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Abstract
Given a metric (V, d) and a root ∈ V , the classic k-TSP problem is to find a tour originating at the
root of minimum length that visits at least k nodes in V . In this work, motivated by applications
where the input to an optimization problem is uncertain, we study two stochastic versions of k-TSP.

In Stoch-Reward k-TSP, originally defined by Ene-Nagarajan-Saket [13], each vertex v in the
given metric (V, d) contains a stochastic reward Rv. The goal is to adaptively find a tour of minimum
expected length that collects at least reward k; here “adaptively” means our next decision may
depend on previous outcomes. Ene et al. give an O(log k)-approximation adaptive algorithm for this
problem, and left open if there is an O(1)-approximation algorithm. We totally resolve their open
question, and even give an O(1)-approximation non-adaptive algorithm for Stoch-Reward k-TSP.

We also introduce and obtain similar results for the Stoch-Cost k-TSP problem. In this problem
each vertex v has a stochastic cost Cv, and the goal is to visit and select at least k vertices to
minimize the expected sum of tour length and cost of selected vertices. Besides being a natural
stochastic generalization of k-TSP, this problem is also interesting because it generalizes the Price
of Information framework [33] from deterministic probing costs to metric probing costs.

Our techniques are based on two crucial ideas: “repetitions” and “critical scaling”. In general,
replacing a random variable with its expectation leads to very poor results. We show that for our
problems, if we truncate the random variables at an ideal threshold, then their expected values
form a good surrogate. Here, we rely on running several repetitions of our algorithm with the
same threshold, and then argue concentration using Freedman’s and Jogdeo-Samuels’ inequalities.
Unfortunately, this ideal threshold depends on how far we are from achieving our target k, which a
non-adaptive algorithm does not know. To overcome this barrier, we truncate the random variables
at various different scales and identify a “critical” scale.
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1 Introduction

Consider a scenario where a salesperson must sell some quota of brushes in order to win a trip
to Hawaii. The salesperson knows the time it takes to travel between different cities and the
demand at each city. What is the best route to take to sell the quota while spending the least
amount of time? This exact scenario was described by Awerbuch et al. [4] to motivate the
study of TSP problems where the algorithm has to also decide which cities to visit. A cleaner
version of this problem, first introduced by Ravi et al. [31], is the k-TSP problem where we
assume that each city has a unit demand. Formally, given a metric (V, d) with a root ∈ V
and a target k ∈ Z≥0, the k-TSP problem is to find a tour that originates at the root and
visits at least k vertices, while minimizing the total travel time. There is a long line of work
trying to design better approximation algorithms for the k-TSP problem [4, 30, 8, 16, 2, 1],
and the state-of-the-art is a 2-approximation algorithm due to Garg [17]1.

In this work we consider stochastic versions of the k-TSP problem: what if the salesperson
does not know the exact demand in each city, or what if the salesperson need to spend
some uncertain time in each city to complete the city’s demand? Indeed, there is a long
line of work studying classical optimization problems where we begin only with estimates
(probability distributions) on the input parameters. The algorithm has to adaptively probe
parameters (inspect elements) by paying some “cost” before realizing their exact values;
here “adaptively” means that our decisions may depend on the outcomes of already probed
elements. Such stochastic probing problems have been well-studied in both maximization
and minimization settings [11, 18, 19, 22, 20, 23, 5, 24, 6, 29, 3, 25, 13, 15, 33, 9, 21].

There are two natural ways of defining the stochastic k-TSP problem, depending on
the type of input uncertainty. In the Stoch-Reward k-TSP problem, first introduced by
Ene-Nagarajan-Saket [13], we incorporate uncertainty in the vertex demands. Formally, we
assume that the demand at each vertex is drawn independently from a known distribution,
and the goal is to adaptively find a tour Π that obtains the target demand k, while minimizing
the total expected travel time2.

We also study Stoch-Cost k-TSP where each city still has a unit demand, but the sales-
person will have to spend an additional completion time (drawn from a known distribution)
at each vertex before meeting its unit demand. The goal is to adaptively find a tour Π
that completes the target demand k, while minimizing the expected sum of total travel and
completion times. Notice, our algorithm finds the exact completion time of a vertex only
after visiting it, and may choose not to complete it (i.e., not meet its unit demand) if the
completion time seems too long. This idea of studying stochastic completion times at vertices
is not new, and has been previously used in the study of stochastic Orienteering problems,
which in some sense is the dual to our Stoch-Cost k-TSP problem [23, 6].

A common theme in the study of stochastic probing problems is to understand the
power of adaptivity. Indeed, while the optimal algorithms can fully adapt to the outcomes,
and hence may not even have a polynomial-size representation, a non-adaptive algorithm
makes all its decisions upfront independent of the observed outcomes (except perhaps the
stopping time). Being non-adaptive has several benefits like they are simpler to find, easily
parallelizable, and have a poly-size representation. So ideally for a probing problem we
would like to design non-adaptive algorithms with performance close to the optimal adaptive

1 A closely-related variant is called the k-MST problem. Both problems are equivalent up to a constant
approximation factor.

2 Our Stoch-Reward k-TSP problem is called the “Stochastic k-TSP” problem in [13]. We rename it to
differentiate it from Stoch-Cost k-TSP.
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algorithms, or in other words design non-adaptive algorithms with a small adaptivity gap.
The main results of our work is to show that both the above Stoch-Reward k-TSP and
Stoch-Cost k-TSP problems have a constant adaptivity-gap. That is, there exist fixed-tours
starting at the root which the algorithm can take until it obtains the target demand k, which
guarantee an expected total time at most a constant factor more than the expected total
time of the optimal adaptive tour. Moreover, for distributions with polynomial support, we
give poly-time algorithms to find such tours.

Our constant adaptivity-gap for Stoch-Reward k-TSP answers the main open question
of [13], who showed an O(log2 k) bound on the adaptivity gap. The constant adaptivity gap
result for Stoch-Cost k-TSP might also seem surprising because it is known that the related
Stochastic Orienteering problem has a super-constant adaptivity gap [6].

In the rest of this section we first formally state our problems and results, and then
discuss our high-level techniques and other related work.

1.1 Stoch-Reward k-TSP
The following Stoch-Reward k-TSP was first defined by Ene et al. [13].

Stoch-Reward k-TSP. We are given a metric (V, d) with a root ∈ V and each vertex v ∈ V
has an independent integral3 stochastic4 reward Rv ∈ Z≥0. All reward distributions are given
as input but the actual reward instantiation Rv is only known when the algorithm visits
vertex v. Given a target value k ∈ Z≥0, the goal is to adaptively find a tour Π originating
at root that collects at least k reward (i.e.,

∑
v∈ΠRv ≥ k) while minimizing the expected

tour length.
This problem captures several well-studied problems; e.g., it captures the problem of

Stoch-Knapsack Cover where the metric (V, d) is a weighted star: given a target k and n items
where item i ∈ [n] has both a deterministic cost Ci ∈ R≥0 and an independent stochastic
reward Ri ∈ Z≥0, the Stoch-Knapsack Cover problem is to adaptively obtain a total reward
of at least k at the minimum expected cost. This problem was studied by Deshpande et
al. [12], and they gave an adaptive 2-approximation algorithm. However, even in this special
case, it was not know if there is a non-adaptive constant factor approximation algorithm.

The first non-trivial results for the Stoch-Reward k-TSP problem were obtained by Ene
et al. [13]. They gave an O(log2 k)-approximation non-adaptive algorithm and an O(log k)-
approximation adaptive algorithm. On the hardness side, however, they only gave a lower
bound of e on the adaptivity gap. This left open closing the wide gap on the adaptivity
gap for Stoch-Reward k-TSP. We resolve their open question by giving a non-adaptive
O(1)-approximation algorithm.

I Theorem 1. The Stoch-Reward k-TSP problem has a non-adaptive O(1)-approximation
algorithm.

The difficulty in Stoch-Reward k-TSP arises because the expected reward is a poor
indicator of how much we care about a node. An extreme example is a vertex with a large
expected reward, but which is non-zero with nearly zero probability. It is therefore reasonable
to truncate the reward distributions at the remaining target reward. However, it is not clear
why such an approach would work, and moreover this approach is adaptive as it depends on
the remaining target.

3 This is without loss of generality. Our result also generalizes to the case where rewards are real numbers
via re-scaling.

4 We assume that the distribution is discrete and is given explicitly.

ITCS 2020
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1.2 Stoch-Cost k-TSP
We formally define the Stoch-Cost k-TSP problem.

Stoch-Cost k-TSP. We are given a metric (V, d) with a root ∈ V and each vertex v ∈ V
has an independent stochastic cost Cv ∈ R≥0. All cost distributions are given as input but
the actual cost instantiation Cv is only known when vertex v is visited. Suppose a vertex v
can only be selected if: (1) v is visited and (2) we are currently5 at vertex v. The goal is to
adaptively find a tour Π originating at root that selects a set S of k visited vertices while
minimizing the expected total cost, which is the sum of the tour length and the cost of the
selected vertices:

E
[
d(Π) +

∑
v∈S

Cv

]
.

Apart from being a natural generalization of the classical k-TSP problem, Stoch-Cost
k-TSP is also motivated due to its connections to price of information [33]. In particular, it
generalizes the Minimization k-Pandora’s Box problem studied in [28, 33]. In this problem
we are given a target k and n items, where each item i ∈ [n] has a known probing price
πi ∈ R≥0 and an independent stochastic cost Ci. The exact cost Ci is only revealed after we
pay price πi. The goal is to adaptively probe and select k of the probed items to minimize
the expected total selection cost plus probing price. Stoch-Cost k-TSP captures this problem
on a star metric where node i is at a distance πi/2 from the root. Thus, we can view the
Stoch-Cost k-TSP problem as generalizing the price of information framework to a metric
setting, where the price of probing is not fixed but given by a general metric. Our next result
gives a non-adaptive O(1)-approximation algorithm for Stoch-Cost k-TSP.

I Theorem 2. The Stoch-Cost k-TSP problem has a non-adaptive O(1)-approximation al-
gorithm.

Our main techniques in the proof of Theorem 2 are similar to those for Stoch-Reward
k-TSP. In fact, in Section 3 we present a generic framework that can be used to solve both
these problems. It will be interesting to find other applications of our framework in future
work.

1.3 High-level Techniques
We assume that after re-scaling, the distance between any pair of vertices is at least 1.

Stoch-Reward k-TSP. A standard idea in the design of approximation algorithms on a
metric is to operate in phases, where in phase i our algorithm is allowed a budget of 2i.
Intuitively, this corresponds to the algorithm imagining that the optimal adaptive tour has
length Θ(2i). In each phase, a naïve algorithm would be to collect as much expected reward as
possible within budget 2i (say, by solving an instance of the Orienteering problem). However,
in general the performance of such a naïve algorithm can be arbitrarily bad. E.g., suppose
k −
√
k reward is easy to get, now for the remaining reward the naïve algorithm prefers a

vertex having a reward of k with probability 10/
√
k and 0 otherwise, as opposed to a vertex

with a deterministic reward of
√
k (assuming both are at the same distance).

5 Up to a factor of 2, this version of the problem is equivalent to the version where restriction (2) is
removed.
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A natural fix to the above issue is to truncate the reward distributions at the remaining
target reward and then take expectations. Not only is this algorithm adaptive, it is not
even clear why it would work. Indeed, Ene et al. [13] give an example (see Example 2
in [13]) where this algorithm has an Ω(log k)-approximation factor. Our first idea is to run
O(1) repetitions of a bi-criteria Orienteering algorithm using the same truncation (i.e., the
initial remaining target) for all these repetitions. Our analysis applies Freedman’s [14] and
Jogdeo-Samuels [27] inequalities to argue concentration, and relies crucially on not updating
the remaining target for these O(1) repetitions.

Nevertheless, the above approach depends on the remaining target, which is unknown
to a non-adaptive algorithm. One could bypass this by truncating the reward distributions
at log k different scales, where scale j corresponds to the remaining target being roughly
k/2j , applying the previous O(1) repetitions idea at each scale, and visiting the union of all
tours. Unfortunately, this immediately loses a log k approximation factor. Our second idea
is “critical scaling” in which we identify a “critical” scale jcrit among the log k possible scales,
and only include tours for scales jcrit − 1 and jcrit. This critical scale jcrit roughly (but not
quite) corresponds to a “phase transition” from an underestimation to an overestimation
of the remaining target. A priori it is not clear why such a “critical” scale can be found
non-adaptively, but the concentration properties of the above O(1) repetitions allow us to
find it efficiently.

Stoch-Cost k-TSP. We obtain our result for Stoch-Cost k-TSP in a similar way. An
immediate challenge, however, is how should we truncate the cost distributions Cv, say even
if the remaining target k′ is known? One natural way is by looking at P[Cv ≤ O(2i/k′)], where
O(2i/k′) is the “average” cost per remaining reward in phase i. But such an approach would
fail when some vertices in the optimal tour have costs much smaller than O(2i/k′), while the
other vertices have much higher costs. We overcome this by considering P[Cv ≤ O(2i−j)]
for all possible scales j ∈ {0, · · · , i+ logn}, identifying a “critical” scale jcrit, and again only
including the tours for scales jcrit−1 and jcrit. To identify the critical scale, we need to evaluate
the maximum target a tour at a given scale can get within cost budget 2i with constant
probability. We show this can be approximately computed via dynamic programming.

1.4 Further Related Work
There is a long line of work studying the classic k-TSP and the related k-MST problem; we
refer the readers to Garg’s beautiful 2-approximation paper and the references therein [17].

A formal study on the benefits of adaptivity for stochastic combinatorial optimization
problems started with the seminal work of Dean et al. [11]. They showed that for the
stochastic knapsack problem, where items sizes are independently drawn and we need to fit
them in a knapsack of size B, there is an O(1)-approximation non-adaptive algorithm. This
factor was later improved to a (2 + ε)-approximation in [7, 29]. The minimization version
of the stochastic knapsack problem, which is known as the Stoch-Knapsack Cover problem,
was studied by Deshpande et al. [12], and is a special case of Stoch-Reward k-TSP as we
mentioned before. The unbounded version of Stoch-Knapsack Cover (each item has infinite
number of copies) was studied by [26] and they provide an FPTAS for this problem.

Gupta et al. [23] generalized the stochastic knapsack problem to the stochastic orienteering
problem, where each stochastic item now resides on a vertex of a given metric, and we need
to fit both the tour length and the item sizes inside our budget B. They give an O(log logB)-
approximation non-adaptive algorithm for this problem. Bansal and Nagarajan [6] later
showed that this problem has no constant-approximation non-adaptive algorithm. These

ITCS 2020
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works inspired Ene et al. [13] to study Stoch-Reward k-TSP, a natural minimization variant
of the stochastic orienteering problem. Prior to our work, it was conceivable that this
minimization problem also has a super-constant adaptivity gap, like stochastic orienteering.

Motivated by different applications that solve discrete problems under an uncertain
input, other related stochastic probing models have been studied. We refer the readers to
Singla’s Ph.D. Thesis for a survey [32]. Of particular interest to us is the Price of Information
model [33], which was inspired from the work on Pandora’s box [34, 28]. Their Minimization k-
Pandora’s Box problem inspired us to define Stoch-Cost k-TSP, which generalizes the probing
costs from being fixed to being on a metric. Although an optimal strategy is known for
Minimization k-Pandora’s Box, the problem becomes APX-hard on a metric as it generalizes
k-TSP.

Organization

We start with some preliminary definitions and lemmas in Section 2. In Section 3, we
describe our general framework for both Stoch-Reward k-TSP and Stoch-Cost k-TSP, and
prove some key lemmas that will be used throughout the paper. We give our non-adaptive
O(1)-approximation algorithm for Stoch-Reward k-TSP that proves Theorem 1 in Section 4.
The non-adaptive O(1)-approximation algorithm for Stoch-Cost k-TSP that proves Theorem 2
is in Section 5.

2 Preliminaries

2.1 Adaptive vs Non-Adaptive Algorithms
Any feasible solution to our stochastic problems can be described by a decision tree, where
nodes correspond to vertices that are visited and branches correspond to instantiations of
the observed random variables. Even if the degree of every vertex is a constant, the size
of such decision trees can be exponentially large in its height. These solutions are called
adaptive because the choice of the next vertex to visit depends on the outcomes of the already
visited nodes.

We also consider the special class of non-adaptive solutions that is described simply by an
ordered list of vertices: the policy involves visiting vertices in the given order until a certain
stopping criterion is met. Such non-adaptive solutions are often preferred over adaptive
solutions because they are easier to implement.

In this work we only study minimization problems. We compare the performance of
our algorithm with that of the optimal adaptive algorithm, which is denoted by OPT. We
abuse notation and also use OPT to denote the expected objective of the optimal adaptive
algorithm. We say an algorithm is α-approximation for α ≥ 1 if the expected objective
of the algorithm is at most α · OPT. Ideally, we want to design non-adaptive algorithms
whose performance is comparable to the optimal adaptive algorithm. Since this is not always
possible, it is important to bound the adaptivity gap, which is the worst-case ratio between
the expected objectives of the optimal non-adaptive and the optimal adaptive algorithms.

2.2 Probability Inequalities
Our proofs will require the following probability inequalities. We start with a bound on the
median of independent Bernoulli random variables due to Jogdeo and Samuels [27]. Given
n independent Bernoulli random variables X1, · · · , Xn where Xi has success probability
pi ∈ [0, 1], let X :=

∑n
i=1Xi be their sum. Define the median of X to be any integer

m ∈ Z≥0 such that min {P[X ≥ m],P[X ≤ m]} ≥ 1/2.
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I Theorem 3 (Theorem 3.2 and Corollary 3.1 [27]). Let X =
∑n
i=1Xi be the sum of n

independent Bernoulli random variables where Xi has success probability pi ∈ [0, 1]. If E[X]
is an integer k, then the median of X is also k. If k < E[X] < k+ 1 for some integer k, then
the median of X is either k or k + 1.

We will also need the following martingale inequality due to Freedman [14].

I Theorem 4 (Freedman’s Inequality, Theorem 1.6 in [14]). Consider a real-valued martingale
sequence {Xt}t≥0 such that X0 = 0, and E[Xt+1|Ft] = 0 for all t, where {Ft}t≥0 is the
filtration defined by the martingale. Assume that the sequence is uniformly bounded, i.e.,
|Xt| ≤M almost surely for all t. Now define the predictable quadratic variation process of
the martingale to be Wt =

∑t
j=1 E[X2

j |Fj−1] for all t ≥ 1. Then for all ` ≥ 0 and σ2 > 0
and any stopping time τ , we have

P
[∣∣∣ τ∑
j=0

Xj

∣∣∣ ≥ ` ∧Wτ ≤ σ2for some stopping time τ
]
≤ 2 exp

(
− `2/2
σ2 +M`/3

)
.

I Theorem 5 (Chernoff Bound). Let X1, X2, · · · , Xn be independent random variables taking
values in [0, 1] and define X :=

∑
i∈[n]Xi. Then for any δ ∈ [0, 1], we have

P [X ≤ (1− δ) · E[X]] ≤ exp
(
−δ2 · E[X]/2

)
.

2.3 A Bi-Criteria Algorithm ALGBicrit-Orient for Orienteering
We formally define the well-known Orienteering problem.

Orienteering. Given a metric (V, d) with root ∈ V , a profit6 Rv > 0 for each v ∈ V , and
a budget B > 0, the goal is to find a tour originating at root of length at most B that
maximizes the collected profit.

The state-of-the-art for this NP-hard Orienteering problem is a (2 + ε)-approximation
algorithm [10]. We denote this algorithm as ALGOrient and denote the profit of the optimal
Orienteering tour as OPTOrient. For our purposes, however, we also need to find profit at least
OPTOrient minus an arbitrarily small additive error. To achieve this, the tour found by our
algorithm has length O(1) ·B.

I Lemma 6 (Bi-criteria Orienteering). There is an efficient algorithm ALGBicrit-Orient that finds
a tour of length O(1) ·B while collecting at least (OPTOrient − ε) profit, where ε = 1/poly(n)
can be made arbitrarily small.

3 Our Approach via Critical Scaling and Repetitions

3.1 A Meta-Algorithm and Critical Scaling
Our non-adaptive O(1)-approximation algorithms for both the problems, Stoch-Reward k-TSP
and Stoch-Cost k-TSP, have the same structure described in Meta-Algorithm ALGMeta (Al-
gorithm 1). This algorithm operates in phases where it gets a budget of O(1)·γi in phase i ≥ 0
for some constant γ ∈ (1, 2).

6 We use the word “profit” for Orienteering to avoid confusion with the “reward” in Stoch-Reward k-TSP.

ITCS 2020
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In each phase i, ALGMeta explores multiple different “scales” in the remaining graph after
excluding the set Π of vertices found in the previous phases. Recall, each scale corresponds
to truncating the random variables at a different threshold. This is crucial because our
non-adaptive algorithm doesn’t know the remaining reward to reach the target k. For each
different scale, ALGMeta obtains a tour of length O(1) · γi via a sub-procedure ALGRep to
which it sends the truncated random variables as arguments (discussed in Section 3.2).
Eventually, ALGMeta identifies a “critical” scale jcrit and appends at the end of Π the two
tours corresponding to the scales jcrit and jcrit − 1. Since we only append two tours, ALGMeta
uses budget at most O(1) · γi in phase i.

Algorithm 1 A Meta-Algorithm ALGMeta.

1 Pre-processing stage:
2 set γ ∈ (1, 2),Π← ∅ and `← polylog(k, n);
3 for phase i = 0, 1, · · · do
4 set Πi,−1 ← ∅;
5 for scale j = 0, · · · , ` do
6 set Xj

v ∈ [0, 1] to be the truncation of Xv at scale j for v ∈ V \Π, and zero for
v ∈ Π ;

7 find tour Πi,j ← ALGRep
({
Xj
v

}
v∈V \Π , i

)
of length O(1) · γi;

8 end
9 identify a “critical” scale jcrit and set Πi ← Πi,jcrit ∪Πi,jcrit−1;

10 append tour Πi to Π, i.e., Π← Π ◦Πi;
11 end
12

13 Probing stage:
14 for phase i = 0, 1, · · · do
15 visit vertices in the order of Πi and apply certain Selection and Stopping Criteria;
16 end
17 Return set of vertices selected

To analyze the algorithm, we need some notation for any phases i, i′ ≥ 1:
σi−1: outcome of vertices visited by ALGMeta’s in the first i − 1 phases of the probing
stage.
ui′(σi−1): probability that ALGMeta enters phase i′ + 1 in the probing stage, conditioning
on σi−1.
u∗i′(σi−1): probability that the cost of OPT is more than γi′ , conditioning on σi−1.

Notice ui−1(σi−1) denotes the indicator variable that ALGMeta enters phase i in the probing
stage. The following Lemma 7 is the key to our theorems. Roughly, it says that ALGMeta is a
constant approximation algorithm if it can ensure that whenever u∗i (σi−1) is small (i.e., OPT
has a large success probability within budget γi) then ALGMeta also succeeds with a constant
probability in the first i phases (i.e., only using O(1) · γi budget). The proof of Lemma 7 is
standard (e.g., [13]), and we defer it to Appendix B.

I Lemma 7 (Key Lemma). If for some universal constants C > 0, γ > 1, any phase i ≥ 1,
and any possible σi−1, the algorithm ALGMeta satisfies

ui(σi−1) ≤ C · u∗i (σi−1) + ui−1(σi−1)
γ2 ,

then ALGMeta is a non-adaptive O(1)-approximation algorithm.
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All our effort will go in designing ALGMeta that satisfies the precondition of Lemma 7.

3.2 ALGRep: Constant Repetitions of ALGBicrit-Orient Suffice
For a fixed scale j in phase i, ALGMeta uses ALGRep (Algorithm 2) as a key sub-procedure to
find a tour of length O(1) · γi. To achieve this, ALGRep runs a constant number of repetitions
of ALGBicrit-Orient on an Orienteering instance where each vertex v has a profit wv = E[Xv]
for input random variable Xv ∈ [0, 1] (recall, Xv is the truncated random variable at scale
j for vertices outside Π). In each repetition, ALGRep excludes vertices found in previous
repetitions.

Algorithm 2 ALGRep
(
{Xv}v∈V , i

)
.

1 Input: random variables Xv ∈ [0, 1] corresponding to vertex profits and phase i;
2 Main stage:
3 set γ ∈ (1, 2), ε← 1/105, C ← O(1), and wv = E[Xv];
4 set Πi ← ∅;
5 for repetition s = 1, · · · , C do
6 use ALGBicrit-Orient to find a tour πs with budget γi, profit {wv}v∈V , and error ε;
7 append tour πs to Πi, i.e., Πi ← Πi ◦ πs;
8 reset wv = 0 for v ∈ Πi;
9 end

10 Return Πi

Intuition. In the following, we prove two important properties of ALGRep. Recall from
Algorithm 2 that Πi denotes the union of the C repetitions of ALGBicrit-Orient. The first
property (Lemma 8) roughly says that if an Orienteering tour of budget γi cannot obtain
much profit outside Πi, then OPT also cannot obtain much reward outside Πi within budget
γi. The second property (Lemma 9) roughly says that if on the other hand lots of profit
can be found by an Orienteering tour outside Πi, then the tour Πi obtains a large amount
of expected reward in its C repetitions, much more than what OPT obtains within budget
γi. This follows from the property that ALGBicrit-Orient obtains profit close to the optimal
Orienteering tour.

To formally state the above two properties, we need some notation. Consider the
Orienteering instance in the remaining graph V \Πi where the budget is γi and each vertex
v ∈ V \Πi has profit E[Xv]. Denote π ⊆ V \Πi the optimal Orienteering tour for this instance
and let

T :=
∑
v∈π

E[Xv] (1)

be the Orienteering profit obtained by π. For any adaptive strategy ADAP, let Πi(ADAP) ⊆ Πi

denote the random set of vertices visited by ADAP inside the tour Πi and let Πi(ADAP) ⊆
V \Πi denote the random set of vertices visited by ADAP outside the tour Πi.

I Lemma 8. Suppose we are given independent random variables Xv ∈ [0, 1]. Let T be as
defined in (1). Then for any adaptive strategy ADAP which uses at most γi budget and any
constant α > 1, we have

P
[ ∑
v∈Πi(ADAP)

Xv ≥ αT
]
≤ 2 · exp

(
− (α− 1)2T/2

1 + (α− 1)/3

)
.

ITCS 2020



45:10 Stochastic k-TSP

Proof of Lemma 8. We construct a martingale for the (random) set Πi(ADAP) of vertices
visited by ADAP in V \ Πi as follows: When ADAP visits a vertex v ∈ Πi(ADAP), the
martingale proceeds for one step with martingale difference defined by

Zv := Xv − E[Xv] ∈ [−1, 1],

and the martingale doesn’t move when ADAP visits a vertex v ∈ Πi. The stopping time
τ is naturally defined as the martingale step when ADAP finishes. Since each Xv ∈ [0, 1],
the quadratic variance of the above martingale Wτ =

∑τ
j=1 E[X2

j |Fj−1] is bounded by its
expectation

∑τ
j=1 E[Xj |Fj−1] which is at most T , i.e.,

∑
v∈Πi(ADAP) E[Xv] ≤ T . Therefore,

applying Freedman’s inequality (Theorem 4), we have

P
[ ∑
v∈Πi(ADAP)

Xv ≥ αT
]
≤ P

[∣∣ ∑
v∈Πi(ADAP)

Zv
∣∣ ≥ (α− 1)T ∧Wτ ≤ T

]

≤ 2 · exp
(
− (α− 1)2T/2

1 + (α− 1)/3

)
.

This finishes the proof of Lemma 8. J

I Lemma 9. Suppose we are given independent random variables Xv ∈ [0, 1]. Let T be as
defined in (1). Then for any adaptive strategy ADAP which uses budget at most γi, we have∑

v∈Πi\Πi(ADAP)

E[Xv] ≥ (C − 1)(T − ε)− ε.

Proof of Lemma 9. Since ADAP uses budget at most γi, the set Πi(ADAP) ⊆ Πi can always
be visited by a tour of length at most γi. Consider the first tour π1 found by Algorithm 2.
Since the tour with length at most γi that visits the set Πi(ADAP) is a valid Orienteering
tour when π1 is found, it follows from Lemma 6 that

∑
v∈Πi(ADAP) E[Xv] ≤ ε+

∑
v∈π1

E[Xv].
For any s ∈ {2, 3, · · · , C}, since π is an Orienteering tour in V \Πi of length at most γi
with

∑
v∈π E[Xv] = T , Lemma 6 implies that

∑
v∈πs

E[Xv] ≥ T − ε. Therefore, a simple
calculation gives∑

v∈Πi\Πi(ADAP)

E[Xv] =
∑
v∈Πi

E[Xv]−
∑

v∈Πi(ADAP)

E[Xv] ≥ (C − 1)(T − ε)− ε,

which finishes the proof of Lemma 9. J

4 Stoch-Reward k-TSP

In this section we prove Theorem 1, which is restated below for convenience.

I Theorem 1. The Stoch-Reward k-TSP problem has a non-adaptive O(1)-approximation
algorithm.

To prove this theorem we carefully choose the parameters of our Meta-Algorithm from
last section.
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4.1 The Algorithm

Algorithm 3 ALGStoch-Reward for Stoch-Reward k-TSP problem.

1 Pre-processing stage:
2 set γ ← 1.1, ε← 1/105,Π← ∅, ` = blog kc, and C ← 6000 ;
3 for phase i = 0, 1, · · · do
4 set Πi,−1 ← ∅ ;
5 for scale j = 0, · · · , ` do
6 set profit wjv = E

[
min

{
Rv · 2j/k, 1

}]
· 1[v ∈ V \Π] ; /* Scale j truncates

at k/2j */
7 set Πi,j ← ∅ ;
8 for repetition s = 1, 2, · · · , C /* Constant repetitions of ALGBicrit-Orient */
9 do

10 use ALGBicrit-Orient to find tour πi,j,s with budget γi, profit {wjv}v∈V , and
error ε ;

11 append tour πi,j,s to Πi,j , i.e., Πi,j ← Πi,j ◦ πi,j,s ;
12 reset wjv = 0 for v ∈ Πi,j ;
13 end
14 /* Check whether j is a “critical” scale */
15 use ALGOrient to find tour πOri

i,j with budget γi and profit {wjv}v∈V ;
16 set Ti,j ←

∑
v∈πOri

i,j
wjv ;

17 if Ti,j ≥ 1/300 or j = ` then
18 append tour Πi := Πi,j ∪Πi,j−1 to Π, i.e., Π← Π ◦Πi ;
19 Break ;
20 end
21 end
22 end
23

24 Probing stage:
25 for phase i = 0, 1, · · · do
26 visit vertices in the order of Πi and apply the following selection and stopping

criteria ;
27 Selection Criterion: select every vertex visited ;
28 Stopping Criterion: total reward reaches k ;
29 end
30 Return set of vertices selected

We assume without loss of generality that the stochastic reward Rv ≤ k almost surely
for each vertex v ∈ V . Our algorithm ALGStoch-Reward for Stoch-Reward k-TSP problem is
given in Algorithm 3. It is an instantiation of the Meta-Algorithm ALGMeta (Algorithm 1) by
setting the phase parameter γ = 1.1, number of scales ` = blog kc, and number of repetitions
C = 6000. For each scale j in phase i, we set the random variable Xj

v for any vertex v ∈ V \Π
in ALGMeta to be the stochastic reward Rv truncated at k/2j and then scaled down to [0, 1].
We identify the “critical” scale jcrit in ALGMeta as follows: For each scale j in phase i, denote
Πi,j the C = 6000 repetitions of ALGBicrit-Orient and let Ti,j be the profit obtained by the
3-approximation Orienteering algorithm ALGOrient in V \ (Π ∪Πi,j). The “critical” scale jcrit
is the smallest scale j such that Ti,j ≥ 1/300, i.e., sufficient profit remains outside even after
C repetitions. We add the two tours corresponding to the “rich” scale jcrit and the “poor”
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scale jcrit − 1 into Π. In the case when there is no scale j with Ti,j ≥ 1/300, we simply set
jcrit to be the last scale `. In the probing stage, the selection and the stopping criteria are
straightforward: we collect reward from every visited vertex and stop when the total reward
reaches k.

4.2 Proof of Theorem 1
Recall from Section 3.1 that to prove Theorem 1, we only need to prove the precondition in
Lemma 7. The remainder of this section proves this precondition for ALGStoch-Reward as given
in the following Lemma 10.

I Lemma 10. For γ = 1.1, any phase i > 0 in the probing stage of ALGStoch-Reward satisfies

ui(σi−1) ≤ 100 · u∗i (σi−1) + ui−1(σi−1)
γ2 . (2)

Before proving Lemma 10, we discuss the high-level intuition of our proof.

Intuition. Assume without loss of generality that u∗i (σi−1) < 0.01, i.e., OPT finds k reward
within budget γi with probability at least 0.99, as otherwise the lemma trivially holds. Now
the plan is to show that with constant probability, ALGStoch-Reward finds more reward than
OPT restricted to budget γi, even when all rewards in σi−1 are given to OPT for free. This
allows us to focus on the remaining graph with vertex set Vi := V \ σi−1 where we repeat
ALGBicrit-Orient for different scales.

Our arguments rely on the notion of “richness”. We call a scale j “rich” if Ti,j ≥ 1/300
and otherwise “poor”. A scale being poor indicates that not much reward can be collected
outside the C repetitions of ALGBicrit-Orient for that scale, in which case we can use Lemma 8
to argue that OPT cannot find much reward outside. A scale being rich implies that each
repetition of ALGBicrit-Orient for that scale finds a significant amount of reward, in which case
we can apply Lemma 9 to argue that ALGStoch-Reward finds much more reward than OPT in
the C repetitions for that scale. Our critical scale jcrit corresponds to the transition from
poor to rich scales. Since the algorithm includes both jcrit and jcrit − 1, roughly the reason
why our analysis works is that we use the poor scale jcrit − 1 to argue OPT cannot find much
reward outside our tours and we use the rich scale jcrit to argue OPT cannot find much more
reward inside. The final analysis has to do some case analysis depending on whether the
transition ever happens or not.

Proof of Lemma 10. We fix any outcome σi−1 of vertices visited by ALGStoch-Reward in the
first i−1 phases in its probing stage. The lemma trivially holds in the case where u∗i (σi−1) ≥
0.01 as we have 100u∗i (σi−1) ≥ 1. If ui−1(σi−1) = 0 which means that ALGStoch-Reward already
collects reward k before entering phase i in the probing stage, then ui(σi−1) = 0 and again the
lemma trivially holds. We therefore assume that u∗i (σi−1) < 0.01 and that ui−1(σi−1) = 1.
Now proving Lemma 10 is equivalent to proving

ui(σi−1) ≤ 100u∗i (σi−1) + 1/γ2. (3)

To prove (3), we need the following notation. Denote Vi := V \ σi−1 the vertex set of the
remaining graph where vertices in σi−1 are excluded. Denote Πi(OPT) ⊆ Vi\Πi the (random)
set of vertices visited by OPT outside σi−1 ∪Πi within budget γi, and denote Πi(OPT) ⊆ Πi

the (random) set of vertices visited by OPT inside Πi. We consider three cases:
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Case (1): (Scale 0 is rich) Ti,0 ≥ 1/300. In this case, our algorithm appends tour Πi := Πi,0
to Π (recall that Πi,−1 = ∅), and these will be the phase i vertices visited in the probing
stage. We show that Ti,0 ≥ 1/300 implies that each repetition of ALGBicrit-Orient has large
expected reward (notice the random rewards are not truncated at scale 0). As we repeat
ALGBicrit-Orient for C = 6000 times, the tour Πi,0 has expected reward much larger than
the target k.
Since Ti,0 is the profit of a valid Orienteering tour with length at most γi, for each
s ∈ {1, . . . , C} we have Ti,0,s ≥ Ti,0 − ε ≥ 1/300− ε, where ε = 1/105 is the small error
term for ALGBicrit-Orient in Lemma 6. Thus,∑

v∈Πi,0

E [min {Rv/k, 1}] ≥ 20− 6000ε ≥ 19.

Notice that Rv/k ∈ [0, 1], so applying Chernoff bound (Theorem 5) we have

1−ui(σi−1) ≥ P
[ ∑
v∈Πi,0

Rv ≥ k
]

= P
[ ∑
v∈Πi,0

min {Rv/k, 1} ≥ 1
]
≥ 0.9,

which means ui(σi−1) ≤ 0.1 ≤ 1/γ2. This proves (3) and finishes the proof of Lemma 10
in this case.

Case (2): (Scale ` is poor) Ti,j ≤ 1/300 for every scale j = 0, · · · , `. In this case, our
algorithm adds Πi := Πi,` ∪ Πi,`−1 to Π, and these will be the phase i vertices visited
in the probing stage. We argue that the assumption of Ti,` ≤ 1/300 implies that with
constant probability OPT finds no reward outside σi−1 ∪Πi within budget γi. If OPT
still manages to find k reward, then all k reward must come from vertices in σi−1 ∪Πi, in
which case ALGStoch-Reward also finds k reward. In this case our argument already works
with the vertices Πi,` added to Π, i.e., we do not even need vertices in Πi,`−1.
Since ALGOrient is a 3-approximation Orienteering algorithm, for any set of vertices S ⊆
Vi \ Πi that can be visited within budget γi, we have

∑
v∈S E

[
min

{
Rv · 2`/k, 1

}]
≤

3Ti,` ≤ 0.01. Since ` = blog kc, we have k/2` ∈ [1, 2], and therefore∑
v∈S

E[min{Rv, 1}] ≤
∑
v∈S

E
[
min

{
2 ·Rv · 2`/k, 1

}]
≤ 0.02. (4)

Recall that Πi(OPT) ⊆ Vi \ Πi denotes the (random) set of vertices visited by OPT
outside σi−1 ∪Πi within budget γi. Since each min{Rv, 1} ∈ {0, 1}, the best probability
of obtaining truncated reward at least 1 in Vi \ Πi within budget γi is achieved by a
non-adaptive strategy. Therefore, Markov’s inequality together with (4) implies that

P
[ ∑
v∈Πi(OPT)

min{Rv, 1} ≥ 1
]
≤ 0.02.

Since u∗i (σi−1) < 0.01, we have that with probability at least 1− 0.01− 0.02 = 0.97, OPT
finds k reward in V but 0 reward outside σi−1 ∪Πi. In this case, ALGStoch-Reward also finds
k reward among vertices visited in the first i phases. So we have ui(σi−1) ≤ 1− 0.97 =
0.03 ≤ 1/γ2, which establishes (3) in this case.

Case (3): (Transition from poor to rich scale at jcrit) Ti,0 ≤ 1/300 but Ti,j > 1/300 for
some j ∈ [`]. In this case, let jcrit = min

{
j ∈ [`] : Ti,j > 1/300

}
be our critical scale. The

algorithm appends Πi := Πi,jcrit−1 ∪ Πi,jcrit to Π. To prove that ALGStoch-Reward will not
continue to phase i+ 1 with constant probability, we show that the following two events
happen with constant probability:
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1. OPT doesn’t find too much reward outside σi−1 ∪Πi within budget γi.
2. ALGStoch-Reward finds much more reward inside Πi than OPT does since it is restricted

to budget γi.
We show that the first event follows from Ti,jcrit−1 ≤ 1/300 while the second event
follows from Ti,jcrit ≥ 1/300. From these we conclude that with constant probability,
ALGStoch-Reward obtains at least as much reward as OPT restricted to budget γi.
We first argue that OPT doesn’t find too much reward outside σi−1 ∪Πi. Specifically, we
prove that

P
[ ∑
v∈Πi(OPT)

Rv < k/2jcrit−1
]
≥ 0.5. (5)

Notice that Ti,jcrit−1 ≤ 1/300 together with the fact that ALGOrient is a 3-approximation
for Orienteering implies that for any set of vertices S ⊆ Vi \Πi that can be visited within
distance γi, we have∑

v∈S
E
[
min

{
Rv · 2jcrit−1/k, 1

}]
≤ 0.01.

Since the random variables min
{
Rv · 2jcrit−1/k, 1

}
∈ [0, 1], applying Lemma 8 we have

P
[ ∑
v∈Πi(OPT)

min
{
Rv · 2jcrit−1/k, 1

}
≥ 1
]
≤ 2 exp

(
− 0.992/2

0.01 + 0.99/3

)
≤ 0.5,

which immediately implies (5).
Now we argue that inside Πi, we find much more reward than OPT does when it’s
restricted to budget γi. Specifically, we prove that

P
[ ∑
v∈Πi\Πi(OPT)

Rv ≥ k/2jcrit−1
]
≥ 0.8, (6)

where recall that Πi(OPT) ⊆ Πi is the (random) set of vertices visited by OPT inside Πi

within budget γi. Notice that Ti,jcrit > 1/300 together with Lemma 9 implies that∑
v∈Πi\Πi(OPT)

E[min{Rv · 2jcrit/k, 1}] ≥ (6000− 1) · (Ti,jcrit − ε)− ε ≥ 19.

Applying Chernoff bound (Theorem 5), we have

P
[ ∑
v∈Πi\Πi(OPT)

min{Rv · 2jcrit/k, 1} ≥ 2
]
≥ 0.8,

which implies (6).
Now we complete the proof of (3) in this final case. From (5) and (6) and our assumption
that u∗i (σi−1) < 0.01, we have that with probability at least 1− 0.5− 0.2− 0.01 ≥ 1/4, all
the following three events hold: (1)

∑
v∈Πi(OPT)Rv < k/2jcrit−1, (2)

∑
v∈Πi\Πi(OPT)Rv ≥

k/2jcrit−1, and (3) OPT obtains at least k reward within budget γi. When all these
three events hold, ALGStoch-Reward also finds at least k reward before visiting any vertex
from phase i + 1. Therefore, ui(σi−1) ≤ 3/4 ≤ 1/γ2, and this completes the proof of
Lemma 10. J
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5 Stoch-Cost k-TSP

In this section we prove Theorem 2, which is restated below for convenience. Throughout
this section, we will remove the restriction that a vertex v can only be selected if we are
currently at v because this is equivalent to the original problem up to a factor of 2.

I Theorem 2. The Stoch-Cost k-TSP problem has a non-adaptive O(1)-approximation al-
gorithm.

Recall, an additional challenge for Stoch-Cost k-TSP is that there is no obvious way to
truncate the cost distributions Cv, even if the remaining target k′ is known. Truncating at
the “average” cost per remaining reward (i.e., P[Cv ≤ O(γi/k′)]) will fail when some vertices
in the optimal tour have costs much smaller than O(γi/k′), while the other vertices have
much higher costs. We overcome this by considering P[Cv ≤ O(γi/2j)] for all possible scales
j ∈ {0, · · · , i · log γ + logn}. To identify a “critical” scale, we evaluate the maximum target
a tour at a given scale can get with constant probability within cost budget 2i. We show
this can be approximately computed via dynamic programming.

The rest of this section is devoted to proving Theorem 2.

5.1 The Algorithm
Our algorithm ALGStoch-Cost for Stoch-Cost k-TSP is given in Algorithm 4. ALGStoch-Cost is an
instantiation of our Meta-Algorithm ALGMeta in Algorithm 1 by setting the phase parameter
γ = 1.1 and number of repetitions C = 6000. The number of scales in phase i ≥ 0 will be
`i = bi · log γ + lognc. (Notice, unlike Stoch-Reward k-TSP, the number of scales changes
with phase.) For scale j in phase i, we set a random variable Xj

v for vertex v ∈ V \ Π in
ALGMeta to be the indicator variable that cost Cv ≤ γi/2j .

We identify a “critical” scale j̃crit as follows: For any phase i ≥ 0 and scale j ∈ {0, · · · , `i},
define Yi,j ∈ Z≥0 to be the maximum number of vertices that can be selected from Πi,j∪Πi,j−1
with probability at least 0.2 within cost budget 3γi. Ideally, we want to compute Yi,j for every
scale j ∈ {0, · · · , `i} and set the critical scale to be the one that maximizes Yi,j . Unfortunately,
Yi,j cannot be computed efficiently as the corresponding problem is NP-Hard. To get around
this issue, we compute an approximate value Ỹi,j in Step 15 of ALGStoch-Cost via a dynamic
programming sub-procedure ALGDP. We discuss the details of ALGDP in Section 5.3, where
we prove the following Lemma 11 which roughly says that the Ỹi,j computed by ALGStoch-Cost
is a reasonably good approximation of Yi,j .

I Lemma 11. For any phase i ≥ 0 and any scale j ∈ {0, · · · , `i}, the approximate value Ỹi,j
computed in Step 15 of ALGStoch-Cost satisfies that (1) Ỹi,j ≥ Yi,j , and (2) Ỹi,j vertices can be
selected from Πi,j ∪Πi,j−1 within cost budget 6γi with probability at least 0.2.

After computing Ỹi,j for each scale j ∈ {0, · · · , `i}, we simply set j̃crit to be the scale that
maximizes Ỹi,j and add the two tours corresponding to scales j̃crit − 1 and j̃crit into Π.

In the probing stage, the Stopping Criterion is natural: we stop whenever the number of
selected vertices reaches k. The selection process needs some care since not all vertices visited
in the previous phases are selected. Our algorithm therefore runs two selection processes
consecutively: In Selection-Process 1, we select as many unselected vertices from those visited
in the previous phases within total cost γi. This is to ensure that we select from σi−1 at
least as many vertices as OPT restricted to budget γi. In Selection-Process 2, we select as
many vertices as possible from Πi within total cost 6γi. The above Lemma 11 guarantees
that at least Ỹ

i,̃jcrit
vertices can be selected in this process with probability at least 0.2.

ITCS 2020



45:16 Stochastic k-TSP

Algorithm 4 ALGStoch-Cost for Stoch-Cost k-TSP problem.

1 Pre-processing stage:
2 set γ ← 1.1, ε← 1/105, Π← ∅ and C ← 6000 ;
3 for phase i = 0, 1, · · · do
4 set Πi,−1 ← ∅ ;
5 for scale j = 0, · · · , `i, where `i = bi · log γ + lognc do
6 set profit wjv = P[Cv ≤ γi/2j ] · 1[v ∈ V \Π] ; /* Scale j “truncates” at

γi/2j */
7 set Πi,j ← ∅ ;
8 for repetition s = 1, 2, · · · , C /* Constant repetitions of ALGBicrit-Orient */

9 do
10 use ALGBicrit-Orient to find tour πi,j,s with budget γi, profit {wjv}v∈V and

error ε ;
11 append tour πi,j,s to Πi,j , i.e., Πi,j ← Πi,j ◦ πi,j,s ;
12 reset wjv = 0 for v ∈ Πi,j ;
13 end
14 /* Approximately compute the maximum number of vertices that can be

selected from Πi,j ∪Πi,j−1 within cost budget 3γi and with probability at
least 0.2 */

15 find the largest integer Ỹi,j ≤ n such that ALGDP(Ỹi,j , 3γi,Πi,j ∪Πi,j−1) ≥ 0.2
;

16 end
17 /* Identify a “critical” scale */
18 set j̃crit ← arg maxj Ỹi,j and Πi ← Π

i,̃jcrit
∪Π

i,̃jcrit−1 ;
19 append tour Πi to Π, i.e., Π← Π ◦Πi ;
20 end
21

22 Probing stage:
23 for phase i = 0, 1, · · · do
24 set σi−1 ←

⋃i−1
t=0 Πt ;

25 visit vertices in the order of Πi and apply the following selection and stopping
criteria ;

26 /* Select (unselected) vertices visited in previous phases */
27 Selection-Process 1: select as many vertices as possible from σi−1 within total

cost γi ;
28 /* Select vertices visited in the current phase */
29 Selection-Process 2: select as many vertices as possible from Πi within total

cost 6γi ;
30 Stopping Criterion: total number of vertices selected reaches k ;
31 end
32 Return the set of selected vertices



H. Jiang, J. Li, D. Liu, and S. Singla 45:17

5.2 Proof of Theorem 2
Recall from Section 3.1 that to prove Theorem 2, we only need to prove the precondition in
Lemma 7. The remainder of this section proves this precondition for ALGStoch-Cost as stated
in the following Lemma 12.

I Lemma 12. For γ = 1.1, any phase i > 0 in the probing stage of Stoch-Cost k-TSP
satisfies

ui(σi−1) ≤ 100u∗i (σi−1) + ui−1(σi−1)
γ2 . (7)

Before proving Lemma 12, we need some notation.

Notation. For any (possibly adaptive) algorithm ADAP, we say ADAP has a distance budget
of B if it is allowed to travel a total distance of at most B; we say ADAP has a cost budget
of B if it is allowed to select vertices up to a total cost of B; we say ADAP has a total budget
of B if its total distance travelled plus the total cost of selecting vertices is restricted to be
at most B. An algorithm satisfying a budget constraint is said to be within that budget.
For any phase i, denote Vi := V \ σi−1 the set of vertices in the remaining graph where
vertices in σi−1 are excluded. For any fixed outcome σi−1 and any target Y ∈ Z≥0 , denote
p∗i,Y (σi−1) the probability that OPT selects at least Y vertices from Vi within total budget
γi and pi,Y (σi−1) the probability that the tour Πi ⊆ Vi found by ALGStoch-Cost contains Y
vertices which can be selected within cost budget 6γi.

The proof of Lemma 12 relies on the following Lemma 13, which says that if OPT selects
Y vertices in Vi within total budget γi with probability at least 0.9, then we can select Y
vertices in Πi within cost budget 6γi with probability at least 0.2. The proof of Lemma 12
from Lemma 13 is standard, see Appendix C.

I Lemma 13. For any phase i ≥ 0, any target Y ∈ Z≥0 and any outcome σi−1 of vertices
visited in the previous i− 1 phases, if p∗i,Y (σi−1) ≥ 0.9 then we have pi,Y (σi−1) ≥ 0.2.

We need some notation to prove Lemma 13.

Notation. We say a vertex v ∈ V is qualified for scale j ∈ {0, · · · , `i} if its cost Cv ≤ γi/2j .
For each scale j ∈ {0, · · · , `i}, denote π∗i,j the optimal Orienteering tour in Vi\Πi,j with budget
γi where each vertex v ∈ Vi \Πi,j has profit P[Cv ≤ γi/2j ]. Define T ∗i,j :=

∑
v∈π∗

i,j
P[Cv ≤

γi/2j ] and Ti,j :=
∑
v∈Πi,j

P[Cv ≤ γi/2j ] to be the total Orienteering profit of tour π∗i,j and
Πi,j , respectively. Denote Πi,j(OPT) ⊆ Vi \ (Πi,j ∪Πi,j−1) the (random) set of vertices visited
by OPT outside σi−1 ∪ (Πi,j ∪Πi,j−1) within total budget γi, and Πi,j(OPT) ⊆ Πi,j ∪Πi,j−1
the (random) set of vertices visited by OPT inside Πi,j ∪Πi,j−1 within total budget γi.

Intuition. We discuss our high-level proof strategy for Lemma 13. Our arguments again rely
on the notion of “richness”. Recall from above that Ti,j denotes the Orienteering profit of tour
Πi,j at scale j. We call a scale j “rich” if Ti,j ≥ Y and otherwise “poor”. A scale j being poor
roughly (but not quite) indicates that OPT cannot find enough low-cost vertices qualified
for scale j outside the tour Πi,j . A scale j being rich implies that Πi,j contains enough
vertices that are qualified for scale j, which is an immediate consequence of Jogdeo-Samuels
inequality (Theorem 3). We plan to find a critical scale jcrit that corresponds to the transition
from rich to poor scales. Notice that such a critical scale jcrit might be different from the
critical scale j̃crit found by our algorithm, but we show that it suffices to argue about jcrit
since j̃crit is only better.
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To argue about jcrit, we consider the tours corresponding to both scales jcrit and jcrit − 1.
Roughly we use the poor scale jcrit to argue that OPT cannot find enough low-cost vertices
outside these tours and we use the rich scale jcrit−1 to argue that we have enough replacements
for these low-cost vertices without paying too much cost. Our final analysis is a case analysis
depending on whether the transition ever happens or not. The proof here is more involved
than that in Section 4 as we also need to take into account the amount of Orienteering profit
outside the C = 6000 repetitions of ALGBicrit-Orient for each scale j.

Proof of Lemma 13. Recall that for any phase i ≥ 0 and scale j ∈ {0, · · · , `i}, we defined
Yi,j to be the maximum number of vertices that can be selected from Πi,j ∪ Πi,j−1 with
probability at least 0.2 within cost budget 3γi. We show in the following that p∗i,Y (σi−1) ≥ 0.9
implies there exists a “critical” scale jcrit ∈ {0, · · · , `i} with Yi,jcrit ≥ Y . This critical scale
jcrit might be different from the critical scale j̃crit identified by ALGStoch-Cost. But since j̃crit
maximizes Ỹi,j among all scales j ∈ {0, · · · , `i}, it follows from property (1) in Lemma 11 that
Ỹ
i,̃jcrit
≥ Ỹi,jcrit ≥ Yi,jcrit ≥ Y . Now using property (2) in Lemma 11 we have that Ỹ

i,̃jcrit
≥ Y

vertices can be selected from Π
i,̃jcrit
∪ Π

i,̃jcrit−1 within cost budget 6γi with probability at
least 0.2. It follows that pi,Y (σi−1) ≥ 0.2. Therefore, the existence of a critical scale jcrit
with Yi,jcrit ≥ Y would imply Lemma 13.

In the following, we consider three different cases and prove the existence of such a critical
scale jcrit with Yi,jcrit ≥ Y in each case.
Case (1): (Scale 0 is poor) Ti,0 < Y . We show in this case that p∗i,Y (σi−1) ≥ 0.9 implies

that scale 0 is a “critical” scale with Yi,0 ≥ Y . Notice that any vertex v ∈ Vi not qualified
for scale 0 has cost Cv > γi. Therefore, OPT cannot select any vertex that is not qualified
for scale 0 within total budget γi.
We start by showing that T ∗i,0 ≤ 0.1. To prove this, we assume for the purpose of
contradiction that T ∗i,0 > 0.1. It follow from Lemma 8 that

P
[ ∣∣{v ∈ Πi,0(OPT) : Cv ≤ γi

}∣∣ ≤ 200T ∗i,0
]
≥ 0.9. (8)

From Lemma 9 we have that∑
v∈Πi,0\Πi,0(OPT)

P[Cv ≤ γi] ≥ (6000− 1) · (T ∗i,0 − ε)− ε ≥ 5000T ∗i,0.

So it follows from Chernoff bound (Theorem 5) that

P
[ ∣∣{v ∈ Πi,0 \Πi,0(OPT) : Cv ≤ γi

}∣∣ ≥ 500T ∗i,0
]
≥ 0.9. (9)

Since Ti,0 < Y , from Theorem 3 we have that

P
[ ∣∣{v ∈ Πi,0 : Cv ≤ γi

}∣∣ ≤ Y ] ≥ 0.5. (10)

Now we count the number of vertices found by OPT that are qualified for scale 0 within
total budget γi. It follows from union bound that with probability at least 0.2, all three
events in (8), (9) and (10) hold, in which case OPT finds at most Y − 300T ∗i,0 vertices
qualified for scale 0 within total budget γi. Therefore, in order to select at least Y vertices,
OPT needs to select vertices that are not qualified for scale 0 within total budget γi,
which is a contradiction to the assumption that p∗i,Y (σi−1) ≥ 0.9.
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Therefore we must have T ∗i,0 ≤ 0.1. Applying Markov’s inequality, the probability that
OPT finds any vertex qualified for scale 0 in Vi \ Πi,0 is upper bounded by T ∗i,0 ≤ 0.1.
When this happens and when OPT selects Y vertices within total budget γi, all vertices
selected by OPT are from Πi,0. Therefore, with probability at least p∗i,Y (σi−1)−0.1 ≥ 0.8,
we can select Y vertices from Πi,0 within cost budget γi which implies that Yi,0 ≥ Y .

Case (2): (All scales are rich) Ti,j ≥ Y for every scale j = 0, · · · , `i. In this case we show
that `i is a “critical” scale with Yi,`i ≥ Y . Notice that selecting any Y vertices qualified
for scale `i has cost at most Y · γi/2`i ≤ 2 ≤ 6γi. Since Ti,`i

≥ Y , it follows from
Theorem 3 that with probability no less than 0.5, at least Y vertices in Πi,`i

are qualified
for scale `i (notice we don’t even need the tour Πi,`i−1 in this case). This implies that
Yi,`i

≥ Y .

Case (3): (Transition from rich to poor scale at jcrit) Ti,0 ≥ Y but Ti,j < Y for some
j ∈ [`i]. In this case, let jcrit = arg minj {j ∈ [`i] : Ti,j < Y }. We show in the following
that jcrit is a “critical” scale with Yi,jcrit ≥ Y . To prove this, we show that the following
two events happen with constant probability:

1. Ti,jcrit < Y implies that OPT doesn’t find enough vertices qualified for scale jcrit. This
gives a lower bound on the cost of the set of vertices selected by OPT within total
budget γi.

2. Ti,jcrit−1 ≥ Y implies that ALGStoch-Cost finds enough vertices qualified for scale jcrit − 1.
This can be used to upper bound the cost of ALGStoch-Cost.

We first consider the sub-case where T ∗i,jcrit
≤ 0.1. This is the case where not many

vertices qualified for scale jcrit can be found outside Πi,jcrit ∪Πi,jcrit−1. In this case, we have∑
v∈Πi,jcrit (OPT) P[Cv ≤ γi/2jcrit ] ≤ T ∗i,jcrit

. It follows from Markov’s inequality that with
probability at least 0.9, OPT finds no vertex in Vi \ (Πi,jcrit ∪Πi,jcrit−1) that is qualified for
scale jcrit, in which case any vertex v ∈ Vi \ (Πi,jcrit ∪Πi,jcrit−1) selected by OPT has cost
Cv > γi/2jcrit . Since Ti,jcrit−1 ≥ Y , it follows from Theorem 3 that with probability at
least 0.5, we have

∣∣{v ∈ Πi,jcrit ∪Πi,jcrit−1 : Cv ≤ γi/2jcrit−1}∣∣ ≥ Y . Furthermore, p∗Y ≥ 0.9
implies that with probability at least 0.9, OPT selects Y vertices within total budget γi.
It follows from union bound that all three events above happen with probability at least
0.2, in which case we can select Y vertices from Πi,jcrit ∪Πi,jcrit−1 within cost budget 2γi.
This implies that Yi,jcrit ≥ Y .
Now we deal with the other sub-case where T ∗i,jcrit

> 0.1. This represents the situation
where many vertices qualified for scale jcrit can be found outside Πi,jcrit∪Πi,jcrit−1. Roughly,
Lemma 8 implies in this case that OPT finds at most 200T ∗i,jcrit

low-cost vertices in
Vi \ (Πi,jcrit ∪ Πi,jcrit−1). In general, these vertices might have very tiny cost. However,
we show in the following Claim 14 that increasing the cost of each one of these low-cost
vertices to γi/2jcrit will increase their total cost by at most O(γi). This allows us to lower
bound the cost of the set of vertices selected by OPT within total budget γi.

B Claim 14. We have 200T ∗i,jcrit
· γi/2jcrit ≤ γi/2.

Before proving Claim 14, we complete the proof of Lemma 13. Since T ∗i,jcrit
> 0.1, from

Lemma 8 we have

P
[ ∣∣{v ∈ Πi,jcrit(OPT) : Cv ≤ γi/2jcrit

}∣∣ ≤ 200T ∗i,jcrit

]
≥ 0.9. (11)
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Since Ti,jcrit−1 ≥ Y , it follows from Theorem 19 that

P
[ ∣∣{v ∈ Πi,jcrit ∪Πi,jcrit−1 : Cv ≤ γi/2jcrit−1}∣∣ ≥ Y ] ≥ 0.5. (12)

Together with the assumption that p∗i,Y ≥ 0.9, we have from union bound that with
probability at least 0.2, both events in (11) and (12) hold and that OPT selects at
least Y vertices within total budget γi. When all three events happen, we can replace
Y − |Πi,jcrit(OPT)| vertices in Πi,jcrit(OPT) by Y − |Πi,jcrit(OPT)| vertices in (Πi,jcrit ∪
Πi,jcrit−1) \Πi,jcrit(OPT) that are qualified for scale jcrit − 1. Claim 14 together with (11)
imply that after such replacements, we reach a subset of Y vertices in Πi,jcrit ∪Πi,jcrit−1
with total cost at most 2(γi + γi/2) = 3γi. So we conclude that with probability at least
0.2, we can select at least Y vertices from Πi,jcrit ∪Πi,jcrit−1 within cost budget 3γi. This
implies that Yi,jcrit ≥ Y and finishes the proof of Lemma 13. J

Now we are left to prove Claim 14.

Proof of Claim 14. We consider the tour Πi,jcrit . Denote respectively Π′i,jcrit
(OPT) ⊆ Πi,jcrit

and Π′i,jcrit
(OPT) ⊆ Vi \Πi,jcrit the (random) set of vertices visited by OPT inside and outside

Πi,jcrit within total budget γi. Since Ti,jcrit < Y , it follows from Theorem 3 that

P
[ ∣∣{v ∈ Πi,jcrit : Cv ≤ γi/2jcrit

}∣∣ ≤ Y ] ≥ 0.5. (13)

Since T ∗i,jcrit
> 0.1, Lemma 8 gives

P
[ ∣∣∣{v ∈ Π′i,jcrit

(OPT) : Cv ≤ γi/2jcrit
}∣∣∣ ≤ 200T ∗i,jcrit

]
≥ 0.9. (14)

Lemma 9 followed by Chernoff bound gives

P
[ ∣∣{v ∈ Πi,jcrit \Π′i,jcrit

(OPT) : Cv ≤ γi/2jcrit
}∣∣ ≥ 600T ∗i,jcrit

]
≥ 0.9. (15)

From the assumption that p∗i,Y ≥ 0.9, we have

P
[ {

OPT selects at least Y vertices within total budget γi
} ]
≥ 0.9. (16)

By union bound, all four events in (13)-(16) happen with positive probability, in which case
OPT selects at least 400T ∗i,jcrit

vertices that are not qualified for scale jcrit within total budget
γi. This implies that 400T ∗i,jcrit

· γi/2jcrit ≤ γi from which Claim 14 immediately follows. C

5.3 The Dynamic Programming Sub-procedure ALGDP

In this section, we give our dynamic program ALGDP and prove Lemma 11 restated below
for convenience.

I Lemma 11. For any phase i ≥ 0 and any scale j ∈ {0, · · · , `i}, the approximate value Ỹi,j
computed in Step 15 of ALGStoch-Cost satisfies that (1) Ỹi,j ≥ Yi,j , and (2) Ỹi,j vertices can be
selected from Πi,j ∪Πi,j−1 within cost budget 6γi with probability at least 0.2.

Recall, our dynamic program ALGDP is used to approximately compute the maximum
number of vertices that can be selected from a certain tour with probability at least 0.2
within cost budget 3γi. Essentially, ALGDP solves the following sub-problem: We are given
a target T ∈ Z≥0, a budget B ≥ 0 and n independent non-negative stochastic costs. The
goal is to find the probability PT,B that there exists a subset S of size T with sum of its
costs at most B. Since this general problem is NP-hard, we give a dynamic program that
finds something between PT,B and PT,2B . Lemma 11 follows immediately from the following
Lemma 15.



H. Jiang, J. Li, D. Liu, and S. Singla 45:21

I Lemma 15. Given n independent non-negative random variables V = {C1, C2, ..., Cn}, a
target T ∈ Z≥0 and a budget B ≥ 0. Let PT,B denote the probability that there exists a subset
S ⊆ V of size at least T and

∑
i∈S Ci ≤ B. Then there’s an efficient dynamic programming

ALGDP(T,B, V ) that outputs a value P̃T,B s.t. PT,B ≤ P̃T,B ≤ PT,2B.

Proof of Lemma11. We first prove property (1). Recall that Yi,j is the maximum number of
vertices that can be selected from Πi,j∪Πi,j−1 with probability at least 0.2 within cost budget
3γi, and Ỹi,j is the largest integer such that ALGDP(Ỹi,j , 3γi,Πi,j ∪Πi,j−1) ≥ 0.2. Consider
the set of stochastic costs in Πi,j ∪Πi,j−1. By definition, we have PYi,j ,3γi ≥ 0.2. It follows
from Lemma 15 that ALGDP(Yi,j , 3γi,Πi,j ∪Πi,j−1) ≥ 0.2. This implies that Ỹi,j ≥ Yi,j and
proves property (1).

Now we prove property (2). Applying Lemma 15 we have P
Ỹi,j ,6γi ≥ ALGDP(Ỹi,j , 3γi,Πi,j∪

Πi,j−1) ≥ 0.2. It follows that Ỹi,j vertices can be selected from Πi,j ∪ Πi,j−1 within cost
budget 6γi with probability at least 0.2. This establishes property (2) and finishes the proof
of Lemma 11. J

Proof of Lemma 15. We begin by discretizing each Ci to be Ci := bCi ·n/Bc ∈ N and define
PT,n the probability that there exists a subset S ⊆ V s.t. |S| ≥ T and

∑
i∈S Ci ≤ n. Notice

that
∑
i∈S Ci ≤ n implies that

∑
i∈S Ci ≤ 2B. Therefore we have PT,B ≤ PT,n ≤ PT,2B . In

the following, we give a dynamic programming ALGDP that computes the value PT,n and we
will set P̃T,B in the statement of the lemma to be PT,n. Assume without loss of generality
that Ci ≤ n+ 1 as one can truncate the distribution of Ci at (n+ 1) without changing PT,n.

Denote A(i, j) the jth smallest value among the first i random variables. We build a DP
table where each entry P [i, j, `,m] (for i ∈ {1, · · · , n}, j ∈ {1, · · · , T}, ` ∈ {0, · · · , n} and
m ∈ {0, · · · , n}) denotes the probability that the smallest j values among the first i random
variables sum up to ` and the jth smallest value among the first i random variables is equal
to m, i.e.

∑j
s=1A[i, s] = ` and A[i, j] = m.

Initial values: ALGDP initializes certain entries of the DP table as follows.
Case 1 (impossible events): set P [i, j, `,m] to be 0 if j > i, m > ` or m · j < `.
Case 2 (j = 1): set P [i, 1, `,m] =

∏
s∈[i] P[Cs ≥ `]−

∏
s∈[i] P[Cs > `] if ` = m, and

0 otherwise.
Note that all the entries corresponding to i = 1 are already included in the two cases
above.

Recursion: ALGDP uses the following recursion.

P [i, j, `,m] = P[Ci > m] · P [i− 1, j, `,m] +
m−1∑
u=0

P[Ci = u] · P [i− 1, j − 1, `− u,m]

+P[Ci = m] ·
( m∑
u=0

P [i− 1, j − 1, `−m,m− u]−
m∑
u=1

P [i− 1, j, `− u,m− u]
)
.

(17)

Output: after computing all the entries of the DP table, ALGDP outputs PT,n that equals∑n
`=0
∑`
m=0 P [n, T, `,m].

Now we prove the correctness of ALGDP. Given the definition of P [i, j, `,m], we can
immediately verify that the assignment of initial values and the final output are correct if all
the entries of the DP table computed from (17) are also correct. To see the correctness of the
recursion, we consider the outcome of Ci. When Ci > m, in order to satisfy

∑j
s=1A[i, s] = `
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and A[i, j] = m, one must have that Ci is not in the j smallest values among the first i
random variables. This verifies the first term in (17). When Ci = u < m, in order to satisfy∑j
s=1A[i, s] = ` and A[i, j] = m, one must have that Ci is one of the jth smallest values

among the first i random variables. Also notice that in this case, the (j − 1)th smallest value
among the first (i− 1) random variables is still m and that

∑j−1
s=1 A[i− 1, s] = `− Ci. This

gives the second term in (17).
Now we verify the last term in (17, which corresponds to the case where Ci = m. In this

case, we might as well select Ci as one of the j smallest values among the first i random
variables. In order to satisfy

∑j
s=1A[i, s] = ` and A[i, j] = m, we need the smallest (j − 1)

values among the first (i− 1) random variables to sum up to `−m and the (j− 1)th smallest
value to be at most m, i.e.

∑j−1
s=1 A[i, s] = ` −m and A[i, j − 1] ≤ m. The probability of

this event is exactly
∑m
u=0 P [i − 1, j − 1, ` −m,m − u]. However, in order to ensure that

A[i, j] = m, we also need the jth smallest value among the first (i− 1) random variables to
be at least m (i.e. A[i− 1, j] ≥ m) and the outcomes that don’t satisfy this condition needs
to be excluded from the previous event. Putting everything together, we have the following:

P
{ j−1∑
s=1

A[i− 1, s] = `−m,A[i− 1, j − 1] ≤ m,A[i− 1, j] ≥ m
}

= P
{ j−1∑
s=1

A[i− 1, s] = `−m,A[i− 1, j − 1] ≤ m
}

− P
{ j−1∑
s=1

A[i− 1, s] = `−m,A[i− 1, j − 1] ≤ m,A[i− 1, j] < m
}

=
m∑
u=0

P [i− 1, j − 1, `−m,m− u]−
m∑
u=1

P [i− 1, j, `− u,m− u].

This immediately gives the last term in (17) and finishes the proof of Lemma 15. J
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A Missing Proofs in Section 2

I Lemma 6 (Bi-criteria Orienteering). There is an efficient algorithm ALGBicrit-Orient that finds
a tour of length O(1) ·B while collecting at least (OPTOrient − ε) profit, where ε = 1/poly(n)
can be made arbitrarily small.

Proof of Lemma 6. Assume without loss of generality that OPTOrient > 0. Denote ρ = 3 the
approximation factor of k-TSP algorithm ALGk-TSP from [8]. Denote Rmax := maxv∈V Rv
and Rmin := minv∈V Rv the maximum and minimum profit in the Orienteering instance.
Notice, OPTOrient ∈ [Rmin, n ·Rmax].

ALGBicrit-Orient applies binary search in [Rmin, n ·Rmax], starting with profit target (Rmin +
n ·Rmax)/2. For each profit target λ, ALGBicrit-Orient runs ALGk-TSP with target reward λ to
obtain a tour Πλ whose length is denoted as `(Πλ). ALGBicrit-Orient performs binary search
over λ ∈ [Rmin, n · Rmax] until finding two values λl < λh ≤ λl + ε such that `(Πλl

) ≤ ρB

and `(Πλh
) > ρB, in which case ALGBicrit-Orient returns the tour Πλl

. Here we assumed
without loss of generality that `(Πn·Rmax) > ρB as otherwise ALGBicrit-Orient can simply return
the tour Πn·Rmax . Notice that `(Πλh

) > ρB implies that OPTOrient < λh and therefore
ALGBicrit-Orient finds reward at least λl ≥ λh− ε > OPTOrient− ε. The length of the tour found
by ALGBicrit-Orient is `(Πλl

) ≤ ρB = O(1) ·B. This finishes the proof of Lemma 6. J

B Missing Proofs in Section 3

I Lemma 7 (Key Lemma). If for some universal constants C > 0, γ > 1, any phase i ≥ 1,
and any possible σi−1, the algorithm ALGMeta satisfies

ui(σi−1) ≤ C · u∗i (σi−1) + ui−1(σi−1)
γ2 ,

then ALGMeta is a non-adaptive O(1)-approximation algorithm.

Proof of Lemma 7. For any phase i ≥ 0, denote ui the probability that ALGMeta enters phase
i+ 1 in the probing stage and u∗i the probability that OPT has cost more than γi. Taking
expectation over σi−1 for the pre-condition of Lemma 7, we have ui ≤ C · u∗i + ui−1/γ

2. It
follows that∑

i≥1
ui · γi ≤ C ·

∑
i≥1

u∗i · γi + u0/γ + 1/γ ·
∑
i≥1

ui · γi,
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which gives

(1− 1/γ) ·
∑
i≥1

ui · γi ≤ O(1) ·
∑
i≥1

u∗i · γi + 1/γ. (18)

We also notice that

OPT ≥
∑
i≥0

(u∗i − u∗i+1) · γi = (1− 1/γ) ·
∑
i≥1

u∗i · γi + 1,

and that

ALGMeta ≤ O(1) ·
∑
i≥0

(ui − ui+1) · γi+1 = O(1) ·
∑
i≥0

ui · γi.

It follows from (18) that ALGMeta ≤ O(1) · OPT. This finishes the proof of Lemma 7. J

C Missing Proofs in Section 5

I Lemma 12. For γ = 1.1, any phase i > 0 in the probing stage of Stoch-Cost k-TSP
satisfies

ui(σi−1) ≤ 100u∗i (σi−1) + ui−1(σi−1)
γ2 . (7)

Proof of Lemma 12. We fix any outcome σi−1 of vertices visited by ALGStoch-Cost in the first
i− 1 phases of its probing stage. The lemma trivially holds in the case where u∗i (σi−1) ≥ 0.01
as we have 100u∗i (σi−1) ≥ 1. If ui−1(σi−1) = 0 which means that ALGStoch-Cost already selects
k vertices before entering phase i in the probing stage, then ui(σi−1) = 0 and again the
lemma trivially holds. We therefore assume that u∗i (σi−1) < 0.01 and that ui−1(σi−1) = 1.
Now proving Lemma 12 is equivalent to proving

ui(σi−1) ≤ 100u∗i (σi−1) + 1/γ2. (19)

Denote k(σi−1) the remaining target at the beginning of phase i in the probing stage
of ALGStoch-Cost. We first consider Selection-Process 1 and denote Nold(σi−1) the number
of vertices selected from σi−1 in this process. We assume without loss of generality that
Nold(σi−1) < k(σi−1), as otherwise our algorithm has already selected k vertices after
Selection-Process 1 and (19) immediately follows. Since Selection-Process 1 uses cost budget
γi to select as many unselected vertices from σi−1 as possible, OPT can select at most
Nold(σi−1) + k − k(σi−1) vertices from σi−1 within total budget γi. Denote Nnew(σi−1) :=
k(σi−1) − Nold(σi−1) the remaining target for ALGStoch-Cost after Selection-Process 1. It
follows that in order to select k vertices within total budget γi, OPT needs to select at least
Nnew(σi−1) vertices from Vi within total budget γi. Therefore, u∗i (σi−1) < 0.01 implies that
OPT selects at least Nnew(σi−1) vertices from Vi within total budget γi with probability at
least 0.99. Applying Lemma 13 with Y = Nnew(σi−1), it follows that our algorithm finds
at least Nnew(σi−1) vertices from Vi which can be selected within cost budget 6γi with
probability at least 0.2. This implies that ui(σi−1) ≤ 0.8 ≤ 1/γ2 and (19) is established. J
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