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Abstract

There has been a line of work trying to characterize BPP (the class of languages that are solvable by
efficient randomized algorithms) by efficient nonadaptive reductions to the set of Kolmogorov-random
strings: Buhrman, Fortnow, Koucký, and Loff (CCC 2010 [10]) showed that every language in BPP
is reducible to the set of random strings via a polynomial-time nonadaptive reduction (irrespective
of the choice of a universal Turing machine used to define Kolmogorov-random strings). It was
conjectured by Allender (CiE 2012 [1]) and others that their lower bound is tight when a reduction
works for every universal Turing machine; i.e., “the only way to make use of random strings by a
nonadaptive polynomial-time algorithm is to derandomize BPP.”

In this paper, we refute this conjecture under the plausible assumption that the exponential-time
hierarchy does not collapse, by showing that the exponential-time hierarchy EXPH can be solved in
exponential time by nonadaptively asking the oracle whether a string is Kolmogorov-random or not.
In addition, we provide an exact characterization of Sexp

2 in terms of exponential-time-computable
nonadaptive reductions to arbitrary dense subsets of random strings.
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1 Introduction

Randomness arises everywhere in the theory of computation, and there are at least three
different notions of randomness: (1) BPP, one of the most important complexity classes, is
the class of languages solvable by a two-sided-error randomized polynomial-time algorithm
with high probability. (2) Pseudorandom generators enable us to derandomize BPP. Its
one-sided-error version is called a hitting set generator. (3) The notion of Kolmogorov
complexity enables us to quantify the amount of randomness in a finite string from the
perspective of compressibility. In this study, we explore the relationship existing among
these different notions of “randomness” – efficient randomized algorithms, pseudorandomness,
and Kolmogorov-randomness. We present the interplay among these notions of randomness,
while reviewing the literature in the subsequent section.
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1.1 Pseudorandomness and Kolmogorov-Randomness
The Kolmogorov complexity of a string x can informally expressed as the length of the
shortest program that prints x. More formally, the Kolmogorov complexity of x ∈ {0, 1}∗
with respect to a Turing machine U is defined as

KU (x) := min{ |d| | U outputs x on input d }.

We choose a “universal” Turing machine U so that the Kolmogorov complexity is smallest
up to an additive constant. A Turing machine U is said to be universal if, for every Turing
machineM , there exists a constant c such that KU (x) ≤ KM (x)+c for every string x ∈ {0, 1}∗.
Note that there exists a universal Turing machine because one can take a Turing machine U
that, given an input (M,x), simulates a Turing machine M on input x.

Kolmogorov complexity enables us to define the notion of Kolmogorov-randomness. A
string x is said to be (Kolmogorov-)random if there exists no shorter program that prints
x. More generally, given a threshold s : N → N, we say that x ∈ {0, 1}` is s-random if
KU (x) ≥ s(`). Throughout this paper, we fix any reasonable threshold s (e.g., s(`) := `/2)
and denote by RKU

the set of s-random strings, i.e., RKU
:= {x | KU (x) ≥ s(|x|) }.

An important property of the set RKU
of random strings is that RKU

is an extremely
powerful distinguisher for any computable hitting set generator. More specifically, there is a
simple but powerful connection between pseudorandomness and Kolmogorov-randomness:
Consider any “pseudorandom” string x that is generated by a computable process from a
short seed. By definition, the string x is not Kolmogorov-random; hence RKU

distinguishes
any pseudorandom distribution from the uniform distribution.

A function G : {0, 1}s(`) → {0, 1}` ( s(`) < ` ) is called a hitting set generator secure
against a class C if there exists no C-algorithm R that avoids G; here we say that R avoids G
if R rejects every string in the range of G, and R accepts at least a half of inputs of length `.
The notion of hitting set generator naturally arises when one tries to derandomize one-sided-
error randomized algorithms: For instance, if there is an efficient hitting set generator of seed
length s(`) = O(log `) and secure against linear-size circuits, then by exhaustively trying all
the seeds of G, one can completely derandomize one-sided-error randomized algorithms, i.e.,
RP = P.

What can be efficiently solved by asking the oracle RKU
whether a string is random or

not? As mentioned earlier, it is easy to observe that RKU
avoids any computable family of

functions G = {G` : {0, 1}s(`)−O(log `) → {0, 1}`}`∈N.1 More generally, any “dense” subset
R of random strings RKU

avoids any computable hitting set generator. (Here we say that
R ⊆ {0, 1}∗ is dense if R contains at least a half of inputs for each input length.) By
exploiting this property, a line of work exhibited the power of RKU

as an oracle. Allender,
Buhrman, Koucký, van Melkebeek, and Ronneburger [5] proved that PSPACE ⊆ PRKU .
Allender, Buhrman, Koucký [4] showed that NEXP ⊆ NPRKU . In the case of nonadaptive
reductions, Buhrman, Fortnow, Koucký, and Loff [10] showed that BPP ⊆ PRKU

‖ , where
PRKU
‖ denotes the class of languages solvable in polynomial time with nonadaptive oracle

access to RKU
.2 Here, a reduction is said to be nonadaptive (also known as a truth-table or

parallel-query reduction) if the queries of the reduction do not depend on previous answers
from the oracle.

1 Specifically, for every ` ∈ N and seed z ∈ {0, 1}s(`)−O(log `), the Kolmogorov complexity of G`(z)
is less than s(`); thus G`(z) 6∈ RKU

. On the other hand, a simple counting argument shows that
|RKU

∩ {0, 1}`| ≥ 2`−1 for every `.
2 The subscript ‖ stands for parallel queries.
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1.2 BPP and Kolmogorov-Randomness
Kolmogorov-randomness and BPP originated from different disciplines. The notion of
Kolmogorov-randomness usually sits within the realm of computability theory as RKU

is not
computable, whereas complexity theory deals with efficient computations, such as BPP. In
particular, it is obvious that there is no computable upper bound on the class PRKU

‖ , since
RKU

itself is not computable.
Nevertheless, a surprising interdisciplinary connection between complexity classes and

Kolmogorov-random strings has been uncovered in the line of work (e.g., [4, 7, 13]). When a
reduction works no matter which universal Turing machine U is used in the definition of RKU

,
a computable upper bound can be obtained. Cai, Downey, Epstein, Lempp, and Miller [13]
showed that a language reducible to RKU

for every prefix-free universal Turing machine U is
computable; Allender, Friedman, and Gasarch [7] showed that any computable language L
that reduces to RKU

for every prefix-free universal Turing machine U via a polynomial-time
nonadaptive reduction is in PSPACE. Therefore:

I Theorem 1 ([10, 7, 13]).

BPP ⊆
⋂
U

PRKU
‖ ⊆ PSPACE,

where the intersection is taken over all prefix-free universal Turing machines U .

For some technical reasons, the upper bounds of [7, 13] are known to hold only for “prefix-free”
universal Turing machines. A similar upper bound can be obtained for plain universal Turing
machines by imposing a super-constant minimum query length restriction on reductions (cf.
Hirahara and Kawamura [16]). Thus, we herein focus on (plain) universal Turing machines
for the sake of simplicity.

At this point, a natural question arises: What is the exact computational power of RKU

under polynomial-time nonadaptive reductions? Intuitively, any polynomial-time nonadaptive
reduction cannot make any use of the set of Kolmogorov-random strings of length larger
than O(logn) because the Kolmogorov complexity of any query that the reduction can
make on input 1n is at most O(logn). It was argued in [3] that, intuitively, short queries to
Kolmogorov-random strings would only be used as a source of pseudorandomness. Allender [1]
thus conjectured that the lower bound of Theorem 1 is exactly tight, and then a fair amount
of effort has been made to verify the conjecture.

I Conjecture 2 ([10, 1, 6, 3, 16]). BPP =
⋂
U PRKU

‖ , where the intersection is taken over
all universal Turing machines.

Beyond its curiosity, such a characterization of BPP might make it possible to study BPP by
using the techniques from computability theory, and could be a completely new approach
for resolving the P = BPP conjecture (as speculated in [1, 6]). Moreover, Conjecture 2 is
interesting from the viewpoint of the study of the Minimum Circuit Size Problem (MCSP
[20]). In some technical sense, Kolmogorov complexity can be seen as the minimum size
of a circuit with oracle access to the halting problem (cf. [5]); thus RKU

can be regarded
as a computability-theoretic analogue of MCSP. In the light of this, Conjecture 2 states
non-NP-hardness of RKU

under nonadaptive polynomial-time reductions (unless NP ⊆ BPP),
and thus would make it possible to obtain some new insights about NP-hardness of MCSP,
which has been the focus of many recent studies on MCSP (e.g. [22, 17, 18, 9, 8]).

The “evidence” in favor of Conjecture 2 seemed to be pilling up, by considering various
restrictions on the reductions. For example, Allender, Buhrman, Koucký [4] showed that
conjunctive nonadaptive reductions from computable languages to RKU

can be simulated

ITCS 2020



41:4 Unexpected Power of Random Strings

in P; Hirahara and Kawamura [16] showed that some restricted variant of
⋂
U PRKU

‖ lies
between BPP and Σp

2 ∩Πp
2 ∩ P/poly. We refer interested readers to the survey of Allender [2]

for detailed background on MCSP and RKU
.3

1.3 Our Results: Unexpected Power of Random Strings
In this work, we disprove Conjecture 2 under the plausible assumption that the exponential-
time hierarchy does not collapse to BPEXP, by presenting unexpected power of RKU

. Not
only do we disprove Conjecture 2 itself, but also argue that the intuition of [3] is not correct.

Our main new insight is to consider a tally language in
⋂
U PRKU

‖ . Recall that the intuition
behind Conjecture 2 is that
1. On input 1n, any long query q to RKU

is answered as “No,” since a nonadaptive polynomial-
time machine cannot make any query whose Kolmogorov complexity is larger thanO(logn),
and that

2. Any query of length O(logn) should be useful only as a source of “pseudorandomness” [3].
We interpret this as follows: Short queries to RKU

should be replaceable with queries to
any oracle R that avoids any computable hitting set generator (i.e., R is a dense subset
of random strings).

In order to closely examine these intuitions, let us focus on tally languages L ⊆ {1n}. By a
standard padding argument, this is essentially equivalent to considering an exponential-time
analogue of Conjecture 2. More specifically, if Conjecture 2 is true, then a padding argument
shows that

BPEXP =
⋂
U

EXPRKU
‖

is also true.4 In order to examine the latter intuition, we also focus on an arbitrary oracle R
that avoids U . Specifically, Conjecture 2 implies that the subclass

⋂
R EXPR‖ of

⋂
U EXPRKU

‖

is also contained in BPEXP, i.e.,⋂
R

EXPR‖ ⊆ BPEXP,

where the intersection is taken over all dense subsets R of random strings; thus, we first
study the subclass

⋂
R EXPR‖ .

We completely settle what can be solved by a nonadaptive exponential-time reduction to
dense subsets R of random strings.

I Theorem 3 (Characterizing Sexp
2 Using Efficient Reductions to Dense Subsets of Random

Strings). For any universal Turing machine U , it holds that

Sexp
2 =

⋂
R

EXPR‖ ,

where the intersection is taken over all the dense subsets R of RKU
. (The condition of R

can be equivalently stated as follows: R avoids a universal Turing machine U regarded as a
family of functions U = {U` : {0, 1}s(`) → {0, 1}`}`∈N.)

3 Some unpublished results mentioned there are included in this paper.
4 In fact, this padding argument together with [4] already shows that Conjecture 2 is false unless

NEXP ⊆ BPEXP, which was completely overlooked before this work. Our results significantly weaken
the hypothesis.
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Here Sexp
2 represents an exponential-time analogue of Sp

2 (the second level of the symmetric
hierarchy [23, 14]), and is the class of languages which admit a “competing-two-prover”
system: an exponential-time verifier must compute the correct answer when one of the
provers presents a correct certificate.

Theorem 3 improves the result of [10] (conjectured to be tight) in two ways: First,
it is known that BPEXP ⊆ Sexp

2 , and the inclusion is likely to be proper (e.g., note that
NEXP ⊆ EXPNP ⊆ Sexp

2 [23]); thus, Theorem 3 refutes Conjecture 2 unless Sexp
2 ⊆ BPEXP.

Second, unlike the proof of [10], our proof does not exploit any specific property of RKU
;

we only rely on the pseudorandomness property of RKU
(i.e., the property that RKU

is a
distinguisher for any computable hitting set generator).

It is also worthy of note that our Sexp
2 upper bound of Theorem 3 significantly improves

the previous EXPSPACE upper bound of Allender, Friedman, and Gasarch [7]: They proved⋂
R EXPR‖ ⊆ EXPSPACE as a corollary of their PSPACE upper bound of Theorem 1.
Let us take a look at the original conjecture again. In Conjecture 2, we are allowed to

exploit a property of RKU
, instead of just a property that an oracle avoids a computable

hitting set generator. In this case, it is possible to reduce the entire exponential-time
hierarchy to RKU

via a nonadaptive exponential-time reduction, or even more efficiently, via
a PH-Turing reduction.

I Theorem 4. For every universal Turing machine U ,

EXPH ⊆ PHRKU ⊆ EXPRKU
‖ .

Theorem 4 shows that the class
⋂
U EXPRKU

‖ is much closer to the EXPSPACE upper bound
of [7] than previously conjectured. To be specific, it implies that Conjecture 2 is false unless
EXPH ⊆ BPEXP.

1.4 Proof Ideas

We briefly mention our proof techniques for proving the lower bounds of Theorem 3 and
Theorem 4. It is known that the halting problem is reducible to dense subsets R of random
strings via a nonuniform polynomial-time reduction [5]. Therefore, by exhaustively searching
polynomial-size R-oracle circuits (in exponential time), we can find a “succinct witness” for
Sexp

2 , whose correctness can be verified in exponential time. In order to extend this argument
to EXPH, recall that EXPH can be regarded as a constant-round two-player game whose
winner can be computed in exponential time. A winning strategy of round k + 1 must
depend on previous strategies (RKU

-oracle circuits) of rounds 1, · · · , k. Using the fact that
an RKU

-oracle circuit can be evaluated with oracle access to the halting problem, it can be
argued that there exists a polynomial-size R-oracle circuit which encodes a winning strategy
for round k + 1.

In order to prove the Sexp
2 upper bound of Theorem 3, we simulate an exponential-time

reduction M by an Sexp
2 algorithm as follows: The ith competing prover sends a set R̄i for

each i ∈ {1, 2}; the honest prover sends the set {0, 1}∗ \RKU
of nonrandom strings. While

we cannot know which of R̄1 or R̄2 is correct, {0, 1}∗ \ (R̄1 ∪ R̄2) is guaranteed to be a dense
subset of RKU

, to which the reduction M works correctly.
The rest of this paper is organized as follows. After reviewing some background in Section 2,

Theorem 3 is proved in Section 3. Theorem 4 is proved in Section 4. In Appendix A, the
EXP‖ reduction of Theorem 3 is improved.

ITCS 2020
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2 Preliminaries

We identify a language L ⊆ {0, 1}∗ with its characteristic function L : {0, 1}∗ → {0, 1}. Let
[n] := {1, . . . , n} for n ∈ N. We say that R ⊆ {0, 1}∗ is dense if |R ∩ {0, 1}n| ≥ 2n−1 for
every n ∈ N. For a Boolean function f : {0, 1}n → {0, 1}, we denote by tt(f) the truth table
of f , i.e., the concatenation of f(x) for all x ∈ {0, 1}n in the lexicographical order. We often
identify a Boolean circuit C with the function computed by C.

2.1 On the Threshold of Kolmogorov-Random Strings

Recall that a string x ∈ {0, 1}∗ is said to be s(-)-random if KU (x) ≥ s(|x|). Throughout this
paper, we fix any reasonable threshold s(-) of randomness so that there exists a universal
constant ε > 0 satisfying nε ≤ s(n) ≤ n − 2 for any n ∈ N, and denote by RKU

the set of
s(-)-random strings, i.e., RKU

:= {x ∈ {0, 1}∗ | KU (x) ≥ s(|x|) }. The upper bound of the
threshold is for assuming that the set of random strings is sufficiently dense:

I Fact 5. |{0, 1}n \RKU
| ≤ 2n−2 for any n ∈ N.

Proof. The number of nonrandom strings is bounded by the number of programs of length
less than s(n), which is at most

∑s(n)−1
i=0 2i ≤ 2s(n) ≤ 2n−2. J

2.2 Symmetric Alternation

Sp
2 denotes the class of languages that admit a competing-two-prover system. More formally:5

I Definition 6 ([14, 23]). Sp
2 is the class of languages L such that there exist a polynomial

p(n) = nO(1) and a polynomial-time algorithm V such that, for every input x ∈ {0, 1}∗,
1. ∃y ∈ {0, 1}p(|x|),∀z ∈ {0, 1}p(|x|), V (x, y, z) = L(x), and
2. ∃z ∈ {0, 1}p(|x|),∀y ∈ {0, 1}p(|x|), V (x, y, z) = L(x).
Sexp

2 is an exponential-time analogue of Sp
2 : the definition of Sexp

2 is obtained by allowing
p(n) to be exponential in the definition above (i.e., p(n) = 2nO(1)). For an oracle A, the
relativized version of Sp

2 is denoted by SA2 ; that is, SA2 is the class of languages that admit a
competing-two-prover system with a polynomial-time A-oracle verifier.

2.3 Exponential-Time Hierarchy

EXPH denotes the exponential-time analogue of the polynomial-time hierarchy (PH). That
is, a language L is in EXPH if and only if there exist a constant k, an exponential bound
e(n) = 2nO(1) and a polynomial-time algorithm M such that, for every input x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃y1,∀y2,∃y3,∀y4, · · · ,∃yk, M(x, y1, · · · , yk) = 1,

where yi ∈ {0, 1}e(n) for any i ∈ [k].

5 We follow the definition of Canetti [14], which is equivalent to the definition of [23] (cf. [11]).



S. Hirahara 41:7

3 Reductions to Dense Subsets of Random Strings

In this section, we give the characterization of Sexp
2 by exponential-time nonadaptive reductions

to arbitrary dense subsets of random strings.

I Reminder of Theorem 3. Fix any universal Turing machine U .
Lower bound: Sexp

2 ⊆ EXPR‖ for any dense subset R of RKU
.

Upper bound: {L ⊆ {0, 1}∗ | L ∈ EXPR‖ for every dense R ⊆ RKU
} ⊆ Sexp

2 .

3.1 Lower Bound

In order to prove the lower bound on the complexity class
⋂
R EXPR‖ , we use the fact that the

halting problem HALT is reducible to any dense subset of random strings via a polynomial-size
oracle circuit. The halting problem HALT is the problem of taking as input a description of
a Turing machine M and deciding whether M halts.

I Theorem 7 ([5]). HALT ∈ PR/poly for any dense subset R of random strings.

Proof Sketch. It was shown in [5, Corollary 32] that HALT is reducible to RKU
via a

nonadaptive P/poly reduction. The proof only uses the fact that RKU
is a distinguisher for

some hitting set generator; thus HALT is also reducible to any dense subset R of random
strings. J

Proof of the Lower Bound of Theorem 3. Let L ∈ Sexp
2 and V be a polynomial-time veri-

fier associated with L that takes certificates of length e(n) = 2nO(1) on inputs of length n.
We claim that L ∈ EXPR‖ for every dense subset R of random strings. Our EXPR‖ algorithm
M exhaustively searches “succinct witnesses”, i.e., circuits that encode a correct certificate.

Specifically, for some polynomial q(n) that is chosen later, let Cn be the set of all the
q(n)-size log e(n)-input oracle circuit. On input x ∈ {0, 1}∗, the algorithm M exhaustively
searches all the circuits Y, Z ∈ C|x| and accepts if and only if there exists an oracle circuit
Y ∈ C|x| such that, for every oracle circuit Z ∈ C|x|, V (x, tt(Y R), tt(ZR)) accepts. Since
the number |Cn| of polynomial-size oracle circuits is at most exponential in n, M halts in
exponential time. Moreover, M is a nonadaptive reduction to R because the length of any
query is bounded by some polynomial q(n) (thus, in exponential time, one can ask every
possible query beforehand).

We claim the correctness of M . By the definition of Sexp
2 , for any input x ∈ {0, 1}∗,

1. if x ∈ L, there exists a certificate y ∈ {0, 1}e(n) such that V (x, y, z) = 1 for every
z ∈ {0, 1}e(n), and

2. if x 6∈ L, there exists a certificate z ∈ {0, 1}e(n) such that V (x, y, z) = 0 for every
y ∈ {0, 1}e(n).

Consider the function η that maps (x, i) to the ith bit of the lexicographically first certificate
y ∈ {0, 1}e(|x|) such that V (x, y, z) = 1 for every z ∈ {0, 1}e(|x|) (if exists), where i ∈
{0, 1}log e(|x|). Since η is computable, by Theorem 7, there exists a polynomial-size oracle
circuit Y ′ such that Y ′R(x, i) = η(x, i) for any (x, i). Therefore, for every input x ∈ L, by
fixing x we obtain a polynomial-size circuit Yx := Y ′(x, -) such that V (x, tt(Y Rx ), z) = 1 for
every z. By choosing the bound q(n) large enough, we obtain Yx ∈ C, and thus the algorithm
M accepts. Similarly, one can prove that, for every input x 6∈ L, there exists a circuit Zx ∈ C
such that V (x, y, tt(ZRx )) = 0 for every y. J

ITCS 2020
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3.2 Upper Bound
Next, we prove the Sexp

2 upper bound on
⋂
R EXPR‖ . Take an arbitrary language L ∈

⋂
R EXPR‖ .

This means that, for every dense subset R of random strings, there exists an exponential-time
oracle machine MR such that MR solves L given oracle access to R. That is, the reduction
MR is allowed to depend on the oracle R, which makes it hard to simulate the reduction.
We first show, by using a diagonalization argument, that there exists a single machine that
works for every oracle R.

I Lemma 8. For any language L, the following are equivalent:
1. L ∈

⋂
R EXPR‖ , where the intersection is taken over all dense subsets R of RKU

.
2. There exists an exponential-time nonadaptive oracle machine M such that, for every

dense subset R of RKU
, for every input x ∈ {0, 1}∗, MR(x) = L(x).

Proof. The direction from the second item to the first item is obvious. We prove below the
contrapositive of the other direction.

Suppose that, for any exponential-time nonadaptive oracle machine M , there exists a
dense subset R of RKU

such that MR(x) 6= L(x) for some x ∈ {0, 1}∗. We claim that there
exists a single dense subset R ⊆ RKU

such that L 6∈ EXPR‖ .
To this end, let {Me}e∈N be the enumeration of all exponential-time nonadaptive oracle

machines. We will construct some dense subset Re ⊆ RKU
and input xe (and `e ∈ N) by

induction on e ∈ N, so that Me fails to compute L on input xe, given oracle access to Re+1;
then we will define R :=

⋃
e∈NRe. Let us start with R0 := ∅ and `0 := 0.

At stage e ∈ N, we claim that there exists some dense subset R′e+1 ⊆ RKU
and some

input xe ∈ {0, 1}∗ such that
M

R′e+1
e (xe) 6= L(xe), and

q ∈ Re if and only if q ∈ R′e+1 for any string q of length < `e.
Indeed, for any oracle Q, let Q′ := { q ∈ Q | |q| ≥ `e } ∪ { q ∈ Re | |q| < `e }. Consider an
exponential-time nonadaptive oracle machine M ′e such that M ′Qe simulates MQ′

e ; that is, M ′e
is hardwired with the set { q ∈ Re | |q| < `e }, and simulates Me and answer any query q of
length < `e by using the hardwired information. By our assumption, there exists some dense
subset R̂e+1 ⊆ RKU

such that M ′R̂e+1
e (xe) 6= L(xe) for some xe ∈ {0, 1}∗; by the definition of

M ′e, we obtain MR′e+1
e (xe) 6= L(xe) for R′e+1 := { q ∈ R̂e+1 | |q| ≥ `e } ∪ { q ∈ Re | |q| < `e },

which is again a dense subset of RKU
. This completes the proof of the claim above. Now define

`e+1 ∈ N as a large enough integer so that `e+1 ≥ `e and the machine Me on input xe does
not query any string of length ≥ `e+1, and define an oracle Re+1 := { q ∈ R′e+1 | |q| < `e+1 },
which completes the construction of stage e ∈ N.

Define R :=
⋃
e∈NRe, which is a dense subset of RKU

by the construction above. By the
choice of (`e)e∈N, we have

MR
e (xe) = MRe+1

e (xe) 6= L(xe),

for every exponential-time nonadaptive oracle machine Me. Thus L 6∈ EXPR‖ . J

We are ready to present the Sexp
2 algorithm that simulates an exponential-time nonadaptive

reduction to dense subsets of random strings, which completes the proof of Theorem 3.

Proof of the Upper Bound of Theorem 3. Take any language L ∈
⋂
R EXPR‖ . By Lemma 8,

there exists an exponential-time nonadaptive oracle machine M such that, for every dense
subset R of RKU

, for every input x ∈ {0, 1}∗, MR(x) = L(x). Our goal is to simulate
M in Sexp

2 .
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First, we can assume, without loss of generality, that the length of any query that M
makes on input x is bounded by some polynomial |x|O(1). Indeed, since M is a nonadaptive
reduction, the set of all the queries Q(x) that M makes on input x can be computed in
exponential time; thus, for each query q ∈ Q(x), its Kolmogorov complexity KU (q) is at
most |x|+ log |Q(x)|+O(1) ≤ |x|O(1), since q is described by x and the index of q in Q(x).
Therefore, for any query q whose length is larger than |x|O(1), the answer from the oracle R
is “No” because q 6∈ RKU

(⊇ R ).
Now we present an Sexp

2 algorithm that simulate M . The idea is that two competing
provers send the set of nonrandom strings. Given two possible sets of nonrandom strings
R̄1, R̄2 ⊆ {0, 1}∗ (one of which is guaranteed to be correct), R := {0, 1}∗ \ (R̄0 ∪ R̄1) is a
subset of RKU

. Moreover, since the number of nonrandom strings is small, the set R is dense
enough. Details follow.

Let p(n) be a polynomial that upper-bounds the length of any query that M makes on
inputs of length n. Our Sexp

2 algorithm operates as follows: Fix any input x of length n. The
ith prover (i ∈ {1, 2}) sends, for each ` ≤ p(n), a subset R̄i,` ⊆ {0, 1}` of size at most 2`−2; an
honest prover sets R̄i,` := {0, 1}` \RKU

. Define R̄i :=
⋃
`≤p(n) R̄i,`. Note that such subsets

can be encoded as a string of exponential length. The verifier sets R := {0, 1}∗ \ (R̄1 ∪ R̄2),
and accept if and only if MR(x) accepts.

We claim the correctness of the Sexp
2 algorithm. Assume that the i∗th prover is honest. For

each length ` ≤ p(n) and i ∈ {1, 2}, we assumed that |R̄i,`| ≤ 2`−2; thus |R̄1,` ∪ R̄2,`| ≤ 2`−1,
from which it follows that R is dense. Moreover, since the number of nonrandom strings
of length ` is at most 2`−2 (Fact 5)6, the i∗th prover can set R̄i∗,` := {0, 1}` \RKU

. Define
R′ := { q ∈ R | |q| ≤ p(n) } ∪ { q ∈ RKU

| |q| > p(n) }. Then, from the argument above, R′
is a dense subset of RKU

, and hence MR′(x) = L(x). Since M does not make any query of
length > p(n), it follows that MR(x) = MR′(x) = L(x). J

In Appendix A, we will mention that the reducibility notion of Theorem 3 can be
significantly improved from EXP‖ to Sp

2 (at the cost of a slight loss in the lower bound).

4 The Unexpected Power of Kolmogorov-Random Strings

In this section, we show that every language in the exponential-time hierarchy is reducible to
the set of Kolmogorov-random strings under PH reductions.

I Reminder of Theorem 4. For every universal Turing machine U ,

EXPH ⊆ PHRKU .

For the purpose of refuting Allender’s conjecture (Conjecture 2), it is enough to show
the weaker statement that EXPH ⊆ EXPRKU

‖ . Indeed, we observe that a simple padding
argument essentially refutes Conjecture 2:

I Corollary 9. BPP 6=
⋂
U PRKU

‖ unless EXPH ⊆ BPEXP, where the intersection is taken
over all universal Turing machines.

Proof. Assume that
⋂
U PRKU

‖ ⊆ BPP. Then by the standard padding argument, we also
obtain

⋂
U EXPRKU

‖ ⊆ BPEXP. (Specifically, take any language L ∈
⋂
U EXPRKU

‖ , and define
a padded version L′ := {x102p(|x|) | x ∈ L } for some large enough polynomial p so that
L′ ∈

⋂
U PRKU

‖ . By the assumption, we have L′ ∈ BPP, which implies that L ∈ BPEXP.) It
follows from Theorem 4 that EXPH ⊆

⋂
U EXPRKU

‖ ⊆ BPEXP. J

6 This is because of our choice of the threshold for Kolmogorov-randomness.
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Now we proceed to a proof of Theorem 4. We first observe that any language computable
with oracle access to HALT is in PHALT.

I Lemma 10. Let M be any oracle machine that, on inputs of length n, halts in finite steps
and makes a query of length at most nO(1). Then the language decided by MHALT is in PHALT.

Proof Sketch. The proof is essentially the same with [5, Theorem 27], and thus we just give
a proof sketch. The idea is to decide MHALT in the following two steps: First, by using a
binary search and oracle access to HALT, one can decide the number of all the strings in HALT
of length at most nO(1) in polynomial time. Then, given as advice the number of strings in
HALT of length at most nO(1), the computation of MHALT becomes now computable, and
hence it reduces to HALT. J

While the ingredients above are enough to obtain EXP reductions, in order to obtain PH
reductions, we make use of the efficient proof system of PH given by Kiwi, Lund, Spielman,
Russell, and Sundaram [21]. For simplicity, we state their results in the case of the number
of alternation is 2, but their results hold for every constant number of alternation. We also
state their results in terms of ΣEXP

2 instead of ΣP
2 .

I Theorem 11 (Kiwi, Lund, Spielman, Russell, and Sundaram [21]). For every language L in
ΣEXP

2 , there exists a randomized polynomial-time verifier such that,
1. for every input x ∈ L, there exists an oracle A such that for any oracle B, V A,B(x)

accepts with probability 1, and
2. for every input x 6∈ L, for all oracles A, there exists an oracle B, V A,B(x) accepts with

probability at most 1
2 .

We are now ready to present a proof of Theorem 4.

Proof of Theorem 4. The main idea is that, given oracle access to the set of random strings,
Theorem 7 tells us that there is a “succinct witness” for any exponential-time computation.
However, unlike the proof of Theorem 3, here we need to claim that there exists a succinct
witness that encodes some winning strategy of two player games, which may depend on a
RKU

-oracle circuit that encodes the opponent’s strategy. For simplicity, we will only give a
detailed proof for ΣEXP

2 ⊆ PHRKU , since it is straightforward to extend the proof.
First, we present a proof of ΣEXP

2 ⊆ EXPRKU
‖ . Let V be a polynomial-time verifier for

L ∈ ΣEXP
2 , and e(n) = 2nO(1) be an exponential bound such that for every input x of length n,

it holds that x ∈ L if and only if there exists a certificate y of length e(n) such that V (x, y, z)
accepts for all z of length e(n); Note that V runs in time 2nO(1) . We regard the computation
as a game between the first player y and the second player z.

Our EXPRKU
‖ algorithm operates as follows: Let sY (n) and sZ(n) be some polynomials

specified later. Given input x of length n, the algorithm accepts if and only if there exists
an oracle circuit Y of size sY (n) such that V (x, tt(Y RKU ), tt(ZRKU )) accepts for all oracle
circuits Z of size sZ(n), where tt(Y RKU ) denotes the truth table of the function computed
by Y RKU ; the algorithm checks this condition by an exhaustive search. Since there are at
most exponentially many circuits of polynomial size, this algorithm runs in exponential time.

We claim the correctness of the algorithm. Fix any input x ∈ L of length n. In this case,
the correctness readily follows from the fact that there exists a succinct witness under the
oracle RKU

: Indeed, let yx be the lexicographically first certificate for x ∈ L. Since each bit
of yx is decidable (in the sense that the language { (x, i) | the ith bit of yx is 1 } is decidable),
by Theorem 7, there exists an oracle circuit Y of size sY (n) := poly(n, log |yx|) = poly(n)
such that tt(Y RKU ) = yx. Thus V (x, yx, tt(ZRKU )) accepts no matter how the adversarial
circuit Z is chosen.
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Now fix any input x 6∈ L of length n. This case requires a more delicate argument. Here
we need to claim that, for every circuit Y of size sY (n), there exists a circuit Z that encodes
a strategy that beats the strategy of tt(Y RKU ). The point is that, given any circuit Y , the
lexicographically first winning strategy of the second player is computable with oracle access to
HALT. Indeed, let zx,Y denote the lexicographically first string such that V (x, tt(Y RKU ), z)
rejects. Consider the language L′ := { (x, Y, i) | the ith bit of zx,Y is 1 }. Since RKU

is
reducible to HALT, the language L′ is computable with oracle access to HALT. By Lemma 10,
L′ ∈ PHALT; thus by Theorem 7, we obtain L′ ∈ PRKU /poly. This means that for every circuit
Y there exists a circuit ZY of size sZ(n) := poly(n, |Y |, log |zx,Y |) = poly(n, sY (n)) such that
tt(ZRKU

Y ) = zx,Y . Thus, our algorithm rejects. This completes the proof of ΣEXP
2 ⊆ EXPRKU

‖ .
In order to extend the proof above to ΣEXP

2k for every constant k, we modify the EXPRKU

algorithm so that it checks, given input x of length n, whether ∃ a circuit C1 of size
s1(n), ∀ a circuit C2 of size s2(n), · · · , ∀ a circuit C2k of size s2k(n) such that a verifier
V (x, tt(CRKU

1 ), · · · , tt(CRKU

2k )) accepts, where s1(n), · · · , s2k(n) are some appropriately
chosen polynomials.

We now explain how to reduce the complexity of the EXP reduction to PH. For simplicity,
we again focus on a proof of ΣEXP

2 ⊆ PHRKU . Note that, in the proof above, the bottleneck
of the computation is the evaluation of V (x, tt(Y RKU ), tt(ZRKU )), where V runs in time
2|x|O(1) . We replace V with the randomized polynomial-time verifier of Theorem 11; then we
obtain the following ΣRKU

2 algorithm: Existentially guess a circuit Y of size at most sY (n),
and universally guess a circuit Z of size at most sZ(n) as well as a coin flip for V , Then
accept if and only if V Y,Z(x) accepts on the guessed coin flip sequence. J
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Hirahara [15] introduced the notion of a selector, and showed that EXPNP admits a
selector.

I Lemma 13 ([15]). For any EXPNP-complete language L, there exists a selector for L.
That is, there exists a randomized polynomial-time oracle machine S such that, for any input
x ∈ {0, 1}∗ and oracles A0, A1 ⊆ {0, 1}∗, if L ∈ {A0, A1} then PrS

[
SA0,A1(x) = L(x)

]
≥ 2

3 .

We show that any language L with a selector is low for Sp
2 if L ∈ P/poly.

I Theorem 14. Let L be a language with a selector S and R be any oracle. Then,

L ∈ PR/poly =⇒ SL2 ⊆ SR2 .

This generalizes a lowness result of [12] from any downward self-reducible language L to any
language L with a selector.

Proof. The idea is as follows: We request two competing provers of SR2 to send R-oracle
circuits C0, C1 that compute L. Then, for every query q of L, one can decide whether q

?
∈ L

by running S and using CR0 and CR1 as oracles. Details follow.
Take any A ∈ SL2 , and let V be an SL2 -machine that witnesses A ∈ SL2 . Take some

constants c, d such that V runs in time nc and S runs in time nd on inputs of length n.
Now we describe an S2 · BP · PR algorithm that computes A: Given an input x ∈ {0, 1}∗

of length n, for each i ∈ {0, 1}, the ith competing prover sends an S2-type certificate yi for
M . Moreover, each prover sends a polynomial-size R-oracle circuit Ci; an honest prover
sends a circuit Ci such that CRi computes L on every input of length at most ncd. Then
simulate V using the two certificates (i.e., run V on input (x, y0, y1)), where each query q
that V makes is answered with SCR

0 ,C
R
1 (q). It is easy to see the correctness of this algorithm.

Therefore, we have A ∈ S2 · BP · PR, and by [23], we can derandomize the randomized
computation by using the power of S2 and obtain L ∈ S2 · BP · PR = SR2 . J

Proof of Theorem 12. Under any dense subset R of Kolmogorov-random strings, we have
EXPNP ⊆ PR/poly (by Theorem 7). Thus by taking any EXPNP-complete problem L, we
obtain EXPNP ⊆ SL2 ⊆ SR2 by combining Lemma 13 and Theorem 14. J

Finally, we mention that in the case of reductions to the set of random strings, the Sp
2

reductions of Theorem 12 can be derandomized to obtain PNP reductions.

I Theorem 15. EXPNP ⊆ PNPRKU for any universal Turing machine U .

Proof. By Theorem 12, we immediately obtain EXPNP ⊆ SRKU
2 . By the relativized version

of Cai’s result [11], we have PNPRKU ⊆ SRKU
2 ⊆ ZPPNPRKU ; thus it remains to derandomize

the computation of ZPP under an NPRKU oracle. One can find the lexicographically first
Kolmogorov-random string by a PNPRKU algorithm. By Lemma 10 and Theorem 7, the
circuit complexity relative to an NPRKU oracle of any Kolmogorov-random string of length
n is at least nΩ(1). Thus by using a Kolmogorov-random string as a hard function of the
Impagliazzo-Wigderson pseudorandom generator [19], one can derandomize the computation
of ZPP under an NPRKU oracle. J
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