊆ Fn2 is (r, t)-rigid of size m, then there is a
set S′ ⊆ F2r

2 of size at most m ·
⌈
n
2r
⌉
that is (r, tr/n)-rigid. Moreover, if S is explicit, then

each element of S′ can be computed in poly(n) time.

Proof. Let k =
⌊
n
2r
⌋
and define S1, . . . , Sk ⊆ F2r

2 by

Si = {(s[2r · (i− 1) + 1], . . . , s[2r · i]) | s ∈ S}

for each i ∈ {1, 2, . . . , k}. Additionally, if n/2r is not an integer, then define

Sk+1 = {(s[2r · k + 1], . . . , s[n], 0, . . . , 0) | s ∈ S} ⊆ F2r
2 ;

otherwise set Sk+1 = ∅. Define S′ =
⋃k+1
i=1 Si. We claim that S′ is (r, tr/n)-rigid. Indeed,

for the sake of contradiction assume that there is a subspace V in F2r
2 of dimension r

such that all points in S′ are at a distance less than tr/n from V . Consider the subspace
{(v, v, . . . , v) | v ∈ V } ⊆ F2r·(k+1)

2 and project it to the first n coordinates. Call this subspace
V ′, which has dimension r. Now, the distance of each point in S from V ′ is less than
tr
n ·
⌈
n
2r
⌉
< t, which is a contradiction.

Regarding the explicitness of S′, it is clear that all coordinates of an element of S′
correspond to some coordinate of a specific element of S. Since S is explicit, we can infer
that each element of S′ can be computed in poly(n). J

Proof of Theorem 4. We know that LT(Q, 3n/2) = k and k ≤ n, Proposition 6 implies
that T (Q, k/2) ≥ k/2. Therefore by Theorem 1, we can conclude that Q is (k/2, k/2)-rigid.
Lemma 7 implies that there exists a set Q′ that is

(
k
2 ,

k2

4n

)
-rigid and the size of Q′ is at most

m ·
⌈
n
k

⌉
. Moreover, every element of Q′ can be computed in time poly(n). Since k/2 ≥

√
n,

we can conclude that Q′ is explicit. J

3 Rigidity Lower Bounds for the Set of Rank One Matrices

Before proving Theorem 2, we present preliminaries. Recall two standard binomial estimates:

I Proposition 8. For integers 0 ≤ k ≤ `,
1. log

(
`
k

)
≤ k · log e`

k .
2. if k ≤ `/16, then

∑k
i=0
(
`
i

)
≤ 2`/4.

We will need a useful property about the distance of a point from a subspace.

I Lemma 9. Let V ⊆ F`2 be a subspace. For u1, u2 ∈ F`2, dH (u1 + u2, V) ≤ dH (u1, V) +
dH (u2, V) .

ITCS 2020

35:10 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

Proof. Let u′1, u′2 ∈ V be the points in V closest to u1 and u2 respectively. Since u′1 +u′2 ∈ V ,
we have dH(u1 +u2, V) ≤ dH(u1 +u2, u

′
1 +u′2). Note that dH(u1 +u2, u

′
1 +u′2) is the number

of ones in u1 + u2 + u′1 + u′2, which is at most the sum of the number of ones in u1 + u′1 and
u2 + u′2. Therefore,

dH(u1 + u2, u
′
1 + u′2) ≤ dH(u1, u

′
1) + dH(u2, u

′
2) = dH(u1, V) + dH(u2, V). J

A simple counting argument establishes the existence of a point that is far away in
Hamming distance from a collection of large sized sets.

I Lemma 10. Let V1, . . . , Vk be subsets of F`2, each of size at most 2`/2. If k < 2`/4, then
there is a vector v ∈ F`2 such that the Hamming distance of v from each Vi is at least `/16.

Proof. For every i ∈ [k], define B(Vi, `/16) =
∣∣{v ∈ F`2

∣∣ dH (v, Vi) < `/16
}∣∣ . For any u ∈ Vi,

the number of vectors in F`2 at a distance less than `/16 from u is at most
∑`/16
j=0

(
`
j

)
≤ 2`/4,

where the inequality follows from Proposition 8. Hence B(Vi, `/16) ≤ |Vi| · 2`/4 = 23`/4. Since
k∑
i=1

B(Vi, `/16) ≤ k · 23`/4 < 2`,

there is a v ∈ F`2 such that dH (v, Vi) ≥ `/16 for every i ∈ [k]. J

3.1 Proof of Theorem 2
Let V be any r′-dimensional subspace of Fn2 , where r′ ≥ r is the smallest positive integer
divisible by

√
n. We first define the inverse of vec(·). For every v ∈ Fn2 , define mat(v)

to be the matrix obtained by splitting v into
√
n length consecutive blocks and stacking

each of these blocks to form a
√
n ×
√
n matrix. Formally, mat(v) ∈ F

√
n×
√
n

2 is such that
mat(v)[a, b] = v[(a− 1)

√
n+ b] for every a, b ∈ [

√
n]. Note that vec(mat(v)) = v.

We provide a brief outline of the proof of Theorem 2. The first step of the proof is to
produce a vector in v that is at a distance of Ω(n) from V and mat(v) is low rank. The
rank being low is helpful as we can express mat(v) as the sum of a small number of rank
one matrices. Lemma 9 will then imply the existence of a rank one matrix that is far
away from V . If we only cared about the existence of a vector that is far away from V ,
Lemma 10 would suffice. To ensure that simultaneously the rank is small, we first project
V on to n/2r′ coordinates indexed by consecutive blocks each of length 2r′. Then we find
a vector v′ ∈ F2r′

2 that is far away from all the projections, which is still guaranteed by
Lemma 10. Concatenating v′ with itself 2r′ times has the property that its corresponding
matrix is low rank.

Let k = max
{⌊

n
2r′

⌋
, 1
}
. The goal is to find a v ∈ Fn2 such that dH (v, V) ≥ k · r′/8 and

the rank of mat(v) is at most 2r′/
√
n. If

⌊
n

2r′

⌋
≥ 1, then define S1, . . . , Sk such that

Si = {(i− 1) · 2r′ + 1, . . . , i · 2r′}

for i ∈ [k]; otherwise, define S1 = [n]. By definition, the dimension of VSi is at most
r′ = |Si|/2, for every i ∈ [k]. Since r′ ≥

√
n and n ≥ 1024, we can infer that k ≤ 2r′

and 2r′ < 2r′/2. Lemma 10 implies the existence of a v′ ∈ F2r′

2 with the property that
dH (v′, VSi) ≥ r′/8 for every i ∈ [k]. Now define v ∈ Fn2 by

v[i] =


v′ [i mod 2r′] if i ≤ k · 2r′ and i mod 2r′ 6= 0,
v′ [2r′] if i ≤ k · 2r′ and i mod 2r′ = 0,
0 if i > 2kr′,

S. Natarajan Ramamoorthy and C. Rashtchian 35:11

for all i ∈ [n]. In words, v is the length n vector that is the concatenation of k copies of v′
along with the vector of zeros of length n− 2kr′. By the choice of v, we get that,

dH (v, V) ≥
k∑
i=1

dH (v, VSi) ≥ k · r′/8.

Moreover, the rank of mat(v) is at most 2r′
√
n
. Therefore we can express

mat(v) =
2r′/
√
n∑

i=1
aib

ᵀ
i ,

for some a1, b1, . . . , a 2r′
√
n

, b 2r′
√
n

∈ F
√
n

2 . By Lemma 9, we know that

dH (v, V) ≤
2r′/
√
n∑

i=1
dH (vec(aibᵀi), V) .

Hence there exists an i ∈
[

2r′
√
n

]
such that dH (vec(aibᵀi), V) ≥

√
n·k
16 ≥ n3/2

64r′ . The observation
that r′ ≤ 2 max{

√
n, r} completes the proof of the theorem.

I Remark (Extension to strong rigidity). Alon and Cohen [4] defined the notion of strong
rigidity; a set Q ⊆ Fn2 is (r, t)-strongly rigid if for every subspace of Fn2 of dimension at most
r, the average distance of all the points to the subspace is at least t. For strong rigidity,
the best lower bounds known for explicit sets are also of the form given in Eq. (1). We can
show that Υ is (r, t)-strongly rigid with t ≥ Ω

(
n3/2

max{
√
n,r}

)
, matching the best strong rigidity

bounds known for explicit sets. We sketch the proof here. We know that

uᵀMv + (u+ ei)ᵀMv + uᵀM(v + ej) + (u+ ei)ᵀM(v + ej) = bᵀiMbj ,

where u, v ∈ F
√
n

2 and e1, . . . , e√n are standard basis vectors in F
√
n

2 . This fact can be used
to prove that the matrix MΥ corresponding to the set Υ is a generator matrix of a 4-query
locally decodable code that tolerates a constant fraction of errors. A result of [13, Theorem
6] shows that Theorem 2 and the locally decodable code property of MΥ imply the strong
rigidity of Υ.

4 Cell Probe Lower Bounds for the uᵀMv Problem

We know of two techniques for proving cell probe lower bounds matching Eq. (2). One
is a technique of Pǎtraşcu and Thorup [30] who combined the communication complexity
simulation of Miltersen [25] with multiple queries on the same input data. The other is the
technique we use, which is based on cell sampling. Cell sampling typically requires one to
work with large sized fields in order to handle errors. This large field size is needed to encode
a large subset of the correctly computed queries using a small subset of cells. Here, we avoid
encoding the subset of queries by a reduction to one-way communication complexity.

Proof outline for Theorem 3

By Yao’s min-max principle, it suffices to prove a lower bound on deterministic data structures.
The hard distribution on the input data M and query uvᵀ we use is given by sampling
M, (u, v) uniformly and independently at random. We prove the theorem by contradiction,

ITCS 2020

35:12 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

and we start by assuming that the query time is small. The proof is carried out in three
steps. First, modify the data structure so that for every M , the fraction of queries correctly
computed is at least 1/2. This modification only increases the query time and space by 1,
and it can only increase the overall probability of the query algorithm being correct. Second,
for a given M , we use a variant of cell sampling (see Lemma 14) to obtain a small subset of
cells S and a large subset of queries Q′ such that all queries in Q′ can be computed by only
accessing cells in S. Moreover,

Pr [query algorithm correctly computes uᵀMv | uvᵀ ∈ Q′]
≈ Pr [query algorithm correctly computes uᵀMv] .

Third, we show that S can be used to design an efficient protocol for the following com-
munication game: Alice’s input is M and Bob’s input is uvᵀ, and the goal is for Bob to
correctly compute uᵀMv on a sufficiently good fraction of the inputs after receiving a message
from Alice.

We now describe the protocol (see Figure 1). Alice sends the locations and contents of S.
This ensures that Bob correctly computes uᵀMv on a large fraction of queries in Q′. Alice
also communicates the majority value of uᵀMv for uvᵀ /∈ Q′ so that Bob is correct on half
of his possible inputs that are not in Q′. Overall, Bob’s output is correct on a sufficiently
good fraction of all M, (u, v). Since we have assumed that the query time is small, we are
able to show that Alice’s communication is small. This contradicts a lower bound on the
communication complexity of this game. More precisely, we prove the following lower bound.

I Theorem 11. Suppose that Alice gets a uniformly random matrix M ∈ F
√
n×
√
n

2 as input
and Bob receives a uniform pair (u, v) ∈ F

√
n

2 × F
√
n

2 as input. If Alice sends a deterministic
message to Bob and Bob computes uᵀMv such that

Pr
M,u,v

[Bob computes uᵀMv correctly] ≥ 1
2 + 1

2
√
n/8 ,

then Alice must communicate at least n/10 bits.

Previously, in the randomized two-way communication setting, Chattopadhyay, Koucký, Loff,
and Mukhopadhyay [9] proved a lower bound for the game given in Theorem 11. Their lower
bound implies the lower bound in Theorem 11 against randomized protocols. We need a
lower bound against deterministic protocols under the uniform distribution on the inputs,
and we cannot use their theorem as a black-box. We provide a straightforward proof of
Theorem 11 in Section 4.1 by using the discrepancy method on a related communication
game (resembling a direct sum, where Bob receives multiple inputs).

Preliminaries

Before presenting the proof of Theorem 3, we define some notation. For a real valued function
f with a finite domain X × Y , Ex,y [f(x, y)] = 1

|X|·|Y | ·
∑
x∈X,y∈Y f(x, y). Similarly, for

X ′ ⊆ X, Ex,y [f(x, y) | x ∈ X ′] = 1
|X′|·|Y | ·

∑
x∈X′,y∈Y f(x, y). An argument in the proof

of Theorem 3 requires an upper bound on the number of bits to encode the contents and
locations of a subset of the cells, which is given by the following proposition.

I Proposition 12. Let S be a subset of the cells of a data structure with word length w and
size s. Then, the contents and locations of S can be encoded in |S| · w + |S| · log es

|S| bits.

Proof. Since each cell stores w bits, the number of bits to encode the contents is |S| · w.
Since the total number of cells is s, the locations can be encoded in log

(
s
|S|
)
≤ |S| · log es

|S|
bits, where the inequality followed from Proposition 8. J

S. Natarajan Ramamoorthy and C. Rashtchian 35:13

4.1 Proof of Theorem 11
We start by discussing a slightly related problem, whose solution will lead to the proof strategy
used here. Let M ∈ F

√
n×
√
n

2 , v ∈ F
√
n

2 , and e1, . . . , e√n be the standard basis vectors in
F
√
n

2 . Consider the communication game in which Alice gets as input a uniform random M

and Bob gets as input a uniform random pair (ei, v). Bob’s goal is to compute eᵀiMv after
receiving a message from Alice. To understand how much Alice has to communicate, it is
natural to look at the problem where Bob computes

∑√n
i=1 e

ᵀ
iMvi, where v1, . . . , v√n ∈ F

√
n

2 .
Now observe that this sum is the same as the trace of

(∑√n
i=1 eiv

ᵀ
)
M , which in turn is

the inner product between two n-bit vectors. The communication complexity of the inner
product between two n-bit vectors is very well understood. Therefore, the lower bound
on the amount of communication to compute the inner product between two n-bit vectors
translates to a lower bound to the problem of computing eᵀiMv. This strategy applied to
our setting gives us the following lower bound, which will be used to prove Theorem 11. Our
presentation closely follows [32, Chapter 5].

I Lemma 13. Let 0 < ε ≤ 1/2 and let k be an integer. Alice gets a uniformly random
M ∈ F

√
n×
√
n

2 as input and Bob receives k uniform pairs (u1, v1) , . . . , (uk, vk) ∈ F
√
n

2 × F
√
n

2
as input. Assume that Alice communicates a deterministic message to Bob, and Bob computes∑k

i=1 u
ᵀ
iMvi with

Pr
M,u1,v1,...,uk,vk

[
Bob computes

k∑
i=1

uᵀiMvi correctly
]
≥ 1

2 + ε.

If k ≤
√
n, then Alice must communicate at least 9k

√
n/40− log(1/ε) bits.

Proof. We use the discrepancy method to prove the communication lower bound. This
requires upper bounding the discrepancy of the communication matrix under a given distri-
bution. Let R be a rectangle of the communication matrix, which is defined by indicator
functions AR and BR such that (M, ((u1, v1) , . . . , (uk, vk))) is in the rectangle R if and only
if AR(M) = 1 and BR ((u1, v1) , . . . , (uk, vk)) = 1.

Consider the distribution in whichM, (u1, v1) , . . . , (uk, vk) are chosen at random uniformly
and independently. We upper bound the discrepancy under this distribution. In other words,
we claim that for every rectangle R,

E
M,(u1,v1),...,(uk,vk)

[
AR(M)BR ((u1, v1) , . . . , (uk, vk)) (−1)

∑k

i=1
uᵀ
i
Mvi

]
≤ 2 · 2−9k

√
n/40.

(6)

By a standard relation in communication complexity between the number of bits commu-
nicated and discrepancy of rectangles (see [32, Chapter 5, Theorem 5.2]), Eq. (6) implies
that Alice must communicate at least 9k

√
n/40− log(1/ε) bits. We are left with the proof of

Eq. (6).(
E

(u1,v1),...,(uk,vk)

[
BR ((u1, v1) , . . . , (uk, vk)) E

M

[
AR(M)(−1)

∑k

i=1
uᵀ
i
Mvi

]])2

≤ E
(u1,v1),...,(uk,vk)

[
BR ((u1, v1) , . . . , (uk, vk))2

(
E
M

[
AR(M)(−1)

∑k

i=1
uᵀ
i
Mvi

])2
]

≤ E
(u1,v1),...,(uk,vk)

[(
E
M

[
AR(M)(−1)

∑k

i=1
uᵀ
i
Mvi

])2
]
.

ITCS 2020

35:14 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

where the first inequality follows from convexity and the second one follows from the fact
that BR ((u1, v1) , . . . , (uk, vk)) ≤ 1. Now

E
(u1,v1),...,(uk,vk)

[(
E
M

[
AR(M)(−1)

∑k

i=1
uᵀ
i
Mvi

])2
]

≤ E
(u1,v1),...,(uk,vk),M,M ′

[
AR(M)AR(M ′)(−1)

∑k

i=1
uᵀ
i
Mvi+

∑k

i=1
uᵀ
i
M ′vi

]
≤ E
M,M ′

[∣∣∣∣ E
(u1,v1),...,(uk,vk)

[
(−1)

∑k

i=1
uᵀ
i
(M+M ′)vi

]∣∣∣∣]
= E
M

[∣∣∣∣ E
(u,v)

[
(−1)u

ᵀMv
]∣∣∣∣k
]
,

where the last equality follows from the fact that (u1, v1), . . . , (uk, vk) are chosen independent
of each other and M + M ′ is uniformly distributed as M and M ′ are chosen uniformly
and independently at random. We are left with upper bounding EM

[∣∣E(u,v)
[
(−1)uᵀMv

]∣∣k].
First note that if M has rank r, then Eu,v

[
(−1)uᵀMv

]
= 2−r. This is because,

E
u,v

[
(−1)u

ᵀMv
]

= 1
2
√
n
·

(∑
v:Mv=0

1
)

+ 1
2
√
n
·

 ∑
v:Mv 6=0

E
u

[
(−1)u

ᵀMv
]

= 2
√
n−r

2
√
n

+ 0 = 2−r.

In addition, PrM [rank of M ≤ 9
√
n/20] ≤ 2−9n/10. Indeed, the number of matrices in

F
√
n×
√
n

2 of rank at most k is at most(
2
√
n

k

)
·
(
2k
)√n ≤ 22k

√
n.

Therefore, using the law of total expectation, we have that

E
M

[∣∣∣∣ E
(u,v)

[
(−1)u

ᵀMv
]∣∣∣∣k
]
≤ Pr

M

[
rank of M ≤ 9

√
n/20

]
+ 2−9k

√
n/20 ≤ 2 · 2−9k

√
n/20,

where the last inequality followed from the fact that k ≤
√
n. J

Proof of Theorem 11. Let c be the number of bits communicated by Alice. We show that
c > n/10. Define ZM (u, v) = 1 if Bob correctly computes uᵀMv and ZM (u, v) = −1
otherwise. By the definition of ZM (u, v) and the lower bound on the probability of Bob’s
computation being correct, we have that EM,u,v [ZM (u, v)] ≥ 2 · 2−

√
n/8.

We note that it is without loss of generality that Eu,v [ZM (u, v)] ≥ 0 for every M ∈
F
√
n×
√
n

2 . This is because Alice on input M can send an extra bit indicating whether
Eu,v [ZM (u, v)] < 0 and Bob will flip his output accordingly.

We now use the given protocol to design a protocol for a new communication game:
Suppose that Alice gets a uniformly random M ∈ F

√
n×
√
n

2 as input and Bob receives
√
n

uniform pairs (u1, v1), . . . , (u√n, v√n) ∈ F
√
n

2 × F
√
n

2 as input. We will use Lemma 13 with
k =
√
n to obtain the desired lower bound on c.

S. Natarajan Ramamoorthy and C. Rashtchian 35:15

We claim that there is a communication protocol in which Alice communicates c bits and
Bob computes

∑√n
i=1 u

ᵀ
iMvi such that

Pr
M,u1,v1,...,u√

n,v
√
n

Bob computes

√
n∑

i=1
uᵀiMvi correctly

 ≥ 1
2 + 2

√
n−1

2n/8
. (7)

Alice’s message is same as before, and Bob computes each of uᵀiMvi separately and outputs
the sum modulo 2. We now prove Eq. (7). For a fixed M , the probability that Bob correctly
computes

∑√n
i=1 u

ᵀ
iMvi is 1

2

(
1 + (Eu,v [ZM (u, v)])

√
n
)
. Therefore the overall probability that

Bob correctly computes
∑√n
i=1 u

ᵀ
iMvi is at least

1
2

(
1 +

∑
M (Eu,v [ZM (u, v)])

√
n

2n

)
≥ 1

2

(
1 +

(
E

M,u,v
[ZM (u, v)]

)√n)
≥ 1

2 + 2
√
n−1

2n/8
,

where the first inequality follows from convexity of the function f(x) = xk with k =
√
n.

Applying Lemma 13 with k =
√
n implies that c > n/10, which completes the proof of the

theorem. J

4.2 Proof of Theorem 3
If n < 36, the theorem is vacuously true as c ≤ 1/36. For the rest of the argument we will
assume that n ≥ 36. We prove a lower bound on the query time t against deterministic data
structures with space s and word size w. Suppose that the input data M and query uvᵀ is
given by choosing M,u, v uniformly and independently at random, and the query algorithm
is guaranteed to satisfy

Pr
M,u,v

[query algorithm computes uᵀMv correctly] ≥ 1
2 + 2−

√
n/16.

By Yao’s minmax principle, this will imply a lower bound on randomized data structures.
We first modify the given data structure to ensure that for every M ∈ F

√
n×
√
n

2 , the
probability that uᵀMv is correctly computed is at least 1/2. Assume that we have a data
structure with query time t′, space s′ and word size w. The modified data structure stores
an extra bit indicating whether the Pru,v [query algorithm computes uᵀMv correctly] is less
than 1/2 or not for a given M . The query algorithm is the same as before, but accesses this
extra bit to flip the output if it is set to 1. Clearly, the new data structure has query time
t = t′ + 1, space s = s′ + 1 and word size w. Moreover, under this modification, we have

PrM,u,v [query algorithm computes uᵀMv correctly] ≥ 1/2 + 2−
√
n/16.

Pru,v [query algorithm computes uᵀMv correctly] ≥ 1/2 for every M .
In the rest of the proof, we work with this modification and show that t ≥ Ω

(
min

{
n
β ,

√
n

log sβ
n

})
,

where β = 2(w + log sw/n). Observe that β ≤ n/256; otherwise the lower bound is vacuous.
Assume by contradiction that t ≤ min

{
n

256β ,
√
n

256 log sβ
n

}
. Define ZM (u, v) = 1 if the query

algorithm correctly computes uᵀMv, and −1 otherwise. We have

E
M,u,v

[ZM (u, v)] = 2 Pr
M,u,v

[query algorithm computes uᵀMv correctly]− 1

≥ 2 · 2−
√
n/16. (8)

Note that EM,u,v [ZM (u, v)] captures the advantage or bias of the data structure - it is much
more convenient to work with the advantage than the probability of the query algorithm
being correct.

ITCS 2020

35:16 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

Input: Alice’s input is M and Bob’s input is (u, v)
Output: Alice communicates a deterministic message and Bob computes uᵀMv.

1 Let Q1 = {uvᵀ | ZM (u, v) = 1} and Q2 = {uvᵀ | ZM (u, v) = −1};
2 Apply Lemma 14 with Q1, Q2 to obtain a subset of cells S and subsets Q′1 ⊆ Q1 and

Q′2 ⊆ Q2;
3 Let b ∈ {0, 1} be such that

Pru,v [uᵀMv = b | uvᵀ /∈ Q′] ≥ Pru,v [uᵀMv = 1− b | uvᵀ /∈ Q′], where
Q′ = Q′1 ∪Q′2;

4 Alice communicates b followed by locations and contents of S;
5 if uvᵀ ∈ Q′ then Bob uses the query algorithm to compute uᵀMv;
6 else Bob outputs b;

Figure 1 One-way protocol on inputs M, (u, v) computing uᵀMv.

The following lemma, a variant of cell sampling, guarantees the existence of a small subset
S of cells such that a large number of queries Q′ can be computed by only accessing S, and
Eu,v [ZM (u, v) | uvᵀ ∈ Q′] ≈ Eu,v [ZM (u, v)].

I Lemma 14. Let M ∈ F
√
n×
√
n

2 , and define the sets Q1 = {uvᵀ | ZM (u, v) = 1} and
Q2 = {uvᵀ | ZM (u, v) = −1}. If t ≤ min

{
n

256β ,
√
n

256 log sβ
n

}
, then there exits a subset of cells

S, and subsets Q′1 ⊆ Q1 and Q′2 ⊆ Q2 such that
1. |S| =

⌈
n

128β

⌉
,

2. Pru,v [uvᵀ ∈ Q′1]− Pru,v [uvᵀ ∈ Q′2] ≥ Eu,v [ZM (u, v)] · 2−
√
n/16,

3. Q′1 ∪Q′2 is the set of all queries computed by accessing cells only in S.

We move on to the final step of the proof of Theorem 3. What is left is to design a
one-way protocol using the sets guaranteed by Lemma 14. The protocol is described in
Figure 1. We will show the validity of this protocol by showing that both Alice and Bob
know the subset Q′ of queries. Since Alice’s input is M , she knows the contents of all the
cells, which gives S. With regard to knowing Q′, the locations and contents of cells in S
suffice. This is because the query algorithm can be simulated on all queries to check if any
cell outside of S is being accessed. We are proving Theorem 3 by contradicting Theorem 11,
which is achieved by the following.

I Lemma 15. The protocol in Figure 1 has the following guarantees (a) Alice communicates
fewer than n/10 bits, and (b) PrM,u,v [Bob computes uᵀMv correctly] ≥ 1/2 + 1/2

√
n/8.

Now, we need to prove Lemmas 14 and 15 to complete the proof of Theorem 3.

Proof of Lemma 14. Let S be a uniformly random subset of the cells of size |S| =
⌈

n
128β

⌉
.

Define D(u, v, S) = ZM (u, v) if the query algorithm only accesses cells in S to compute
uᵀMv; otherwise D(u, v, S) = 0. By linearity of expectation,

E
u,v,S

[D(u, v, S)] = E
u,v

[ZM (u, v)] ·
(
s−t
|S|−t

)(
s
|S|
) = E

u,v
[ZM (u, v)] · |S| · (|S| − 1) · · · (|S| − t+ 1)

s · (s− 1) · · · (s− t+ 1)

≥ E
u,v

[ZM (u, v)] ·
(
|S| − t
s

)t
.

S. Natarajan Ramamoorthy and C. Rashtchian 35:17

Recall that |S| ≥ n
128β and t ≤ n

256β . Moreover, β = 2(w + log sw/n) ≥ 2. This implies that(
|S| − t
s

)t
≥ 2−t·log 256sβ

n ≥ 2−16t·log sβ
n .

So we get Eu,v,S [D(u, v, S)] ≥ Eu,v [ZM (u, v)] · 2−16·t·log sβ
n . Therefore, there exists an S

such that

E
u,v

[D(u, v, S)] ≥ E
u,v

[ZM (u, v)] · 2−16·t·log sβ
n ≥ E

u,v
[ZM (u, v)] · 2−

√
n/16,

where the last inequality follows from the fact that 16 · t · log sβ
n ≤

√
n/16. Setting

Q′1 = {uvᵀ ∈ Q1 | D(u, v, S) = 1} and Q′2 = {uvᵀ ∈ Q2 | D(u, v, S) = −1}

completes the proof of the lemma. J

Proof of Lemma 15. We first prove part (a). Recall that β = 2
(
w + log sw

n

)
. Let c be the

number of bits communicated by Alice. By Proposition 12 and the definition of β,

c ≤ 1 +
⌈

n

128β

⌉
· w +

⌈
n

128β

⌉
· log 128e · sβ

n

= 1 +
⌈

n

128β

⌉
·
(
w + log sβ

n

)
+
⌈

n

128β

⌉
· log 128e.

Since β ≥ 2w, β ≥ 2 log s
n and β ≥ log β, we get that w + log sβ

n ≤ 2β. Moreover, using the
fact that

⌈
n

128β

⌉
≤ n

128β + 1, β ≥ 2 and β ≤ n/256, we can say that

c ≤ 1 + 2n
128 + 2β + n log 128e

128β + log 128e

≤ 1 + 2n
128 + 4.5n

128(β/2) + n

128 + log 128e ≤ 10 + 7.5n
128 <

n

10 ,

where the last inequality follows from n ≥ 36.
We now prove part (b) of the claim. Define Z ′M (u, v) = 1 if the Bob correctly computes

uᵀMv and Z ′M (u, v) = −1 otherwise. The probability with which Bob correctly computes
uᵀMv is given by (1 + EM,u,v [Z ′M (u, v)]) /2. We will show that EM,u,v [Z ′M (u, v)] ≥ 2 ·
2−
√
n/8, which will imply that the probability of being correct is at least 1/2 + 2−

√
n/8.

Let Q1, Q2, Q
′
1, Q

′
2, and Q′ be as defined in the protocol in Figure 1. We first establish

some properties about these sets. We know that Pru,v[uvᵀ ∈ Q1] − Pru,v[uvᵀ ∈ Q2] =
Eu,v [ZM (u, v)]. Moreover, the application of Lemma 14 in the protocol is valid since
t ≤ n

256α , and hence

Pr
u,v

[uvᵀ ∈ Q′1]− Pr
u,v

[uvᵀ ∈ Q′2] ≥ E
u,v

[ZM (u, v)] · 2−
√
n/16. (9)

Since Bob can simulate the query algorithm on Q′ by accessing only S, which is guaranteed
by Lemma 14, we have

E
u,v

[Z ′M (u, v)] = Pr
u,v

[uvᵀ ∈ Q′]
(

Pr
u,v

[uvᵀ ∈ Q′1 | uvᵀ ∈ Q′]− Pr
u,v

[uvᵀ ∈ Q′2 | uvᵀ ∈ Q′]
)

+

Pr
u,v

[uvᵀ /∈ Q′]
(

Pr
u,v

[uᵀMv = b | uvᵀ /∈ Q′]− Pr
u,v

[uᵀMv = 1− b | uvᵀ /∈ Q′]
)

≥
(

Pr
u,v

[uvᵀ ∈ Q′1]− Pr
u,v

[uvᵀ ∈ Q′2]
)
≥ E
u,v

[ZM (u, v)] · 2−
√
n/16,

where the first inequality follows from the choice of b and the second inequality used Eq. (9).

ITCS 2020

35:18 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

To conclude,

E
M,u,v

[Z ′M (u, v)] = E
M

[
E
u,v

[Z ′M (u, v)]
]
≥ E
M

[
E
u,v

[ZM (u, v)] · 2−
√
n/16

]
= E
M

[
E
u,v

[ZM (u, v)]
]
· 2−

√
n/16

= E
M,u,v

[ZM (u, v)] · 2−
√
n/16 ≥ 2 · 2−

√
n/8,

where the last inequality follows from Eq. (8). J

References
1 Pankaj K. Agarwal. Geometric Range searching. In CRC Handbook of Computational Geometry.

CRC, 1997.
2 Miklós Ajtai. A Lower Bound for Finding Predecessors in Yao’s Cell Probe Model. Combinat-

orica, 8(3), 1988.
3 Josh Alman and Ryan Williams. Probabilistic Rank and Matrix Rigidity. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 641–652. ACM,
2017.

4 Noga Alon and Gil Cohen. On Rigid Matrices and U-Polynomials. Computational Complexity,
24(4):851–879, December 2015.

5 Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic Approximation Algorithms
for the Nearest Codeword Problem. In APPROX ’09 / RANDOM ’09, pages 339–351, 2009.

6 V. L. Artazarov, E. A. Dinic, D. A. Kronrod, and I. A. Faradzev. On Economical Construction
of the Transitive Closure of a Directed Graph. Soviet Math. Dokl., 11:1209–1210, 1970.

7 Joshua Brody and Kasper Green Larsen. Adapt or Die: Polynomial Lower Bounds for
Non-Adaptive Dynamic Data Structures. Theory of Computing, 11(19):471–489, 2015.

8 Diptarka Chakraborty, Lior Kamma, and Kasper Green Larsen. Tight Cell Probe Bounds
for Succinct Boolean Matrix-Vector Multiplication. In Proc. 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1297–1306, 2018.

9 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
Beats Richness: New Data-Structure Lower Bounds. In Proc. 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1013–1020, 2018.

10 Raphaël Clifford, Allan Grønlund, and Kasper Green Larsen. New Unconditional Hardness
Results for Dynamic and Online Problems. In IEEE 56th Annual Symposium on Foundations
of Computer Science (FOCS), pages 1089–1107, 2015.

11 Henry Corrigan-Gibbs and Dmitry Kogan. The Function-Inversion Problem: Barriers and
Opportunities. Electronic Colloquium on Computational Complexity (ECCC), 25:182, 2018.

12 Zeev Dvir and Benjamin Edelman. Matrix Rigidity and the Croot-Lev-Pach Lemma. arXiv
preprint, 2017. arXiv:1708.01646.

13 Zeev Dvir, Alexander Golovnev, and Omri Weinstein. Static Data Structure Lower Bounds
Imply Rigidity. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 967–978, 2019. see arXiv:1811.02725v3. doi:10.1145/3313276.3316348.

14 Zeev Dvir and Allen Liu. Fourier and Circulant Matrices Are Not Rigid. In 34th Computational
Complexity Conference (CCC 2019), volume 137, pages 17:1–17:23, 2019.

15 Michael Fredman and Michael Saks. The Cell Probe Complexity of Dynamic Data Structures.
In ACM Symposium on Theory of Computing (STOC), 1989.

16 Joel Friedman. A Note on Matrix Rigidity. Combinatorica, 13(2):235–239, June 1993.
17 Anna Gál and Peter Bro Miltersen. The Cell Probe Complexity of Succinct Data Structures.

Theoretical Computer Science, 379(3):405–417, 2007.

http://arxiv.org/abs/1708.01646
https://arxiv.org/abs/1811.02725v3
https://doi.org/10.1145/3313276.3316348

S. Natarajan Ramamoorthy and C. Rashtchian 35:19

18 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In Proc. 47th Annual ACM Symposium on Theory of Computing
(STOC), pages 21–30, 2015.

19 Stasys Jukna and Georg Schnitger. Min-Rank Conjecture for Log-Depth Circuits. Journal of
Computer and System Sciences, 77(6):1023–1038, 2011.

20 Kasper Green Larsen. Higher Cell Probe Lower Bounds for Evaluating Polynomials. In FOCS,
pages 293–301. IEEE Computer Society, 2012.

21 Kasper Green Larsen. The Cell Probe Complexity of Dynamic Range Counting. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 85–94, 2012.

22 Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the Logarithmic Barrier
for Dynamic Boolean Data Structure Lower Bounds. In Proc. 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 978–989, 2018.

23 Kasper Green Larsen and Ryan Williams. Faster Online Matrix-Vector Multiplication. In
Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2182–2189, 2017.

24 Satyanarayana V. Lokam. Complexity Lower Bounds Using Linear Algebra. Foundations and
Trends® in Theoretical Computer Science, 4(1–2):1–155, 2009. doi:10.1561/0400000011.

25 Peter Bro Miltersen. Lower Bounds for Union-Split-Find Related Problems on Random Access
Machines. In Proceedings of the 26th Annual Symposium on the Theory of Computing, pages
625–634, New York, May 1994. ACM Press.

26 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On Data Structures
and Asymmetric Communication Complexity. Journal of Computer and System Sciences,
57(1):37–49, 1998.

27 Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower Bounds on Near Neighbor Search via
Metric Expansion. In Proc. 51st Annual Symposium on Foundations of Computer Science
(FOCS), pages 805–814, 2010.

28 Mihai Pǎtraşcu. Unifying the Landscape of Cell-Probe Lower Bounds. SIAM Journal on
Computing, 40(3):827–847, 2011. See also FOCS’08, arXiv:1010.3783.

29 Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic Lower Bounds in the Cell-Probe Model.
SIAM Journal on Computing, 35(4):932–963, 2006. See also STOC’04, SODA’04.

30 Mihai Pǎtraşcu and Mikkel Thorup. Higher Lower Bounds for Near-Neighbor and Further
Rich Problems. SIAM Journal on Computing, 39(2):730–741, 2010. See also FOCS’06.

31 Pavel Pudlák, Vojtech Rödl, and Jirí Sgall. Boolean Circuits, Tensor Ranks, and Communica-
tion Complexity. SIAM Journal on Computing, 26(3):605–633, 1997.

32 Anup Rao and Amir Yehudayoff. Communication Complexity. preprint at https://homes.
cs.washington.edu/~anuprao/pubs/book.pdf.

33 M.A. Shokrollahi, D.A. Spielman, and V. Stemann. A Remark on Matrix Rigidity. Information
Processing Letters, 64(6):283–285, 1997. doi:10.1016/S0020-0190(97)00190-7.

34 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A Survey of Recent Results and
Open Questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):207–388,
2010.

35 Leslie G. Valiant. Graph-Theoretic Arguments in Low-Level Complexity. In Jozef Gruska,
editor, Mathematical Foundations of Computer Science, pages 162–176, 1977.

36 Leslie G. Valiant. Why Is Boolean Complexity Theory Difficult? In Poceedings of the London
Mathematical Society Symposium on Boolean Function Complexity, pages 84–94, New York,
NY, USA, 1992. Cambridge University Press. URL: http://dl.acm.org/citation.cfm?id=
167687.167712.

37 Emanuele Viola. On the Power of Small-Depth Computation. Foundations and Trends® in
Theoretical Computer Science, 5(1):1–72, 2009.

ITCS 2020

https://doi.org/10.1561/0400000011
https://arxiv.org/abs/1010.3783
https://homes.cs.washington.edu/~anuprao/pubs/book.pdf
https://homes.cs.washington.edu/~anuprao/pubs/book.pdf
https://doi.org/10.1016/S0020-0190(97)00190-7
http://dl.acm.org/citation.cfm?id=167687.167712
http://dl.acm.org/citation.cfm?id=167687.167712

35:20 Equivalence of Systematic Linear Data Structures and Matrix Rigidity

38 Emanuele Viola. Lower Bounds for Data Structures with Space Close to Maximum Imply
Circuit Lower Bounds. Electronic Colloquium on Computational Complexity (ECCC), 25:186,
2018.

39 Henning Wunderlich. On a Theorem of Razborov. Computational Complexity, 21(3):431–477,
2012.

40 Andrew Yao. Should Tables be Sorted? JACM: Journal of the ACM, 28, 1981.

	Introduction
	Rigid sets, systematic linear model, and the inner product partial function
	Equivalence between rigidity and data structures
	Relationship to the cell probe model and other models
	The vector-matrix-vector problem
	New results on the rigidity of T and the cell probe complexity of the uMv problem

	Linear Data Structures and Rigidity
	Proof of Theorem 5

	Rigidity Lower Bounds for the Set of Rank One Matrices
	Proof of Theorem 2

	Cell Probe Lower Bounds for the uMv Problem
	Proof of Theorem 13
	Proof of Theorem 3

