
Learning and Testing Variable Partitions
Andrej Bogdanov
Department of Computer Science and Engineering
Institute of Theoretical Computer Science and Communications
The Chinese University of Hong Kong
https://www.cse.cuhk.edu.hk/~andrejb/
andrejb@cse.cuhk.edu.hk

Baoxiang Wang1

Department of Computer Science and Engineering, The Chinese University of Hong Kong
https://www.cse.cuhk.edu.hk/~bxwang/
bxwang@cse.cuhk.edu.hk

Abstract
Let F be a multivariate function from a product set Σn to an Abelian group G. A k-partition of F
with cost δ is a partition of the set of variables V into k non-empty subsets (X1, . . . ,Xk) such that
F (V ) is δ-close to F1(X1) + · · ·+ Fk(Xk) for some F1, . . . , Fk with respect to a given error metric.
We study algorithms for agnostically learning k partitions and testing k-partitionability over various
groups and error metrics given query access to F . In particular we show that
1. Given a function that has a k-partition of cost δ, a partition of cost O(kn2)(δ+ ε) can be learned

in time Õ(n2 poly 1/ε) for any ε > 0. In contrast, for k = 2 and n = 3 learning a partition of
cost δ + ε is NP-hard.

2. When F is real-valued and the error metric is the 2-norm, a 2-partition of cost
√
δ2 + ε can be

learned in time Õ(n5/ε2).
3. When F is Zq-valued and the error metric is Hamming weight, k-partitionability is testable with

one-sided error and O(kn3/ε) non-adaptive queries. We also show that even two-sided testers
require Ω(n) queries when k = 2.

This work was motivated by reinforcement learning control tasks in which the set of control variables
can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that
are relatively easier to learn. Our second algorithm empirically increases the scores attained over
previous heuristic partitioning methods applied in this context.
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1 Introduction

Divide-and-conquer methods rely on the ability to identify independent sub-instances of
a given instance, such as connected components of graphs and hypergraphs. When these
are not available one looks for partitions into loosely related parts like small or sparse
cuts. These classic problems and their variants remain at the forefront of algorithmic
research [6, 7, 16,20,24,29].

We study the related problem of function decomposition: Given a multivariate function
F (V ) over n variables V = {x1, . . . ,xn}, we seek to partition the variables into k groups
X1, . . . ,Xk so that F decomposes into a sum F1(X1) + · · · + Fk(Xk). In case an exact
decomposition of this type is unavailable, we seek an approximate one under a suitable error
metric. This algebraic partitioning question can be sensibly asked for any Abelian group.
While some of our results are quite general, two particular cases of interest are addition over
Z2 with respect to the Hamming metric and addition over reals with respect to the 2-norm.

As a multivariate function is an exponentially large object, it is sensible to model the input
F to the partitioning problem as an oracle and allow query access to it. This departs from
the common setup in (hyper)graph partitioning problems, where an explicit representation
of the input is assumed to be available. While variable partitioning of real-valued functions
under the 2-norm turns out to be closely related to hypergraph partitioning, the difference
in input access models renders certain techniques developed for the latter (e.g., random
contractions) inapplicable to our setting.

Our work is motivated by learning control variables in high-dimensional reinforcement
learning control [25, 33, 34]. If the advantage function of the control variables can be
partitioned into multiple lower-dimensional subsets, then these subsets of variables can be
learned independently with a relatively easier Monte-Carlo sampling. This advantage function
involves the estimates of a dynamic system, which is complex enough to not have an explicit
representation available. The function is thus treated as an oracle as is in our access model.
Sometimes it is natural to assume that the function should be almost decomposable; for
example, if we seek to control two robots jointly performing a task, the variables controlling
the respective robots are almost independent. (The robots may be collaborating so the
decomposition might not be perfect.) In general, the dependencies are not known in advance
but need to be learned from observed behavior. Some heuristic methods have been applied
to control variable partitioning [23,36] but not rigorously analyzed.

Our contributions

Our main results are algorithmic: We show that variable partitions can be learned agnostically.
Let F (V ) be a function from some product set to an Abelian group G. A direct sum

decomposition of F is a partition (X1, . . . ,Xk) of the set of variables V such that F (V ) is
F1(X1) + · · ·+ Fk(Xk) for some functions F1, . . . , Fk. When the decomposition is imperfect,
the decomposition error is measured by

δ(X1, . . . ,Xk) = min
F1,...,Fk

‖F (X1, . . . , Xk)− F1(X1)− · · · − Fk(Xk)‖, (1)

where ‖·‖ : G→ R+ is a partial norm. The definition is given in Section 2; the main examples
of interest are G = Zq under the Hamming metric ‖F‖ = Pr[F (V ) = 0] and G = R under
the p-norm ‖F‖p = E

[
|F (V )|p

]1/p for any p ≥ 1 under some product measure. We seek an
approximation of the best-possible partition, which minimizes the objective

δ2(F ) = min
X

δ(X,X), (2)
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Notation Meaning Notation Meaning

x,y ∈ V variables δk(F ) optimal k-partition error
X,Y ,X ⊆ V sets of variables DF (X,Y ) dependence score
x, y,X, Y (random) assignment ‖ · ‖, ‖ · ‖R,p partial norm and p-norm

for bipartition and

δk(F ) = min
X1,...,Xk

δ(X1, . . . ,Xk). (3)

for k-partition. (For p-norms over R we use the notations ‖ · ‖R,p, δR,2(F ), and δR,k(F ).)

I Theorem 1. Let ‖ · ‖ be either 1) ‖ · ‖R,p assuming ‖F‖R,2p = O(1), or 2) the Hamming
metric over Zq. There is an algorithm that given parameters n, k, ε, γ, and oracle access
to F : Σn → R outputs a k-partition P such that δ(P) ≤ O(kn2)(δk(F ) + ε) with probability
at least 1− γ. The algorithm makes O(Kpn2 log(n/γ)/ε2p) queries to F and runs in time
linear in the number of queries, for an absolute constant K.

This algorithm is closely related to the heuristic ones used in the aforementioned empirical
studies. However, it only guarantees optimality up to an O(kn2) approximation factor. While
we do not know if an approximation factor of this magnitude is inevitable, in Proposition 17
we show that obtaining a solution with additive error is NP-hard. The proofs are given in
Section 4.

In contrast, our second algorithm obtains an additive error for bipartitions of real-valued
functions under the 2-norm:

I Theorem 2. Let F : Σn → R be a function with ‖F‖R,4 ≤ 1. There is an algorithm that
given inputs n, ε, γ, and oracle access to F , runs in time O(n5 log(n/γ)/ε2) and outputs a
bipartition (X,X) such that δR,2(X,X)2 ≤ δR,2(F )2 + ε with probability at least 1− γ.

More generally, we give evidence that it may be possible to output a
√

2− 2/k-appro-
ximate k-partition in time poly(nk, k, 1/ε) (Corollary 21). For unbounded k finding a good
approximation is ETH hard (Corollary 19).

Theorem 2 and Corollary 19 are based on an equivalence between variable partitioning
under the 2-norm and hypergraph partitioning given in Proposition 18. The results are
described and proved in Section 5.

As a consequence of Theorem 1, the property of being close to a k-partition is testable with
Õ(k2pn4p+2/ε2p) queries. The query complexity of the tester can be somewhat improved:

I Theorem 3. k-partitionability is testable with one-sided error and O(kn3/ε) non-adaptive
queries with respect to Hamming weight over Zq, and with O(k2pn3/ε2p) non-adaptive queries
with respect to the p-norm over R assuming ‖F‖2p ≤ 1.

In Section 6 we prove Theorem 3 and show that Ω(n− k) queries are necessary even for
two-sided error testers.

Ideas and techniques

Our Theorem 1 is inspired by algebraic property testing techniques. The starting point is the
dual characterization of partitionability into sets (X,X) by the constraints DF (X,Y ) = 0,
where DF = F (X,Y )−F (X ′, Y )−F (X,Y ′)+F (X ′, Y ′), for all assignments X,X ′ to X and

ITCS 2020
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Y, Y ′ to Y . David et al. [10] apply this relation to random inputs towards testing whether a
Z2-valued function F tensors decomposes into a direct sum. The acceptance probability of
this test approximates the best decomposition to within a factor of 4 (Proposition 4).

Our partitioning algorithm estimates the dependence score ‖DF (x,y)‖ on every pair of
variables x,y (keeping the rest fixed) to decide whether they should be partitioned or not.
Here, ‖DF ‖ is the probability that the test DF = 0 fails for discrete groups like Z2. In
general, it can represent any error metric satisfying the axioms in Section 2. The proof of
Theorem 1 amounts to showing that a collection of single variable partitions (x,y) ∈ P for
which the local scores ‖DF (x,y)‖ are small can be glued together into a single k-partition P
with a small global score.

When F is real-valued and error is measured under the 2-norm, variable partitioning
has a natural geometric interpretation. Functions that depend on different coordinates are
orthogonal modulo their constant term, so the optimal decomposition with respect to a
fixed partition (X1, . . . ,Xk) is given by the projection of F onto the respective subspaces of
functions. This yields an equality between the distance and the dependence score (6) for
bipartitions and a generalization to k-partitions (Proposition 8). Variable partitioning for
functions is then equivalent to hypergraph partitioning of their orthogonal decompositions
(Proposition 18), with the cost of cut (X,X) given by 1

4‖DF (x,y)‖2.
This connection suggests the application of hypergraph partitioning algorithms that

can be implemented with access to an approximate cut oracle2, leading to Theorem 2. On
the negative side it reveals that approximately optimal partitions into a large number of
components are hard to find (Corollary 19).

Application to reinforcement learning control

We plug our partitioning algorithm back to reinforcement learning control. In this setting,
the oracle is real-valued and as we adapt the 2-norm we use the submodularity cut algorithm
described in Theorem 2.

We compare empirically with three previous approaches: The baseline that does not involve
partitioning [25,35]; the baseline that trivially partitions n variables into n subsets [22,36]; the
work that partitions the variables heuristically [23]. The way [23] partitions the variables is to
calculate the discrete estimate of the Hessian of the oracle. Then they remove from Hessian
the elements with lowest absolute values, until it forms at least k connected components if
the Hessian matrix is treated as the adjacency matrix.

The scores we attained on the tasks in the physics simulator are improved over these
approaches, which is demonstrated in Section 7.

Relation to other learning and testing problems

A j-junta is a function that depends on at most j of its n variables. The problems of learning
and testing juntas have been extensively studied [2,4,8,9,13,26,30]. While a j-junta is always
(n− j + 1)-partitionable, the two problems are technically incomparable. Moreover, juntas
are usually studied in the regime where the junta size j is significantly smaller than the
number of variables n and are therefore partitionable into many (mostly trivial) components.

2Several state-of-the-art algorithms for cuts in graphs and hypergraphs rely on random contractions [6,
17,18]. In particular, Rubinstein et al. [29] showed that Õ(n) queries to an exact cut oracle and similar
running time are sufficient to find the minimum cut. We do not know if comparable efficiency can be
obtained with an approximate oracle.
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In this work we are mostly interested in partitions into two or a small number of components.
Nevertheless, this connection between juntas and partitionable functions is used to prove the
testing lower bound in Section 6.

Dinur and Golubev [12] showed that the existence of decomposition with respect to a
fixed k-partition (given as input) is testable with four queries and soundness error Ω(δ). The
case k = 2 was already analyzed by David et al. [10] (see Section 3).

2 Some additional definitions

Let F (V ) be a function from some product set to an Abelian group G. In general we will
assume that the variables V take values in some set Σ endowed with a product measure
which is efficiently sampleable. The quality of the partition (X1, . . . ,Xk) of V is measured
by δ(X1, . . . ,Xk) given in (1), where ‖ · ‖ : G → R+ can be any functional satisfying the
following three axioms:
1. ‖0‖ = 0;
2. ‖F1 + F2‖ ≤ ‖F1‖+ ‖F2‖;
3. E[‖F (X, ·)‖ | X] ≤ ‖F‖ for any set of variables X of F .
Our goal is to approximately optimize δ2(F ) in (2) and δk(F ) in (3).

Our algorithms are based on the following dependence estimator inspired by the rank-1
test of [10]. Let X and Y be two disjoint sets of variables. The dependence estimator
DF (X,Y ) is the random variable

DF = F (X,Y, Z) + F (X ′, Y ′, Z)− F (X ′, Y, Z)− F (X,Y ′, Z)

where X,X ′ are independent samples of the X variable, Y, Y ′ are independent samples of
the Y variable, and Z is a random sample of the remaining variables. If F decomposes into
a direct sum that partitions the X and Y variables then DF equals zero. Conversely, ‖DF ‖
measures the quality of the approximation.

In the analysis it will be convenient to use the notation F ≈δ G for ‖F −G‖p ≤ δ. The
following two facts are immediate consequences of axioms 2 and 3:
Triangle inequality: If F ≈δ G and G ≈δ′ H then F ≈δ+δ′ H.
Fixing: If F (X,Z) ≈δ G(X,Z) then F (X,Z) ≈δ G(X,Z) for some fixed value X.

3 Estimating the quality of a partition

In this section we show that ‖DF (X,Y )‖ is an approximate estimator for the quality δ(X,Y )
of a decomposition, namely

δ(X,Y ) ≤ ‖DF (X,Y )‖ ≤ 4 · δ(X,Y ). (4)

The proof is given in Claims 5 and 6 below. As ‖DF (X,Y )‖ can be estimated efficiently
from oracle access to F (Claim 7), we obtain an algorithm for estimating the quality of a
partition to within a factor of 4 in general, and exactly for the 2-norm over R.

I Proposition 4. Let ‖ · ‖ be either 1) ‖ · ‖R,p assuming ‖F‖R,2p = O(1), or 2) the Hamming
metric over Zq. There is an algorithm that given a bipartition X,Y of the variables and
parameters ε, γ > 0, outputs a value δ̂ such that

δ(X,Y ) ≤ δ̂ ≤ 4 · δ(X,Y ) + ε,

with probability at least 1− γ from Kplog(1/γ)/ε2p queries to F in time linear in the number
of queries, for an absolute constant K.

ITCS 2020
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The value of δ(X,Y ) is known to be NP-hard to calculate exactly over Z2 under
the Hamming metric given explicit access to the truth-table of f [28]. Therefore some
approximation factor is unavoidable for algorithms running in time polynomial in n and 1/ε
unless BPP is in NP. On the positive side Karpinski and Schudy [19] give a fully polynomial-
time randomized approximation scheme for this special case. Their algorithm requires at
least linear time but it is plausible that a sublinear-time variant can be obtained. However,
it appears unrelated to the dependence score DF which plays an essential role in the results
to follow.

The analysis of DF applies to any pair of disjoint subsets X, Y that do not necessarily
partition all the variables. In this more general setting distance is measured by the formula

δ(X,Y ) = min
A,B
‖F (X,Y, Z)−A(X,Z)−B(Y, Z)‖. (5)

B Claim 5 (Completeness of DF ). For all disjoint X, Y , ‖DF (X,Y )‖ ≤ 4 · δ(X,Y ).

Proof. By definition of δ(X,Y ) there exists a decomposition of the form

F (X,Y, Z) = A(X,Z) +B(Y,Z) +D(X,Y, Z),

where ‖D(X,Y, Z)‖ = δ(X,Y ). In the expansion of DF all the A and B terms cancel out,
leaving

‖DF (X,Y )‖ = ‖D(X,Y, Z) +D(X ′, Y ′, Z)−D(X,Y ′, Z)−D(X ′, Y, Z)‖
≤ ‖D(X,Y, Z)‖+ ‖D(X ′, Y ′, Z)‖+ ‖D(X,Y ′, Z)‖+ ‖D(X ′, Y, Z)‖
= 4δ(X,Y ). C

Soundness for Boolean functions under the uniform measure was proved by David et
al. [10]. We reproduce their proof under a more general setting.

B Claim 6 (Soundness of DF ). For all disjoint X, Y , δ(X,Y ) ≤ ‖DF (X,Y )‖.

Proof. Let ε = ‖DF (X,Y )‖. Then

F (X,Y, Z) ≈ε F (X,Y ′, Z)− F (X ′, Y, Z)− F (X ′, Y ′, Z).

We can fix values X ′ and Y ′ for which

F (X,Y, Z) ≈ε F (X ′, Y ′, Z)− F (X,Y ′, Z)− F (X ′, Y, Z) = A(X,Z) +B(Y, Z),

where A(X,Z) = F (X ′, Y ′, Z)− F (X,Y ′, Z) and B(Y,Z) = F (X ′, Y, Z). C

Proposition 4 now follows from inequality (4) and the following claim, which states that
‖DF ‖ can be estimated by sampling in the cases of interest. See Appendix A for the proof.

B Claim 7. Assuming ‖F‖R,2p ≤ 1, the value ‖F‖R,p can be estimated within ε from
Kplog(1/γ)/ε2p (random) queries to F in linear time with probability 1−γ for some absolute
constant K.

3.1 Exact partitioning under the 2-norm
Since computing the optimal partition is in general NP-complete, we do not expect to replace
the inequalities in (4) with an equality. However, in the special case of real-valued functions
with `2-norm, the estimate becomes exact:

‖DF (X,Y )‖R,2 = 2 · δR,2(X,Y ). (6)

This equality is a consequence of the following characterization of δR,2, which applies
more generally to k-partitions:
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I Proposition 8. Assuming E[F ] = 0, the k-partition Fi(Xi) = E[F |Xi] achieves the
minimum for δR,2(X1, . . . ,Xk).

In particular it follows that δR,2 takes the value

δR,2(X1, . . . ,Xk) = E[(F − E[F |X1]− · · · − E[F |Xk])2], (7)

where F = F − E[F ]. To derive identity (6) it remains to verify that when k = 2, the
right-hand side of (7) is a quarter of ‖DF ‖2:

I Fact 9. ‖DF (X,Y )‖2
R,2 = 4 · E[(F − E[F |X]− E[F |Y ])2].

Armed with this fact we prove the proposition.

Proof of Proposition 8. First assume F (X,Y ) is bivariate. Let A(X) be any function. The
inequality E[(E[F |X]−A(X))2] ≥ 0 can be rewritten as

E[(F − E[F |X])2] ≤ E[(F −A(X))2], (8)

stating that the orthogonal projection of F onto the subspace of functions that depend only
on X in 2-norm is E[F |X].

Now let F (X1, . . . ,Xk) be k-variate. Assume E[F ] = 0 and E[Fi(Xi)] = 0 for all i. Then
E[Fi(Xi)|Xj ] = 0 for all i 6= j. Applying inequality (8) for k times in succession together
with this fact, we obtain

E[(F − F1(X1)− · · · − Fk−1(Xk−1)− Fk(Xk))2]
≥ E[(F − F1(X1)− · · · − Fk−1(Xk−1)− E[F − F1(X1)− · · · − Fk−1(Xk−1)|Xk])2]
= E[(F − F1(X1)− · · · − Fk−1(Xk−1)− E[F |Xk])2]
...
≥ E[(F − E[F |X1]− · · · − E[F |Xk])2]

as desired. Finally, by orthogonality the optimal decomposition must satisfy
∑

E[Fi(Xi)] = 0
so the assumption E[Fi(Xi)] = 0 can be made without loss of generality. J

By orthogonality, equation (7) can also be written in the following forms:

δR,2(X1, . . . ,Xk) = E
[
F

2]−∑k

i=1
E
[
E[F |Xi]2

]
(9)

= EX
[
F (X)2]− k∑

i=1
EX,X′

[
F (X−i, Xi)F (X ′−i, Xi)

]
,

where (X−i, Xi) is the input whose i-th variable takes value Xi and j-th variable takes
value X ′j for j 6= i. As all these terms can be efficiently estimated, we obtain the following
algorithm for estimating the quality of a given k-partition:

I Proposition 10. There is an algorithm that given a k-partition X1, · · · ,Xk of the variables
and parameters ε, γ > 0, outputs a value δ̂ such that

|δ̂2 − δR,2(X1, . . . ,Xk)2| ≤ ε,

with probability at least 1−γ from O(k log(k/γ)/ε4) queries to F in time linear in the number
of queries.

ITCS 2020
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4 Variable partitioning over general groups

In this section we present our first partitioning algorithm, which is general enough to
work on any normed group G assuming it is possible to efficiently estimate the quantity
‖DF ({x}, {y})‖.

The algorithm is based on the pairwise estimates of dependency over sets of single
variables. The intuition behind the algorithm is that if the dependency between x and y

is low, then these two variables should be assigned to different partitions. Therefore the
algorithm keeps asserting such “in different partitions” for the pairs with lowest dependency
estimates, until the k-partitioning can be clearly observed from the assertions.

This idea of the algorithm has been used in previous works in reinforcement learning
control [23, 36] in a heuristic way. Theorem 1 below shows that the algorithm outputs an
O(kn2) approximation to the optimal partition in time polynomial in n, k, and 1/ε.

Algorithm 1 Approximate partitioning via pairwise estimates.

1: Input: number of partitions k
2: Output: partition P
3: For every pair of variables x,y ∈ V , find estimate ê(x,y) for e(x,y) = ‖DF ({x}, {y})‖;
4: Create a weighted graph with vertices V and weights ê(x,y);
5: Order the edges in increasing weight;
6: repeat
7: Remove the edge with the smallest weight;
8: until The graph has exactly k connected components

I Proposition 11. Assuming e(x,y) ≤ ê(x,y) ≤ e(x,y) + ε for all x and y,

δ(P) ≤ (8k − 10)n2(4δk(F ) + ε). (10)

If the estimates ê(x,y) are obtained by empirical averaging, we obtain Theorem 1.

4.1 Proof of Proposition 11
For a partition P of the variables, let ∆(P) =

∑
δ({x}, {y}), where the sum is taken over all

pairs that cross the partition. We will deduce Theorem 1 from the following bound on δ(P).

B Claim 12. For every k-partition P, δ(P) ≤ (16k − 20)∆(P).

The following fact is immediate from the definitions of δ. The proof of this claim is
delayed to the end of this section.

I Fact 13. For any partition (U ,U) such that X ⊆ U and Y ⊆ U , δ(X,Y ) ≤ δ(U ,U).

Now we prove the theorem, assuming the correctness of Claim 12.

I Theorem 1. Let ‖ · ‖ be either 1) ‖ · ‖R,p assuming ‖F‖R,2p = O(1), or 2) the Hamming
metric over Zq. There is an algorithm that given parameters n, k, ε, γ, and oracle access
to F : Σn → R outputs a k-partition P such that δ(P) ≤ O(kn2)(δk(F ) + ε) with probability
at least 1− γ. The algorithm makes O(Kpn2 log(n/γ)/ε2p) queries to F and runs in time
linear in the number of queries, for an absolute constant K.
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Proof of Theorem 1. By Claim 5 and Fact 13, all edges (x,y) in the optimal partition must
satisfy e(x,y) ≤ 4δ2(F ). By our assumption on the quality of the approximations,

ê(x,y) ≤ 4δ2(F ) + ε. (11)

Since the algorithm removes edges in increasing order of weight, all the edges that cross the
output partition P must also satisfy this inequality. Then

δ(P) ≤ (16k − 20)∆(P) by Claim 12,

≤ (16k − 20)
∑

x,y cross P
e(x,y) by Claim 6,

≤ (16k − 20)
∑

x,y cross P
ê(x,y)

≤ (16k − 20)
∑

x,y cross P
4δ2(F ) + ε by (11),

≤ (8k − 10)n2 · (4δ2(F ) + ε).

The last inequality holds because there are at most
(
n
2
)
≤ n2/2 pairs of variables crossing

the partition. J

We first prove Claim 12 in the case k = 2 of bipartitions. This is Claim 15 below. We
use XX ′ to denote the union of the variable sets X and X ′.

B Claim 14. For disjoint sets of variables X,X′,Y , δ(XX′,Y ) ≤ δ(X,Y ) + 2δ(X ′,Y ).

Proof. Assume that

F (X,X ′, Y ) ≈δ A(X,X ′) +B(X ′, Y ) and
F (X,X ′, Y ) ≈δ′ A′(X,X ′) +B′(X,Y ).

By the triangle inequality,

A(X,X ′) +B(X ′, Y ) ≈δ+δ′ A
′(X,X ′) +B′(X,Y ).

Fix X ′(Z) = X ′(Z). Writing C(X) = A(X,X ′)−A′(X,X ′) and D(Y ′) = B(X ′, Y ′) we get
that

B′(X,Y ) ≈δ+δ′ C(X) +D(Y ).

By the triangle inequality (with the second equation), we get that

F (X,X ′, Y ) ≈δ+2δ′ A
′(X,X ′) + C(X) +D(Y ). C

B Claim 15. For every bipartition X,X of the variables, δ(X,X) ≤ 4 ·∆(X,X).

Proof. By Claim 14,

δ(X ′{x}, {y}) ≤ δ(X ′, {y}) + 2δ({x}, {y})

for all X ′ ⊆X\{x} and y. Applying this inequality iteratively we conclude that δ(X, {y}) ≤
2
∑

x∈X δ({x}, {y}). Also by Claim 14

δ(X,Y ′{y}) ≤ δ(X,Y ′) + 2δ(X,Y ′{y}),

so δ(X,Y ) ≤ 2
∑

y∈Y δ(X, {y}). Combining the two inequalities we obtain the desired
conclusion. C
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To extend the proof to larger k and obtain Claim 12, we generalize the first inequality in
this sequence to k-partitions.

B Claim 16. For every 2k-partition (Y1, . . . ,Yk,Z1, . . . ,Zk),

δ(Y1, . . . ,Yk,Z1, . . . ,Zk) ≤ 2δ(Y1Z1, . . . ,YkZk) + 3δ(Y1 . . .Yk,Z1 . . .Zk).

Proof. Assume that

F (V ) ≈δ F1(Y1, Z1) + · · ·+ Ft(Yt, Zt)
F (V ) ≈δ′ A(Y1, . . . , Yt) +B(Z1, . . . , Zt).

By the triangle inequality

A(Y1, . . . , Yt) +B(Z1, . . . , Zt) ≈δ+δ′ F1(Y1, Z1) + · · ·+ Ft(Yt, Zt).

Fixing Z1, . . . , Zt to values Z1, . . . , Zt we get the decomposition

A(Y1, . . . , Yt) ≈δ+δ′ F1(Y1, Z1) + · · ·+ Ft(Yt, Zt)−B(Z1, . . . , Zt).

and similarly

B(Z1, . . . , Zt) ≈δ+δ′ F1(Y 1, Z1) + · · ·+ Ft(Y t, Zt)−A(Y 1, . . . , Y t).

Plugging these into the second equation gives the desired decomposition. C

Proof of Claim 12. We assume that k is a power of two and prove by induction that δ(P) ≤
ck∆(P), where ck is the sequence c2k = 2ck + 12, c2 = 4. The base case k = 2 follows from
Claim 15. Assume the claim holds for k and apply Claim 16 to P . By inductive assumption
and Claim 15,

δ(P) ≤ 2 · ck∆(Y1Z1, . . . ,YkZk) + 3 · 4∆(Y1 . . .Yk,Z1 . . .Zk).

Since P is a refinement of both these partitions, it follows that δ(P) ≤ (2ck + 12)∆(P) =
c2k∆(P), concluding the induction.

The recurrence solves to ck = 8k− 12, proving the claim when k is a power of two. When
it is not, the same reasoning applies to the closest power of two exceeding k (by taking some
of the sets in the partition to be empty), which is at most 2k − 1, proving the desired bound.

C

4.2 Hardness of exact variable bipartitioning
In contrast to Theorem 1, finding the exact bipartition is NP-hard even when there are only
three variables.

I Proposition 17. For any n ≥ 3 there is no algorithm that outputs a bipartition of cost
δ2(F ) + ε over Z2 under Hamming distance in time polynomial in |Σ|/ε with constant
probability unless BPP is in NP .

Proof. Assume such an algorithm BIPARTITION exists. We show it can be used to
solve the following problem: Given explicit functions F1, . . . , Fn−1 : Σ2 → G, find i∗ that
minimizes δ2(Fi∗) assuming this i∗ is unique, i.e. a function that has the smallest bipartition
cost among the candidates.
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Let F (x1, . . . , xn−1, y) = F1(x1, y) + · · ·+Fn−1(xn−1, y). The cost of the bipartition that
splits xi from all other variables in F is at most the cost of Fi, so F has a bipartition of cost
at least δ2(Fi∗). We now argue that the cost of all other bipartitions is greater. In fact, any
other bipartition must split y from xi for some i 6= i∗. Assuming the cost of this partition is
δ, we must have

F (X,Y ) ≈δ A(X) +B(Y ),

where xi ∈ X and y ∈ Y . After fixing all variables except for xi and y we obtain

Fi(xi, y) ≈δ A(xi, X−i) +B(y, Y−i)−
∑
j 6=i

Fj(xj , y).

This is a bipartition for Fi so its cost is strictly greater than δ2(Fi∗). Therefore the output
of BIPARTITION with oracle access to F and ε = 1/|Σ|2 has the desired property.

Roth and Viswanathan [28] give an efficient reduction R that maps a graph G into a
function F such that if G has a larger max-cut than G′ then δ2(R(G)) < δ2(R(G′)). By
composing the two reductions we obtain an efficient algorithm for deciding which of two
graphs has a larger maximum cut, which is an NP-hard problem. J

5 Partitioning real-valued functions under the 2-norm

The problem of partitioning real-valued functions under the 2-norm is closely related to
the well-studied problem of hypergraph partitioning. To explain this connection we recall
the Efron-Stein decomposition of real-valued functions over product sets. The Efron-Stein
decomposition of a function F : Σn → R (under some product measure) is the unique
decomposition of the form

F (x) =
∑

S⊆[n]
F̂S · FS(x),

where F̂S are real coefficients and FS are functions satisfying the following properties:
1. FS depends on the variables in S only;
2. E[FS |x−i] = 0, where x−i is a fixing of all variables except the i-th one;
3. E[F 2

S ] = 1.
In particular, properties 1 and 2 imply that E[FSFT ] = 0 when S 6= T , and so E[F 2] =

∑
S F̂

2
S

by property 3.

I Proposition 18. Given F : Σn → R, let H be the hypergraph whose vertices are the
variables of F and whose hyperedges S have weight F̂ 2

S for every subset S. The cost of the
k-cut (X1, . . . ,Xk) in H equals δR,2(X1, . . . ,Xk)2.

Proof. We may assume E[F ] = 0 and use expression (9) to evaluate δR,2. The first term equals
E[F 2] =

∑
S F̂

2
S . The rest of the terms have the form E[E[F |XI ]2] = E[F (X−I , XI)F (X ′−I , XI)]

for subsets I of variables. Plugging in the Efron-Stein decomposition of F we have

E[E[F |XI ]2] =
∑
S,T

F̂SF̂TE[FS(X−I , XI)FT (X ′−I , XI)].

By property 2, the terms in the summation in which S 6= T evaluate to zero. Among the
rest, if the set S contains any variable i outside I then

E[FS(X−I , XI)FT (X ′−I , XI)] = E
[
FS(X−I , XI)E[FT (X ′−I , XI)|X,X ′−i]

]
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and the inside expectation evaluates to zero by property 2. Therefore the only surviving
terms are those where S = T and S ⊆ I, from where

E[E[F |XI ]2] =
∑

S⊆I
F̂ 2
S .

By (9),

δR,2(X1, . . . ,Xk) =
∑

S
F̂ 2
S −

∑k

i=1

∑
S⊆Xi

F̂ 2
S =

∑
S 6⊆ Xi for any i

F̂ 2
S .

The last quantity is the desired value of the cost of k-cut in H. J

When Σ = {−1, 1} under uniform measure, the functions FS do not depend on F and
equal the Fourier characters χS(x) =

∏
i∈S xi, allowing us to embed instances of hypergraph

partitioning into variable partitioning.

I Corollary 19. Assume there is an algorithm A that given oracle access to F : {−1, 1}n → R
under uniform measure outputs a k-variable partition of cost at most C · δ2(F ) + ε in time
t(n, k, ε). Then given a hypergraph with n vertices and m hyperedges with a k-cut of value
opt, it is possible to output a k-cut of value C · opt in time mnt(n, k, 1/m).

Chekuri and Li [7] give a reduction from hypergraph k-cut to densest-k-subgraph. Manu-
rangsi [24] shows that the latter is hard to approximate to within O(n1/(log logn)c) assuming
the exponential-time hypothesis, implying inapproximability of the same order for δR,2(F ).

On the positive side, Proposition 18 can be used to obtain variable partitioning algorithms
from hypergraph partitioning ones. The conversion is not direct as hypergraph partitioning
assumes explicit access to the hypergraph. Klimmek and Wagner [21] observed that submod-
ularity of the hypergraph cut function f(X) = δR,2(X,X)2 allows for efficient minimization
from exact oracle access. To derive Theorem 2 we extend the analysis to approximate oracle
access.

The following proposition is an analysis of Queyranne’s symmetric submodular min-
imization algorithm [27] for an approximate input oracle. We say g is ε-submodular if
g(XY Z)− g(XZ)− g(Y Z) + g(Z) ≤ ε for all disjoint subsets X,Y ,Z.

I Proposition 20 (Queyranne’s algorithm with an approximate oracle). There is an algorithm
that given oracle access to a symmetric ε-submodular g, makes O(n3) oracle queries and
outputs a nontrivial subset X such that g(X) is within nε/2 of the minimum of g.

I Theorem 2. Let F : Σn → R be a function with ‖F‖R,4 ≤ 1. There is an algorithm that
given inputs n, ε, γ, and oracle access to F , runs in time O(n5 log(n/γ)/ε2) and outputs a
bipartition (X,X) such that δR,2(X,X)2 ≤ δR,2(F )2 + ε with probability at least 1− γ.

Proof of Theorem 2. By Proposition 10, δR,2(X,X)2 can be estimated to within error
ε/Kn with O(log(n/γ)n2/ε2) queries to F with probability 1−Kγ/n3 for any constant K.
This estimator implements an ε/2n-approximate oracle to δR,2(X,X)2 with probability 1−γ
with respect to an algorithm that makes at most Kn3 queries. In particular, with probability
1− γ, the output of the oracle is ε/4n-close to the value of the submodular function δ2

R,2 at
all points queried by Queyranne’s algorithm and also at the minimum of δ2

R,2. Since from
the algorithm’s perspective it is interacting with a symmetric ε/n-submodular function g, it
outputs a partition such that g(X,X) is within ε/2 of the minimum of g. By the triangle
inequality, δR,2(X,X)2 is within ε/2 + 2ε/4n ≤ ε close to the minimum of δ2

R,2. J
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Saran and Vazirani’s approximation algorithm for multiway k-cut (with fixed terminals)
can be viewed as a reduction from multiway k-cut to multiway 2-cut. The reduction works
given access to approximate s-t-cut oracles, where s and t are designated terminals that
must be split by the cut. The corresponding cut function δR,2(sX, tX), where (X,X) is
now a partition of V − s, t, is still submodular but no longer symmetric. We believe that an
analogue of Proposition 20 for general (non-symmetric) submodular minimization [14,15]
should hold, but were unable to verify the claim. We state the extension of Theorem 2 to
k-partitions as a conditional result.

I Corollary 21. Assume that a ε-approximate minimum of an n-variate function f that is
poly(ε/n)-close to submodular on every input can be found in time poly(n/ε) given oracle
access to it. Then there is an algorithm that given inputs k, ε and oracle access to a function
F such that ‖F‖R,4 ≤ 1 runs in time k2nk poly(n/ε) log(1/γ) and outputs a k-partition P
such that δR,2(P)2 ≤ (2− 2/k)δR,2(F )2 + ε with probability 1− γ.

It remains to prove Proposition 20.

B Claim 22. Let g be ε-submodular. Assume there exists x ∈W such that for all Y ⊆W \x
and u 6∈W ,

g(W ) + g(u) ≤ g(W \ Y ) + g(Y u) + δ.

If x′ maximizes g(W u)− g(u) among all u 6∈W then

g(W x′) + g(u) ≤ g(W x′ \ Y ) + g(Y u) + (δ + ε).

Proof. If x 6∈ Y then

g(W x′) + g(u) ≤
(
g(W )− g(W \ Y ) + g(W x′ \ Y )

)
+ g(u) + ε by ε-submodularity

= g(W x′ \ Y ) +
(
g(W )− g(W \ Y ) + f(u)

)
+ ε

≤ g(W x′ \ Y ) + g(Y u) + (δ + ε) by inductive hypothesis.

Otherwise, x 6∈W \ Y and

g(W x′) + g(u) ≤ g(W u) + g(x′) by optimality of x′

≤
(
g(W )− g(Y ) + g(Y u)

)
+ g(x′) + ε by ε-submodularity

=
(
g(W ) + g(x′)− g(Y )

)
+ g(Y u) + ε

≤ g(W x′ \ Y ) + g(Y u) + (δ + ε) by inductive hypothesis. C

Proof of Proposition 20. Queyranne’s algorithm Qg is recursive. If n = 2 the unique
partition is output. Otherwise, starting from an arbitrary singleton set W1, the algorithm
sets Wi+1 = Wixi, where xi maximizes g(Wiu)− g(u) among all u 6∈Wi. The algorithm
then contracts the elements xn−1 and xn into xn−1xn and outputs the smaller value of
Qg(x1, . . . ,xn−2,xn−1xn) and g(xn).

We prove by induction on n that the output of Qg is (n− 1)ε/2-close to the minimum
of g. The base case n = 2 is clear. Now assume this is true for inputs of size n − 1. If
the minimum partition of g doesn’t split xn−1 and xn then the claim follows by inductive
assumption.

Otherwise, we show that g(xn) is within (n− 1)ε/2-close to the minimum of g. Applying
Claim 22 iteratively to the sets W1, . . . ,Wn−1, we conclude that

g(Wn−1) + g(xn) ≤ g(Wn−1 \ Y ) + g(Y xn) + (n− 1)ε
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for all Y that do not contain xn and xn−1. Applying symmetry this inequality can be
rewritten as g(xn) ≤ g(xnY ) + (n− 1)ε/2. As xn−1 and xn are split in the optimal solution
it must be of type xnY for some Y excluding xn−1, so g(xn) is (n − 1)/2ε close to the
minimum as desired. J

6 Testing partitionability

As a consequence of Theorem 1, k-partitionability is testable with Õ(k2pn4p+2/ε2p) queries.
The yes instances are inputs with δk(F ) = 0; the no instances are inputs with δk(F ) > ε.
The query complexity of Theorem 3 can be obtained by the improved analysis that follows.

To simplify notation we only prove the theorem for the Hamming weight over Zq and
describe the change necessary for p-norms over R.

Algorithm 2 Tester for k-partitionability.

1: Create an empty undirected graph G with vertex set V .
2: for O(kn/ε) times do
3: for For every pair of distinct variables x,y ∈ V do
4: Choose random x, y, x′, y′, Z

5: If F (x, y, Z) + F (x′, y′, Z) 6= F (x, y′, Z) + F (x′, y, Z) create the edge {x,y} in G.
6: end for
7: end for
8: Accept if the graph has at least k connected components.

We will need the following fact:

I Fact 23. If p1, . . . , pn are probabilities such that
∑
pi ≥ ε then 1−

∏
(1− pi) ≥ ε−O(ε2).

Proof. Using the inequality 1− p ≤ e−p and the second-order estimate e−x = 1− x+O(x2),
we have∏

(1− pi) ≤
∏

e−pi = e−
∑

pi ≥ e−ε = ε−O(ε2). J

I Theorem 3. k-partitionability is testable with one-sided error and O(kn3/ε) non-adaptive
queries with respect to Hamming weight over Zq, and with O(k2pn3/ε2p) non-adaptive queries
with respect to the p-norm over R assuming ‖F‖2p ≤ 1.

While in this work we are mainly interested in small values of k, in the extreme case
when k = n the partition is unique and the property is testable with O(1/ε) queries by the
result of Dinur and Golubev [12].

Proof of Theorem 3. The connected components of G are always contained in the partition
components of F , so if F is k partitionable the tester always accepts. We argue that with
constant probability, all bipartition of F satisfying δ(X,X) ≥ ε cross an edge in G.

If F is ε-far from k-partitionable, by Claim 12 ∆(P) = Ω(ε/k) for all k-partitions P. As
every k-cut can be coarsened into a 2-cut of at least half the weight, every k-partition can be
coarsened into a bipartition such that ∆(X,X) = Ω(ε/k). We now argue that with constant
probability, all such heavy bipartitions (X,X) are crossed by an edge in G, so no k-partition
is likely to survive in G.

Assume ∆(X,X) =
∑

x∈X,y∈X ‖DF (x,y)‖ = Ω(ε/k). As ‖DF (x,y)‖ is the acceptance
probability of the test in line 5, by Fact 23 in any given iteration of the outer loop 3 at
least one of these edges will appear in G with probability Ω(ε/k). (For p-norms over R,
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‖DF (x,y)‖ is an expectation that takes O((ε/k)2p) queries to estimate.) After O(kn/ε)
iterations the probability that the cut survives is less than 2−n. By a union bound the
probability that any heavy cut survives is at most half. J

It is not difficult to see that n queries are required for one-sided error testers when k
equals 2 as the relevant constraints span an n-dimensional space. We show that a linear
dependence on n is necessary for two-sided error testers as well. Proposition 24 shows a
general Ω(n) lower bound for functions over finite domains (with uniform measure) valued
over finite groups under the Hamming metric. Proposition 25 shows that Ω(n) non-adaptive
queries are necessary for functions from Rn to R under the 2-norm.

I Proposition 24. Testing 2-partitionability for functions F : Znq → G for a finite group G
under uniform measure and Hamming metric requires Ω(n− k) queries even for constant ε.

For simplicity of notation we present the proof in the case q = 2 and G = Z2. The proof
is closely related to Chockler and Gutfreund’s lower bound for testing juntas [9].

Proof. Let R : Zn2 → Z2 be a random function and P : Zn−1
2 → Z2 be a function that depends

on all but a random hidden input coordinate I. First we argue that δ2(R) = Ω(1) with high
probability. For this it is sufficient to argue that ‖DR(X,Y )‖ = Ω(1) for every partition
(X,Y ). By definition ‖DR(X,Y )‖ is the average value of Ω(22n) indicator values for events
of the type R(x, y) +R(x′, y′)−R(x′, y)−R(x, y′) = 0. These events have probability half
each and are pairwise independent, so by Chebyshev’s inequality the probability that the
‖DR(X,Y )‖ is sub-constant is Ω(2−2n). Taking a union bound over all 2n bipartitions it
follows that ‖DR(X,Y )‖ = Ω(1) with probability at least 1− Ω(2−n).

To complete the proof, it is sufficient to argue that with high probability any Q queries
to P reveal independent random bits. Consider the subspace of Zn2 spanned by the Q queries
(or the submodule of Znq if q is not a prime). This vector space has dimension at most Q,
so it can contain at most Q of the elementary basis vectors e1, . . . , en. However, unless it
contains eI for the hidden coordinate I, no two queries differ in a single coordinate and all
answers are independent random bits. Since I is uniformly random the probability that P
and R can be distinguished is at most Q/n. By a union bound the distinguishing advantage
of the tester is at most Ω(2−n) +Q/n, which is subconstant unless Q = Ω(n). J

It was pointed out to us by Guy Kindler that the proof of Proposition 24 to functions
from Rn to R say under Gaussian measure by considering the functions RR and PR given by
FR(x1, . . . , xn) = F (sign x1, . . . , sign xn) where the sign is interpreted as a Boolean value.
This example is somewhat unnatural because the functions are discontinuous. The following
proposition shows that testing still requires Ω(n) non-adaptive queries even for highly smooth
functions.

I Proposition 25. Testing 2-partitionability non-adaptively for quadratic functions from Rn
to R under the 2-norm requires Ω(n) queries under any measure with zero mean and unit
variance and bounded third and fourth moments.

We need the following claim about distinguishing linear functions of normal random
variables.

B Claim 26. Let Z1, . . . , Zn be independent standard normal random variables, F (x) =∑n
i=1 Zixi, and F ′(x) =

∑
i∈S Zixi where S ⊆ [n] is a random subset of size s. For any q

queries x1, . . . , xq ∈ Rn, (F (x1), . . . , F (xq)) and (F ′(x1), . . . , F ′(xq)) are O(qs/(n− s+ 1))-
statistically close.
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Proof. It is sufficient to prove the claim for |S| = n − 1 and apply the triangle inequality.
By convexity it is sufficient to upper bound the expected statistical distance averaged over
the choice of the index i that is omitted from S. For fixed i, since the queried functions are
linear, without loss of generality we may assume that the queries x1, . . . , xq are orthonormal.
Let X be the q × n matrix whose rows are the queries x1, . . . , xn, and X−i be the submatrix
obtained by removing the i-th column. The desired statistical distance is then within a
constant factor of ‖(XTX)−1(XT

−iX−i)− I‖F , where ‖ · ‖F is the Frobenius norm [1]. By
orthonormality we obtain that ‖(XTX)−1(XT

−iX−i)− I‖F = ‖xi‖2
2. Averaging over i, the

desired statistical distance is at most O(Ei[‖xi‖2
2]) = O(q/n). C

Proof of Proposition 25. Let F (x) = n−1∑
j 6=k Zjkxjxk, where Zjk are independent stan-

dard normal random variables. Let F ′(x) = n−1∑
j, k, i distinct Zjkxjxk where i is chosen at

random from [n]. By standard concentration inequalities both ‖F‖4 and ‖F ′‖4 are constant
with high probability. By Claim 26, the answers to any q non-adaptive queries to F and F ′
are O(q/n)-statistically close.

It remains to argue that F is Ω(1)-far from 2-partitionable. For a fixed bipartition (S, T )
of [n], by Claim 26 the cost of F is n−1∑

j∈S,k∈T Z
2
jk. Therefore the average cost (over the

randomness of F ) is |S||T |/n. By Chernoff bound the cost is at least Ω(|S||T |/n) = Ω(1) with
probability 1− exp(−Ω(|S||T |)). Taking a union bound over all 2n−1 possible bipartitions
we conclude that F is Ω(1)-far from 2-partitionable with probability 1− exp(−Ω(n)). J

If Claim 26 extends to adaptive queries, so would Proposition 25.

7 Applications to reinforcement learning control

In this section we discuss the application of variable partitioning algorithms given real-valued
oracle and the 2-norm measure. The set X of variables to be partitioned corresponds to
the set a of control variables (the action), while the oracle F corresponds to the advantage
function A. While the control task is achieved by a series of actions, the advantage function
describes how much one single action in the series can affect the final objective. In general,
this function is complex enough so explicit representation is not available. Instead, it is
usually estimated by Monte-Carlo sampling of the action series or by function approximation,
where in either case it is sensible to treat the function as an oracle.

In a reinforcement learning control task, the objective is to control the action a so
as to maximize the expected cumulative reward over time t. The advantage function
A(·, a) describes the marginal gain of such an objective of an action a = at at time t. This
function can be estimated by Monte-Carlo sampling of the actions at, at+1, . . . , or by function
approximation. In either of the cases it is sensible to treat the function as an oracle when
using it to partition the variables.

We compare empirically with three previous approaches. The first approach is a standard
approach proposed by Williams [33,35] and later improved by Mnih et al. [25] and Schulman
et al. [32]. These approaches learn reinforcement learning control without considering the
possible partitioning of the advantage function. The second approach is to trivially partition
n variables into n subsets [22,36]. This causes a large partition error which induces bias in
the learning update. The third baseline partitions the variables heuristically [23]. In their
method the Hessian matrix of the advantage function is first calculated using a discrete
gradient method. Then this Hessian matrix is treated as an adjacency matrix of a graph, by
the heuristic that two independent variables have a zero element in Hessian. Then elements
are removed from Hessian, from those with the lowest absolute values, until the graph has at
least k connected components. This algorithm shares some similar intuition with our first
algorithm.
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The rest of this section will introduce the preliminaries of how this partition may be used
in reinforcement learning, and then demonstrate the comparison of scores attained in the
experiments.

7.1 Reinforcement learning control and policy gradient
We consider a reinforcement learning task described by a discrete-time Markov decision
process (MDP), denoted as the tuple (S,A, T , r, ρ0, β). That includes S ∈ Rm the m
dimensional state space, A ∈ Rn the n dimensional action space, T : S ×A× S → R+ the
environment transition probability function, r : S × A → R the reward function, ρ0 the
initial state distribution and β ∈ [0, 1) the unnormalized discount factor. Here n is the
number of the control variables, which is consistent with the dimension of the input oracle.
A (stochastic) policy is a function π : S ×A → R+ that outputs a distribution over A on any
given state s ∈ S. The objective of reinforcement learning is to learn a policy π such that
the expected cumulative reward J(θ) = Es∼ρπ,a∼π[

∑∞
t=0 β

tr(st, at)], is maximized, where
ρπ(s) =

∑∞
t=1 β

t−1P(st = s). Since π is in a functional space, the problem is commonly
relaxed to find over the space of parameterized functions the policy, such as the space of
neural networks. When the policy is parameterized we denote it as πθ.

Advantage actor-critic (A2C), a standard approach in policy optimization [25, 32],
estimates the gradient of the policy ∇θJ(θ). According to the policy gradient theo-
rem [35], this gradient can be estimated by ∇θJ(θ) = Eπ(a|s)[∇θ log π(a|s)Aπ(s, a)], where
Aπ(s, a) is the advantage function of s,a, and policy π. Here Aπ(s, a) is defined as
Aπ(s, a) = Qπ(s, a)− V π(s), where Qπ(s, a) = Eπ[

∑∞
t′≥t β

t′−tr(st′ , at′)|s = st, a = at, π] is
the action-state value function and V π(s) = Ea∼π(a|s)[Qπ(s, a)] the state-value function.

It is shown later in [36] and [23], that an alternative estimator

∇θJ(θ) =
k∑
j=1

Eπ(a(j)|s)[∇θ log π(a(j)|s)(Aπ(s, a(j))], (12)

may induces a lower variance. The condition that this estimator holds is that the advantage
function can be approximately partitioned into k parts correspondingly:

Aπ(s, a) = Aπ1 (s, a(1)) + · · ·+Aπk (s, a(k)) + U(s, a)

for some state s the estimation takes place, where U(s, a) the partition error is expected to
be small for the estimator to be accurate.

The learning is an iterative process that takes N updates by the gradient ∇θJ(θ) while
the k-partition is computed every N/N1 iterations. Every run of the partitioning algorithm
outputs the disjoint subsets a(1), . . . , a(k), which is then used by (12) for N1 iterations.
It is worth note that our algorithm has a complexity of O(N1n

5), which is negligible in
reinforcement learning. As the Monte-Carlo estimation of ∇θJ(θ) requires a complete trial
of the task (for example, play a game for an entire episode), which involves the interaction of
a complex system.

7.2 Experiments
We compare our first algorithm (called pairwise estimates - PE) and our second algorithm
(called submodular minimization - SM) with the aforementioned existing approaches. A2C [25]
is the baseline approach in reinforcement learning who does not leverage variable partition. It
uses control variates (CV) as the primary variance reduction technique. Other methods [23,36]
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partition the control variable so as to reduce the variance in the Monte-Carlo estimation by
Rao-Blackwellization (RB) [5]. For the discussion on variance reduction we refer the readers
to the paper cited above. The comparisons are summarized below

Table 1 Comparisons of our algorithms with previous ones.

PG estimator Variance reduction Heuristics Partitioning Guarantees Limits

A2C [25] CV - - - -
Wu et al. [36] CV & RB yes fully no k = n

Li and Wang [23] CV & RB yes greedy no no
PE (our first) CV & RB no greedy factor-O(kn2) no
SM (our second) CV & RB no optimal almost opt no

Now we study the performance in terms of both the correctness and the optimality on
graph cuts on weighted graphs. Correctness notes the number of times the algorithm outputs
exactly the optimal partition, while optimality describes the average of the ratio of the
partition error and the optimal partition error, over all the independent runs. This will
illustrate the difference between greedy-based algorithms like [23] and our first algorithm, and
submodular minimization based algorithms like our second algorithm. Note that submodular
minimization always finds the optimal partition.

Table 2 Performance of the greedy algorithm on variable partition.

#Nodes n n = 5 n = 10 n = 20 n = 40 n = 100

Submodular - - - - -
Greedy (correctness) 7753 6271 4226 2380 1101
Greedy (optimality) 1.060 1.203 1.408 1.352 1.250

Then Table 3 compares the partitioning algorithms when the oracle is a quadratic function
aTH0a for some random H0. In this case our second algorithm SM also incurs an error per
Theorem 2, but the error in practice is shown to be small enough. It has constantly the best
empirical performance in both correctness and optimality.

Since we only replaced heuristic partitioning with our partitioning algorithm in reinforce-
ment learning, it is reasonable that our more accurate partitions will improve reinforcement
learning.

Table 3 Comparisons of the algorithms on variable partition.

#Nodes n n = 5 n = 10 n = 20 n = 40 n = 100

Li and Wang [23] (correctness) 7553 5651 2929 1251 400
PE (correctness) 7709 6108 4001 2020 918
SM (correctness) 9896 9630 9243 8193 6802

Li and Wang [23] (optimality) 1.150 1.281 1.508 1.501 1.290
Wu et al. [36] (optimality) 9.049 13.54 20.96 34.42 72.55
PE (optimality) 1.075 1.277 1.452 1.400 1.281
SM (optimality) 1.020 1.028 1.101 1.110 1.025
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Finally we plug our algorithms into reinforcement learning control, replacing the parti-
tioning steps in [23]. The tasks we are testing on are standard tasks in reinforcement learning
by the MuJoCo physics simulator. This includes training a simplified model of ant, cheetah,
or human to run as fast as possible. The score is the cumulative reward over time, where the
reward is the speed less the energy cost (which is 0.001‖a‖2

2). The control variables a are the
forces applied to the joints. We refer to [3] for the exact simulator settings.

We have conducted experiments on all eight environments from MuJoCo that has the
action dimensional higher than one, shown in Figure 1 below. In the figure the x-axis is the
number of Monte-Carlo sample updates, which can be regarded as the time elapsed on the
training, while the y-axis is the score attained by the model. Our second algorithm (SM)
has achieved the highest score among most of these tasks, which agrees with our theoretical
finding.

Figure 1 Empirical comparisons on MuJoCo high-dimensional control tasks. Each curve is
averaged over 10 independent experiments.
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A Statistical claims

B Claim 27. Assume t, t̂ ≥ 0. If tp ≤ t̂p ≤ tp + (ε/2)p then t ≤ t̂ ≤ t+ ε.

Proof. The left-hand inequalities are immediate. For the right-hand ones we start we consider
two cases. If t ≤ ε/2, then t̂p ≤ 2(ε/2)p ≤ ε ≤ t+ ε. If t > ε/2 then

t̂− t ≤ t̂p − tp

tp−1 ≤ (ε/2)p

(ε/2)p−1 ≤ ε. C

B Claim 7. Assuming ‖F‖R,2p ≤ 1, the value ‖F‖pR,p can be estimated within εp, and ‖F‖R,p
can be estimated within ε, from Kplog(1/γ)/ε2p queries to F in linear time with probability
1− γ for some absolute constant K.

Proof. By Chebyshev’s inequality, E[|F |p] can be estimated within an additive error of (ε/2)p
by averaging (2/ε)2p samples with probability 3/4. The error can be improved to 1− γ by
taking the median value of O(log 1/γ) runs. The second bound follows from Claim 27. C

B Details in the experiments

The exact reinforcement learning control algorithm we used is described below. The algorithm
is based on proximal policy optimization [32] and generalized advantage estimator [11, 31] in
reinforcement learning.
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Algorithm 3 Policy optimization with variable partitions.

1: Input: Total number of samples T , batch size B, partition frequency Mp, number of
value iterations Mw, initial policy parameter θ, initial value and advantage parameters
w and µ;

2: Output: Optimized policy πθ;
3: for each iteration j in [T/B] do
4: Collect a batch of trajectory data {s(i)

t , a
(i)
t , r

(i)
t }Bi=1;

5: for Mθ iterations do
6: Update θ by one gradient descent step using proximal policy gradient with the

gradient estimator (12);
7: end for
8: for Mw iterations do
9: Update w and µ by minimizing ‖V w(st)−Rt‖2

2 and ‖Â−Aµ(st, at)‖2
2 in one step;

10: end for
11: Estimate Â(st, at) using V w(st) by generalized advantage estimator;
12: if j ≡ 0 (mod Mp) then
13: Define estimation f(X) = E[DF (X,X)2];
14: Run submodular minimization on f(X);
15: Assign X and X̄ to a(1) and a(−1) in (12), respectively;
16: end if
17: end for

Variable
Partitioning

The differences between our algorithm and proximal policy gradient [32] have been
highlighted: Line 6 uses the estimator with partitions on the control variables. Line 12-16
find the near-optimal variable partition using submodular minimization, by Theorem 2.

We use three neural networks as function approximations: a policy network πθ and a
value network V w as is in the baseline methods, and an advantage network Aµ solely used in
the partition algorithm. The networks have the same architecture as is in the previous line
of works [25,32].

In our MuJoCo experiments, the tasks have been slightly modified (the physics simulator
keeps intact). As the number of control variables of the original tasks is relatively low, we
augment such dimensions by letting the agent controls two independent instances of the
tasks at the same time. The scores and the reinforcement signals are then the additions of
the scores of the two sub-tasks. Correspondingly, we use k = 2 in [23] and our algorithms.
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