
Instance Complexity and Unlabeled Certificates in
the Decision Tree Model
Tomer Grossman
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel
tomer.grossman@weizmann.ac.il

Ilan Komargodski
NTT Research, Palo Alto, CA, USA
ilan.komargodski@ntt-research.com

Moni Naor1

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel
moni.naor@weizmann.ac.il

Abstract
Instance complexity is a measure of goodness of an algorithm in which the performance of one
algorithm is compared to others per input. This is in sharp contrast to worst-case and average-case
complexity measures, where the performance is compared either on the worst input or on an average
one, respectively.

We initiate the systematic study of instance complexity and optimality in the query model (a.k.a.
the decision tree model). In this model, instance optimality of an algorithm for computing a function
is the requirement that the complexity of an algorithm on any input is at most a constant factor
larger than the complexity of the best correct algorithm. That is we compare the decision tree to
one that receives a certificate and its complexity is measured only if the certificate is correct (but
correctness should hold on any input). We study both deterministic and randomized decision trees
and provide various characterizations and barriers for more general results.

We introduce a new measure of complexity called unlabeled-certificate complexity, appropriate for
graph properties and other functions with symmetries, where only information about the structure of
the graph is known to the competing algorithm. More precisely, the certificate is some permutation
of the input (rather than the input itself) and the correctness should be maintained even if the
certificate is wrong. First we show that such an unlabeled certificate is sometimes very helpful in the
worst-case. We then study instance optimality with respect to this measure of complexity, where
an algorithm is said to be instance optimal if for every input it performs roughly as well as the
best algorithm that is given an unlabeled certificate (but is correct on every input). We show that
instance optimality depends on the group of permutations in consideration. Our proofs rely on
techniques from hypothesis testing and analysis of random graphs.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases decision tree complexity, instance complexity, instance optimality, query
complexity, unlabeled certificates

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.56

Funding Tomer Grossman: Israel Science Foundation (no. 950/16).
Ilan Komargodski: AFOSR grant FA9550-15-1-0262, Israel Science Foundation (no. 950/16), and a
Levzion Fellowship.
Moni Naor : Israel Science Foundation (no. 950/16).

1 Incumbent of the Judith Kleeman Professorial Chair.

© Tomer Grossman, Ilan Komargodski, and Moni Naor;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 56; pp. 56:1–56:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer.grossman@weizmann.ac.il
mailto:ilan.komargodski@ntt-research.com
mailto:moni.naor@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2020.56
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Instance Complexity and Unlabeled Certificates

Acknowledgements We thank Scott Aaronson for discussions on quantum certificates, Ron Fagin
for useful comments, and Ofer Grossman for helpful discussions and Yoram Moses and Benny
Applebaum for suggesting instance optimality in other settings. We thank some of the referees of
the paper for helpful comments.

1 Introduction

Worst-case analysis is the hallmark of theoretical computer science. An algorithm is evaluated
based on its performance on the worst input and we want to find the algorithm whose
performance is the best according to this criterion. Nevertheless, in some cases one might
not be interested only in worst-case complexity of a function f . For instance, when the worst
case is inherently “very bad” for all algorithms (and then measuring the algorithms by its
worst case input gives meaningless comparisons), when the worst case is very rare, or when
there is some prior information about the distribution of the inputs.

In this work we consider a new measure of complexity for problems we call the instance
complexity. Here, we compare a given algorithm to one that has additional information about
the input. That is, we are interested in the best algorithm for a given problem that performs
as well as possible on every input compared to the best algorithm that knows (something
about) the input. The instance complexity (denoted IC) of a problem is the overhead of
solving the problem on every input vs. solving the problem on a given instance, provided
that algorithms the specific instance is a correct algorithm (on all inputs). Here is one way
to define this notion. Suppose that we have a collection of algorithms A that are correct on
all on inputs.

I Definition 1.1 (Instance complexity). Let f be a function, and A an algorithm that evaluates
f . Let cost(A, x) be the cost of algorithm A on input x, where cost is some non-negative value
that we want to optimize (e.g. runtime, space, etc.). We say that f is instance optimizable
and that A is instance optimal if for every input x, and for every algorithm A′ ∈ A (that
evaluates f correctly on every input) the following holds:

cost(A, x) ∈ O (cost(A′, x)) .

In the definition above, we compare the cost of A on every input with the cost of an
algorithm that has the input hardwired. One can relax the hint given to the competing
algorithm A′ so that it only knows something about the input (e.g., an unknown permutation
of the input, a subset of the coordinates, etc). Finally, note that both algorithms A and A′
should be correct on all inputs, but the competing algorithm is evaluated in terms of cost
only when the hint it is given is correct w.r.t. the input.

The term “Instance optimality” was coined by Fagin, Lotem and Naor [19] in the context
of finding items with the top k aggregate scores in a database of sorted lists. It has appeared
in the theoretical computer science literature in several other contexts and forms. For
previous works on instance complexity in other settings see Appendix B.

We initiate the systematic study of instance complexity in the query model (a.k.a. the
decision tree model). In this model the input is given through an oracle, and the goal is to
minimize the number of queries made to the input oracle. The query complexity model helps
us understand the power of various resources (such as randomness and non-determinism) and
inherent difficulties in computing a function. Not only is it a simple and clean model, but
sometimes results in this model carry over to different models (i.e., “lifting” [43, 28]). See
Section 2 for more details about the decision tree model, formal definitions, and known results.

T. Grossman, I. Komargodski, and M. Naor 56:3

We study two different notions of instance complexity. In the first notion the hint is
simply the full input. The instance complexity, IC, of an algorithm is the maximal ratio
between its complexity on a given input and the complexity of any other algorithm that
knows the specific input (but is correct on all inputs). In the second notion the hint is some
unlabeled version of the input; namely, the input is given in an (adversarially) permuted
order. This is relevant when the function we wish to compute treats the input as symmetric,
e.g., as in graph properties.2 We call this notion unlabeled instance complexity, uIC,3 and for
a given algorithm define it to be the maximal ratio between its complexity on a given input
and the complexity of any other algorithm that knows an unlabeled version of the input (but
is correct on all inputs).

Models for instance complexity. Instance optimality captures the fact that an algorithm
is not only optimal for a worst-case input or a random one, but that it is optimal for every
input (up to constant factors). In the context of decision tree complexity, we formalize this
in the following way: An algorithm is instance optimal if for every input x its complexity is
at most a constant factor larger than the complexity of any decision tree whose goal is to be
as efficient as possible on x (yet correct on all inputs). This naturally leads to comparing the
efficiency of the decision tree on an input to the complexity of a decision tree that gets that
input as a certificate. Thus, a function is instance optimizable if there is an algorithm such
that for every input (not just the worst case input) its complexity on that input is at most
a constant factor larger than the certificate complexity of the function on the same input.
To show that an algorithm is not instance optimal it is possible to argue about inputs where
the running time is not the worst case.

For example, the parity function is instance optimal, since any algorithm, on any input
must read the entire input (see Example 3.1 for detail). The OR function on the other hand
is not instance optimal. This is because for any algorithm, A, there exists an input, x, and
another algorithm A∗, such that A does n queries on input x while A∗ does 1 query (see
Example 3.3 for detail).

We wish to emphasize that instance optimality is a fundamentally different notion than
worst case complexity. Notice that for the OR function, in the worst case the certificate
complexity is Θ(n) and any algorithm without a certificate also requires Θ(n) queries yet
the OR function is not instance optimal.

We define a similar notion for randomized algorithms. Namely, an algorithm is said to
be randomized instance optimal if for every input x its expected complexity is at most a
constant factor larger than the randomized certificate complexity of the function on x. We
will consider randomized algorithms with two-sided error.

We introduce the notion of unlabeled certificate complexity in which the certificate
is not the input, but a permutation thereof. This is relevant when the function is invariant
under a family of permutations (e.g., a graph property or a symmetric function, such as
threshold). We show that this is sometimes very helpful, even in the worst-case, in the sense
that there are functions where the unlabeled certificate complexity is much smaller than the
randomized complexity. Having this notion in hand, it is natural to define (randomized-)
unlabeled instance optimality, where the standard (randomized) decision tree algorithm is

2 A graph property is a set of graphs closed under graph isomorphism; see Section 2.3.
3 The closest notion considered in previous literature is in geometric algorithms by Afshani et al. [2], see
Appendix B.

ITCS 2020

56:4 Instance Complexity and Unlabeled Certificates

required to have complexity (input-by-input) at most a constant factor larger than the best
algorithm that gets a permutation (from the family) of the input as a certificate and computes
the value of the function correctly. The algorithm that gets the unlabeled certificate is
required to be correct on all inputs, but its complexity is measured only in case the certificate
is correct.

1.1 Our Results
We lay the foundation for the study of instance optimality and unlabeled certificate complexity
in the decision tree model by providing a host of results including various examples, relations,
separations, and more. Our results fall short of a (complete) characterization of which
functions are instance optimal and which are not and when unlabeled certificates help and
when they do not. However, our results demonstrate that the theory of instance optimality and
unlabeled complexity is rich, and contains non-trivial and sometimes surprising phenomena.
Thus we believe that this theory deserves further research, and hope that this work will
inspire such research.

Below, our results are stated in the order corresponding to the above models: deterministic
and randomized instance optimality (Section 1.1.1), and then unlabeled certificate complexity
(Section 1.1.2).

1.1.1 Deterministic and Randomized Instance Optimality
We start off by observing that even in the simplest setting of deterministic decision trees,
instance optimality is a non-trivial property: there are functions that are instance optimizable
and functions that are not. Also, monotonicity does not directly affect instance optimizability.
Furthermore, we construct a function that is strictly instance optimal (strict means that
the decision tree has no additional overhead over the one that has a certificate), but once
composed with itself, results in a function that is not instance optimal.

I Theorem 1.2 (Deterministic instance optimality). The following holds:
1. There is a monotone function that is not deterministic instance optimal while the Majority

function is deterministic instance optimizable (and monotone).
2. The Addressing and Parity functions are examples of non-monotone functions that are

strictly instance optimizable.
3. Among the monotone functions, the only ones that can be strictly instance optimizable

are functions that depend on 0 or 1 variables.
4. The composition of two (strictly) instance optimal functions is not necessarily instance

optimal.

In the randomized case, the situation is somewhat different. While the parity and
addressing functions behave similarly, the majority function becomes not instance optimizable!
But, there are other instance optimizable monotone functions. Also, there are (non-monotone)
graph properties that are instance optimizable. We further provide two results that capture a
wide range of functions: (1) random functions are instance optimal and (2) a relation between
instance optimizability and properties related to sensitivity (see Sections 3.2.1 and 3.2.2). As
in the deterministic setting, the composition of instance optimal functions is not necessarily
instance optimal.

One notable question left open is whether there is a monotone graph property that is
randomized instance optimizable. We conjecture that such functions do not exist.

T. Grossman, I. Komargodski, and M. Naor 56:5

I Theorem 1.3 (Randomized instance optimality). The following holds:
1. The Addressing and Parity functions are randomized instance optimizable functions.
2. The Majority function is not randomized instance optimizable. Thus, deterministic

instance optimality does not imply randomized instance optimality. The other direction
is true as well: There exists a function that is randomized instance optimizable but not
deterministic instance optimizable (see Section 3.2.3).

3. There exists a monotone function that is randomized instance optimizable.
4. There exists a graph property that is randomized instance optimizable.
5. A random function is randomized instance optimizable with high probability.
6. The composition of two randomized instance optimal functions is not necessarily random-

ized instance optimal.

We consider the computational complexity of figuring out whether a function is instance
optimizable and whether a given algorithm is instance optimal. A good time complexity in
this setting is polynomial in the size of the representation of the function, i.e. exponential in
n for a Boolean function with input {0, 1}n. We do not have an algorithm for the former
problem (deciding whether a function is instance optimizable), but for the latter we show
that an algorithm can be verified to be instance optimal in time that is polynomial in the
domain size of the problem. Naively, one has to work in time exponential in the domain size
and go over all possible decision trees and test against each one (see Section 3.5).

I Theorem 1.4 (Complexity of checking if an algorithm is instance optimal). Given a function
f on n input variables (given by a truth-table of size 2n), and a randomized algorithm T ,
there exists an algorithm U that decides in time 2O(n) whether T is an instance optimal
algorithm.

We also consider proximity property testing4 where the goal is to decide whether an
object has some property or whether it is far from having it [26, 25]. Here it is possible to
characterize the properties that are randomized instance optimizable: it is exactly those that
can be tested in O(1) queries (see Section 3.6).

1.1.2 Unlabeled Certificate Complexity
We introduce the study of the unlabeled certificate complexity. We show that an
unlabeled certificate can help significantly in the worst case for graph properties. That is, we
construct a function for which an algorithm that has an isomorphic copy of the graph as a
certificate outperforms an algorithm that isn’t given any certificate.

I Theorem 1.5 (Unlabeled certificate complexity). In both the randomized and deterministic
setting, there exists a graph property for which the unlabeled certificate complexity is O(n logn)
while any algorithm with no certificate requires Ω(n2) queries.

Having the notion of unlabeled certificates we define unlabeled randomized instance
complexity and optimality. Here the situation changes again. Whereas the majority
function is not randomized instance optimizable, it is (almost) unlabeled randomized instance

4 We use the term “proximity property testing” so as not to confuse the reader with the case where we
are testing whether the given graph satisfies a property, rather than being close to a graph that satisfies
the property.

ITCS 2020

56:6 Instance Complexity and Unlabeled Certificates

optimizable.5 However, when viewed as a graph property, the majority function becomes not
unlabeled randomized instance optimizable. The group of permutations we consider in the
latter is the group of all isomorphic copies of the graph. In addition, we show that being a
graph property is not directly related to unlabeled instance optimality. We say a function
is labelling instance optimal if the unlabeled certificate performs as well as the labeled
certificate for every input up to a constant. All instance optimal functions are also labelling
instance optimal. We show that (up to log factors) the converse is not true: there exists
a function which is within O(logn) of being labelling instance optimal, but not instance
optimal in the normal sense.

I Theorem 1.6 (Unlabeled instance optimality). The following holds:
1. The majority function is unlabeled randomized instance optimizable within O(log logn).
2. The graph property of having more edges than non-edges is far from being unlabeled random-

ized-instance optimizable – it is at best within Ω̃(n) from being unlabeled randomized-
instance optimizable, where n is the number of vertices in the graph.

3. The graph property of having at least one edge is unlabeled randomized instance optimizable
and not labelling instance optimal.

4. There exists a function that is O(logn) away from being labelling instance optimal, but is
not instance optimal in the normal sense.

An impatient reader can skip ahead to Section 4, which is about unlabeled complexity,
and contains the proofs of the items in Theorem 1.5 and Theorem 1.6.

The saga of the majority. As we shall see, the majority function behaves differently under
different notions of instance optimality. While it is deterministic instance optimizable, it is
not randomized instance optimizable (Lemma 3.5). Having only a permutation of the input
as a certificate does not provide additional power to the one receiving it, i.e., it is (almost)
unlabeled randomized instance optimizable (Lemma 4.4). On the other hand, viewing
majority as a graph property, getting a permutation of the graph may help and majority
becomes a function that is not unlabeled randomized instance optimizable (Lemma 4.5).

2 The Query Model and Instance Optimality

The query model is one of the simplest computational models and has been studied widely.
See, for example, Buhrman and de Wolf [12], Jukna [34, Chapter 14] and O’Donnell [41,
Chapter 8.6] for a survey. We give some standard definitions of decision trees and several
related complexity measures such as deterministic, randomized and certificate complexity,
and then briefly recall the known connections between them.

A decision tree is an algorithm for computing the value of a function on an a-priori
unknown input. Let f : {0, 1}n → {0, 1} be a Boolean function over a set of n input variables
x1, . . . , xn. A deterministic decision tree T over a set of input variables x1, . . . , xn is a rooted
binary tree. Every internal vertex is labeled with an input variable. The leaves of the tree
are labeled by 0 or 1, and every internal vertex has one outgoing edge labeled by 0 and the
other by 1. The computation of the tree is done in the natural way from the root to the

5 In this result, the optimality ratio is a super-constant function (log log) of the input size. In such cases,
where the optimality ratio is a super constant function g(n) of the input size, we will say that the
function is within g(n) of being (unlabeled /randomized-) instance optimizable.

T. Grossman, I. Komargodski, and M. Naor 56:7

leaves according to the assignment of the input variables. We denote by T (x) the output of
the decision tree T on input x. We say that the decision tree T computes f if for any input
x it holds that f(x) = T (x).

Denote by T = Tn the set of all decision trees on functions of n inputs. The complexity
(i.e., cost) of a decision tree T ∈ T on input x, denoted by D(T, x), is the length of the path
from the root to the leaf corresponding to x, or in other words, the number of queries made
by the algorithm to the input x. For a function f , denote by Tf the set of all decision trees
in T that compute f :

T ∈ Tf ⇐⇒ ∀x : T (x) = f(x).

The following two definitions deal with the worst-case deterministic and certificate decision
tree complexity measures. Roughly speaking, the deterministic complexity measures the
smallest possible cost over all decision trees that compute f .

I Definition 2.1 (Worst-case deterministic complexity). The worst-case deterministic
decision tree complexity of f : {0, 1}n → {0, 1}, denoted by D(f), is

D(f) = min
T∈Tf

max
x∈{0,1}n

D(T, x).

The certificate complexity measures the minimal number of bits a decision tree has to
query in order to verify the output of the function on a specific input (rather than to compute
it). That is, we still want the decision tree to compute f correctly on all inputs, but we
measure its complexity only with respect to a fixed input.

I Definition 2.2 (Worst-case certificate complexity). The certificate complexity of f on
input x is

C(f, x) = min
T∈Tf

D(T, x),

The worst-case certificate complexity of f is C(f) = maxx C(f, x).

Throughout this paper we use the term “decision tree” and “algorithm” synonymously.
Since in the decision tree model we are only interested in the number of queries made by a
given algorithm, the two terms are equivalent. We also use the terms “certificate complexity”,
“queries made by an algorithm with a certificate” and “queries made by any algorithm”
synonymously. “Certificate complexity” and “an algorithm with a certificate” are synonyms
since when arguing that the certificate complexity of a given function is some value, q one
has to prove that some algorithm with access to a certificate only has to make q queries.
This is the same as “queries made by any algorithm” since the certificate complexity is the
decision tree with the lowest complexity, that is the algorithm that makes fewest queries.

We proceed with the randomized variants of the above two definitions. In randomized
complexity it is common to talk about zero-error (Las Vegas), one-sided and two-sided (BPP
style) algorithms. We will discuss only the latter for simplicity. There are two (equivalent)
ways to view a randomized decision tree: one as a tree that has vertices that are coin flips.
The other, which we will mostly use, as a probability distribution ∆ over the set of all
deterministic decision trees T . Given an input x, the algorithm first samples a decision tree
from the distribution and then executes it. The randomized decision tree complexity of
a distribution (i.e., a randomized decision tree) ∆ on input x, denoted by R(∆, x), is the
expected number of queries made by the chosen tree on input x.

ITCS 2020

56:8 Instance Complexity and Unlabeled Certificates

A distribution ∆ is correct for a function f if for any input x, a randomly chosen decision
tree T ← ∆ outputs the value f(x) with probability 2/3 over the choice of T .6 We denote
by ∆f the set of all distributions ∆ that are correct for f :

∆ ∈∆f ⇐⇒ ∀x : Pr
T←∆

[T (x) = f(x)] ≥ 2/3.

Analogously to the deterministic setting, the worst-case randomized complexity measures
the smallest possible (expected) cost over all randomized decision trees that compute f .

I Definition 2.3 (Worst-case randomized complexity). The worst-case randomized decision
tree complexity of f , denoted by R(f), is

R(f) = min
∆∈∆f

max
x

E
T←∆

[D(T, x)]︸ ︷︷ ︸
R(∆,x)

.

For randomized certificate complexity, we still want the decision tree to be correct on
every input with high probability, but the complexity is measured only on a fixed input.

I Definition 2.4 (Worst-case randomized certificate complexity). The randomized certific-
ate complexity of a function f on input x is

RC(f, x) = min
∆∈∆f

E
T←∆

[D(T, x)],

The worst-case randomized certificate complexity of f is RC(f) = maxx RC(f, x).

2.1 Instance Complexity and Optimality
Adapting the general notion of instance optimality (see Definition 1.1) to the setting of query
complexity is done by fixing a class of query algorithms (say, deterministic or randomized
ones) and then asking whether there exists an algorithm in this class that is “the best” on
every input. Such an algorithm must have complexity at most a constant factor larger than
the complexity of every other algorithm on every input. In particular, it has to be at most a
constant factor worse than an algorithm that is designed for any specific x∗, and if it finds
any inconsistencies between the given input x and x∗, reads the whole input. This leads us to
the observation that a sufficient and necessary condition for instance optimality of a function
in the query model is the existence of a deterministic (resp. randomized) decision tree whose
complexity is at most a constant factor larger than the deterministic (resp. randomized)
certificate decision complexity of the function per input.

The strongest notion one could hope for is what we call strict instance optimality, where
the certificate does not help, even in low order constant factors (i.e., the optimality ratio is 1
and there is no additive term). More precisely, there exists a deterministic decision tree such
that on every input x the decision tree complexity on x is upper bounded by the certificate
decision tree complexity of f on input x.

I Definition 2.5 (Strict optimality). A function f is strict instance optimizable if there exists
a deterministic decision tree T such that for every input x:

D(T, x) = C(f, x).

6 The value of 2/3 is arbitrary, since we can get any constant by amplification (i.e., by sampling several
decision trees from ∆, executing them and taking the majority result).

T. Grossman, I. Komargodski, and M. Naor 56:9

Being optimal on every input without any overhead is a very strong requirement (and
indeed not many non-trivial functions satisfy it; see below), so we relax it by allowing
multiplicative and additive slack in the overhead for the decision tree without the certificate.
For this we need to talk about a sequence of functions.

I Definition 2.6 (D-Instance optimality). A sequence of functions f = {fn}n∈N is D-instance
optimizable if there exists a sequence of deterministic decision trees T = {Tn}n∈N, where
each Tn ∈ Tfn

, and (universal) constants c1, c2 ≥ 0 such that on every input x ∈ {0, 1}n, it
holds that

D(Tn, x) ≤ c1 · C(fn, x) + c2.

I Definition 2.7 (R-Instance optimality). A sequence of functions f = {fn}n∈N is R-instance
optimizable if there exists a sequence of distributions over decision trees ∆ = {∆n}n∈N, where
each ∆n ∈∆fn

, and (universal) constants c1, c2 ≥ 0 such that on every input x ∈ {0, 1}n, it
holds that

R(∆n, x) ≤ c1 · RC(fn, x) + c2.

We refer to the constant factor c1 above as the optimality ratio. The above deterministic
(resp. randomized) algorithm is called instance optimal.

While we mostly talk about being within a constant of the best on any instance we will
also consider being within some function g(n). If we have an algorithm T such that for g(n)
for every input x ∈ {0, 1}n it hold that

D(T, x) ≤ g(n) · C(fn, x),

then we say that f is within g of being instance optimizable.

2.2 Unlabeled Complexity and Optimality
We introduce a new complexity measure for decision trees that we call unlabeled certificate
complexity. Roughly speaking, the unlabeled complexity is the amount of queries an algorithm
that is given some permutation of the certificate needs to perform.

This notion only makes sense for functions that are invariant under some permutation
group Γ, such as symmetric properties or graph properties. In the case of symmetric functions,
we consider the group of all permutations over the inputs, and in the case of graph properties,
we focus on the group of permutations over the vertices (i.e., all isomorphic copies of the
graph). We denote by Γ the group of permutations.

The idea behind the notion is to model the situation where the algorithm has a lot of
knowledge about the input, such as the graph structure (e.g. the degree sequence), but not
the actual labels of the graph. We refer to a decision tree that gets such a certificate as an
unlabeled certificate decision tree.

As before, we expect an unlabeled decision tree T to correctly compute f on every input,
but we will measure its complexity over all inputs that are consistent with the certificate
under the given group of permutations.

I Definition 2.8 (Worst-case unlabeled certificate complexity). The unlabeled certificate
complexity of a function f that is invariant under Γ on input x is

AC(f,Γ, x) = min
T∈Tf

max
π∈Γ

D(T, π(x)).

The worst-case certificate complexity of f under Γ is AC(f,Γ) = maxx AC(f,Γ, x).

ITCS 2020

56:10 Instance Complexity and Unlabeled Certificates

For randomized unlabeled certificate complexity, the definition is analogous but we allow
the decision tree to be randomized and to err.

I Definition 2.9 (Worst-case randomized unlabeled certificate complexity). The randomized
unlabeled certificate complexity of a function f invariant under Γ on input x is

RAC(f,Γ, x) = min
∆∈∆f

max
π∈Γ

E
T←∆

[D(T, π(x))],

The worst-case randomized unlabeled certificate complexity of f under Γ is RAC(f,
Γ) = maxx RAC(f,Γ, x).

It follows immediately that the unlabeled certificate complexity of a function is lower
bounded by its certificate complexity and upper bounded by its deterministic complexity.
That is, for any Γ such that f is invariant under Γ we have

C(f) ≤ AC(f,Γ) ≤ D(f).

The same holds in the randomized case:

RC(f) ≤ RAC(f,Γ) ≤ R(f).

Throughout the paper we let the default Γ be the set of all graph isomorphisms. That
is, if our function is a graph property, and Γ is not specified, then Γ is the set of all graph
isomorphisms.

Given this new notion of unlabeled certificates one can define instance optimality with
respect to it. Here, we are trying to compete with the best algorithm that is given some
permutation of the certificate, rather than the exact certificate as in the definitions of Section
2.1. If an algorithm is instance optimal in this sense, this means that even the knowledge
about the graph structure does not help improve the performance.

Namely, we can ask whether having access to a permutation of a certificate reduces the
complexity by more than a constant factor compared to a decision tree that gets no certificate
at all.

I Definition 2.10 (Unlabeled instance optimality). A sequence of functions f = {fn}n∈N
invariant under a sequence of family of permutations {Γn}n∈N, is unlabeled D-instance
optimizable (resp. unlabeled R-instance optimizable) if there exists a sequence of deterministic
(resp. randomized) decision trees T = {Tn}n∈N, where each Tn ∈ Tfn

, and constants c1, c2 ≥ 0
such that on every input x, it holds that

D(T, x) ≤ c1 ·AC(fn,Γn, x) + c2 (resp. R(T, x) ≤ c1 · RAC(fn,Γn, x) + c2)

We can also compare the labeled certificate to the unlabeled certificate. A function is
labelling instance optimal if the number of queries required to evaluate the function given an
unlabeled certificate is at most a constant times the number queries required to evaluate the
function with a labeled certificate.

I Definition 2.11 (labelling instance optimality). A sequence of functions f = {fn}n∈N
invariant under a sequence of family of permutations {Γn}n∈N, is labelling D-instance
optimizable (resp. labelling R-instance optimizable) if there exists a sequence of deterministic
(resp. randomized) decision trees T = {Tn}n∈N, where each Tn ∈ Tfn , and constants c1, c2 ≥ 0
such that on every input x, it holds that

AC(T, x) ≤ c1 · C(fn,Γn, x) + c2 (resp. RAC(T, x) ≤ c1 · RC(fn,Γn, x) + c2)

T. Grossman, I. Komargodski, and M. Naor 56:11

2.3 Additional Definitions & Known Relations
Graph properties. In some of our result we will be interested in graph properties. A graph
property is a set of graphs closed under graph isomorphism. That is Ψ is a graph property if
for every graph G = (V,E) and every permutation π over V , it holds that G ∈ Ψ if and only
if π(G) ∈ Ψ, where π(G) = (V,E′) and E′ = {(π(u), π(v)) | (u, v) ∈ E}).

Sensitivity. Two central notions in the analysis of Boolean functions are the sensitivity and
block sensitivity, introduced by Cook, Dwork and Reischuk [14] and Nisan [40], respectively.
They both measure how sensitive a function f is to changes in its input. Let f : {0, 1}n →
{0, 1} be a function and x ∈ {0, 1}n be an input. The sensitivity of f on x, denoted s(f, x),
is the number of bit positions i such that f(x) 6= f(x ⊕ ei), where ei ∈ {0, 1}n is a vector
that is 1 at coordinate i and 0 everywhere else. The sensitivity of f , denoted by s(f), is
maxx s(f, x).

Block sensitivity is a useful generalization of sensitivity. The block sensitivity of f on x,
denoted bs(f, x), is the maximum number t such that there is collection B = {B1, . . . , Bt}
of disjoint subsets of [n] with f(x) 6= f(x⊕Bi) for all i ∈ [t]. The overall block sensitivity
bs(f) of f is the maximum of bs(f, x) over all x. Note that sensitivity is just block sensitivity
where the blocks are restricted to be of size 1.

It is not hard to see that s(f) ≤ bs(f) ≤ C(f). The biggest known gap between s(f) and
bs(f) is quadratic (see Rubinstein [45] and Ambainis and Sun [6]). Showing that this gap
is at most polynomial has been a major open problem for many years, until it had been
resolved recently by [32], who showed that for all f , bs(f) is bounded by s(f)4.

More relations. In general, all worst-case complexity measures discussed above are known
to have a polynomial relationship and figuring out the precise relationships is a major research
program.

I Proposition 2.12. For every Boolean function f we have:
1. RC(f) ≤ C(f) ≤ D(f) ≤ n and R(f) ≤ D(f).
2. C(f) ≤ s(f) · bs(f) (see [40] and [12, Theorem 2]).
3. D(f) ≤ s(f) · bs(f)2 ≤ bs(f)3 (see [12, Corollary 1]).
4. bs(f) ≤ s(f)4 (see [32]).
5. D(f) ≤ C(f)2 (see [10, 49] and, for example, [34, Theorem 14.3]).
6. bs(f) ≤ 3RC(f) ≤ 3R(f) (see [40] and [1]) and bs(f) ≤ D(f).

I Proposition 2.13. For every monotone Boolean function f it holds that C(f) = s(f) =
bs(f) (see [40] [12, Proposition 3]) and hence D(f) ≤ s(f)2.

Yao’s Minimax Principle. When proving lower bounds on the randomized query complexity
of a function f it is often easier to rephrase the problem by applying Yao’s [52] Minimax
Principle (see [39] Chapter 2). In words, it says that in order to prove a lower bound on
the randomized decision tree complexity, it is enough to come up with one particularly
bad distribution over inputs which fools all deterministic algorithms. Often Yao’s Minimax
principle is used by saying that if t expected queries are required to distinguish between two
input distributions with high probability (where the function outputs 1 where the input is
chosen from one distribution but when the input is chosen from the second distribution the
function outputs 0), then any deterministic algorithm must perform at least t queries.

ITCS 2020

56:12 Instance Complexity and Unlabeled Certificates

3 Properties Of Instance Optimal Functions

This section is devoted to showing several results regarding properties of instance optimal
function in both the deterministic and randomized setting. We prove Theorem 1.2 and
Theorem 1.3, as well as showing, given a truth table representing a function, and an algorithm,
how to test if the algorithm is instance optimal in time polynomial in the size of the truth
table. Lastly we give a characterization of which functions are R-instance optimal in the
proximity property testing model.

3.1 Deterministic Instance Optimality

We show that there are functions which are D-instance optimizable and there are functions
which are not. We also prove that there are no non-trivial monotone functions whose
optimality ratio is 1 (i.e., strict D-instance optimizable). The arguments in this section are
simple and provide good examples for the notions discussed.

Let Parity : {0, 1}n → {0, 1} be the parity function on n variables, defined as Parity(x) =⊕n
i=1 xi. Assume that n is a power of 2 and let Addr: [n] × {0, 1}n → {0, 1} be the

addressing function defined as Addr(i, x1, . . . , xn) = xi. Both of these functions are D-
instance optimizable. In both cases the argument is that on all instances the certificate
complexity has the same value (n and 1 + logn, respectively) and it is possible to achieve it
with a straightforward deterministic algorithm.

I Example 3.1 (Item 2 of Theorem 1.2). The Parity function and the Addr function are
strict D-instance optimizable.

Proof. The proof for both Parity and Addr being strict D-instance optimizable rely on a
common statement that follows from the definitions of deterministic and certificate complexity:
given a function f : {0, 1}n → {0, 1}, for any decision tree T ∈ Tf and any input x ∈ {0, 1}n,
it holds that D(T, x) ≥ C(f, x). For the Parity and Addr functions the straightforward trees
TParity ∈ TParity (that reads the whole input) and TAddr ∈ TAddr (that reads the address part
plus the resulting address) satisfy D(TParity, x) = n and D(TAddr, x) = logn + 1 for every
x ∈ {0, 1}n. Thus, it remains to prove that C(Parity, x) ≥ n and C(Addr, x) ≥ logn + 1.
We do this by showing that any decision tree (that is always correct) must make at least
n queries for Parity and at least logn + 1 queries for addressing. We show that for any
algorithm that makes less queries, we can change bits that the algorithm does not query,
and this will change the value of the function, thus making the algorithm err.

For Parity, consider an algorithm that on some input x queries less than n input locations.
Since there is a location that the algorithm does not query and the function’s output depends
on all locations, by flipping the value of an unqueried bit, the output of the function must
change, but the algorithm cannot notice this and hence it is wrong either on x or on x with
the flipped bit.

For Addr, consider an algorithm that on some input x reads k ≤ logn values. These
k bits can either fully fix the index i, but then there are two possible values for the bit
in the i-th position (which determine the value of the function) that the algorithm cannot
distinguish. The other case is that the algorithm did not query the value of the index i in
full. Denote by ` > 0 the number of bits of i that the algorithm did not query. There are 2`
possibilities for the value of i. The algorithm can query only k − (logn− `) locations out
of the possible n. Since k − (logn − `) < 2`, there must be a way to assign values to the
unread location so as to fool the algorithm to output the wrong answer. J

T. Grossman, I. Komargodski, and M. Naor 56:13

We show that there is a monotone function that is D-instance optimizable (unlike the
parity and addressing functions that are not monotone). However, the function is not
strict D-instance optimizable. The function is the majority function Maj : {0, 1}n → {0, 1}
defined as

Maj(x1, . . . , xn) = 1 ⇐⇒
n∑
i=1

xi ≥
n

2 .

I Example 3.2 (Item 1(i) of Theorem 1.2). The majority function is D-instance optimizable.

Proof. In order to determine the output of Maj on an input x ∈ {0, 1}n, every decision tree
has to find (at least) n/2 + 1 locations (in x) that have the same value, 0 or 1. Since the
algorithm is deterministic, this can take up to n queries in the worst case. On the other
hand, an algorithm with a certificate for x can query exactly n/2 + 1 locations that have
the same value. Any algorithm that has a certificate for x that queries at most n/2 queries
can be fooled to output the wrong answer. We get that for every input x it holds that
C(Maj, x) = n/2 + 1 and D(Maj, x) ≤ n, as needed. J

To complete the picture, we give a (monotone) function that is not D-instance optimizable.

I Example 3.3 (Item 1(ii) of Theorem 1.2). The OR function (that outputs ’1’ iff the
Hamming weight of the input is at least 1) is not D-instance optimizable.

Proof. An algorithm with a certificate can make just one query on every input with Hamming
weight 1 (to a location where there is supposedly a ’1’). However, every decision tree (not
getting a certificate) that is correct on every input must query all the coordinates on one
of these inputs, as otherwise we can fool it to output the wrong answer. This is done by
planting ’0’s at the points it queries and a ’1’ at a point that it does not query. J

Strict instance optimality. Both the addressing and parity functions were shown to be
strict D-instance optimizable (the algorithm with the certificate could not outperform the
one without the certificate even by a multiplicative small constant term). On the other
hand, in our analysis of the instance optimality of the majority function, we showed that an
algorithm with a certificate may perform twice as fast than the one that does not have the
certificate. Namely, the optimality ratio of the majority function is 2.

These examples are no coincidence: No non-trivial (that is not constant or dictatorship)
monotone function can be strictly D-instance optimizable.

I Lemma 3.4 (Item 3 of Theorem 1.2). There are no strict D-instance optimizable monotone
functions except those that depend on 0 or 1 variables.

Proof. Consider the DNF of the function i.e. the OR of all the minimal terms that make
the function ’1’. Suppose that the function has only one term. It cannot be of length 1, since
the function does not depend on one variable. Therefore, if all the variables in the term but
one are set to ’1’, the certificate size is 1, but for any decision tree all the variables in the
term must be read and if the one set to ’0’ is the last one, then the complexity on that input
is greater than 1.

So suppose that there are at least two terms in the conjunction. Due to the monotonicity
of the function they are not on exactly the same sets of variables. Consider the two instances,
one satisfying the first term and the other satisfying the second one (and nothing else). A
certificate verifier just needs to access the variables of one term, but a deterministic (or even
probabilistic) will have to ask on a variable that appears in one term but not the other and
hence will not have the same complexity and the instance satisfying the other term. J

ITCS 2020

56:14 Instance Complexity and Unlabeled Certificates

3.2 Randomized Instance Optimality
The question we consider is whether randomness changes anything w.r.t. instance optimality.
It is not hard to see that the parity function and the addressing function are not only
D-instance optimizable but they are also R-instance optimal (the proof of Example 3.1
actually shows it). However, the situation changes for the majority function: we show
that, in contrast to Example 3.2, the majority function is not R-instance optimizable. We
complement the picture in this section with an example of a monotone function that is also
R-instance optimal.

I Lemma 3.5 (Item 2 of Theorem 1.3, first part). The majority function is not R-instance
optimizable.

Proof. Given that the deterministic certificate size of majority is always of size Θ(n), we
must use the fact that the algorithm may err. We will give a distribution D on the inputs
such that any algorithm that does not get a certificate (but may be tailored to inputs that
come from the distribution D) must query Ω(n) bits in order to be correct with probability
at least 2/3. On the other hand, for any input x from this distribution D, an algorithm with
a certificate for x only needs to query O(

√
n) of the bits to be correct with high probability.

For x ∈ {0, 1}n let wt(x) stands for the Hamming weight of x. The hard distribution on
inputs x ∈ {0, 1}n is to choose uniformly at random from the set wt(x) ≥ n/2 +

√
n and the

set wt(x) ≤ n/2−
√
n (in the former Maj is 1 and in the latter it is 0). Consider a randomized

decision tree for Maj that is correct on this distribution with probability at least 2/3, i.e.
distinguishes between the case that wt(x) ≥ n/2 +

√
n and the case that wt(x) ≤ n/2−

√
n

with probability at least 2/3.
We show that this task requires Ω(n) queries on a uniform input of Hamming weight

n/2 +
√
n. First, by symmetry, notice that the best strategy for the algorithm is to sample

random locations in x and query them. Second, the lower bound follows from the fact that
Ω
(
1/ε2) samples are needed to distinguish (with constant probability) a biased random coin

that outputs heads with probability 1/2 + ε from one that outputs heads with probability
1/2− ε.7

On the other hand, given a certificate for an x of Hamming weight at least n/2 +
√
n,

there is a randomized algorithm that makes q = 10
√
n queries and outputs the right answer

with probability at least 2/3. The algorithm, given a certificate x∗ ∈ {0, 1}n and an input
x ∈ {0, 1}n, does:
1. Query x at q random locations i where x∗i is 1.
2. If all queries return 1, output 1.
3. Otherwise, read the whole input and output the majority value.

The algorithm makes a mistake only if at Step 2 all queries returned ’1’, but the Hamming
weight of x was less than n/2. This can happen only if there is a set I ⊆ [n] of coordinates
of size at least |I| ≥

√
n such that x∗i = 1 but xi = 0 for every i ∈ I, and the algorithm did

not query at any of them. The probability that this happens is at most(
1−
√
n

n

)q
=
(

1− 1√
n

)10
√
n

≤ 1/3.

Thus, this algorithm outputs the correct result with probability at least 2/3, as needed. J

7 See, for example, Claim 5.6 here: http://www.tau.ac.il/ mansour/advanced-agt+ml/scribe5-lower-
bound-MAB.pdf (Accessed: June 2018).

http://www.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-bound-MAB.pdf
http://www.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-bound-MAB.pdf

T. Grossman, I. Komargodski, and M. Naor 56:15

We give an explicit monotone function that is R-instance optimizable. We call this
function the lexicographic threshold function.

I Lemma 3.6 (Item 3 of Theorem 1.3). There exists an explicit monotone function that is
R-instance optimizable.

Proof. Consider the lexicographic order of strings in {0, 1}n under ≥lex. Let b = 1010 . . . 1010
∈ {0, 1}2n and define LTFn : {0, 1}2n → {0, 1} as LTFn(x) = 1 if and only if x ≥lex b. Denote
by b[i] the substring b1 . . . bi where bi is the i-th bit of b from left to right.

We show that the randomized query complexity of LTF is roughly equal to the randomized
query complexity of LTF given access to a certificate for the input. That is, we show that
any randomized query algorithm for LTF that has access to a certificate for the input must
work (roughly) as hard as an algorithm that does not have access to a certificate.

Our algorithm, that we denote by Pn, is to read bit by bit from left to right. Denote
by x[i] the substring read by the algorithm (ordered left to right) until iteration i. Initially,
x[0] = ⊥ and i = 0. At iteration 1 ≤ i ≤ 2n − 1, the algorithm returns 1 if x[i] >lex b[i],
returns 0 if x[i] <lex b[i] and continues to the next iteration otherwise (i.e., if x[i] =lex b[i]).
If the algorithm reaches i = 2n, it returns 1 (since the last bit of b is 0). Note that the
algorithm is deterministic. The number of queries that this algorithm does depends on the
input and is 2n− 1 in the worst case.

We prove that for every input x it holds that E[Pn(x)] ≤ 2RC(LTF, x).
For any x let pref(x) be the length of the prefix of x that algorithm Pn reads before it

stops. In other words, it is the length of the prefix of x that agrees with the string b. Consider
a pair of locations 2i− 1 and 2i that are smaller than pref(x). If the probability that A reads
at least one of them is smaller than 2/3, then algorithm A may err with probability at least
1/3. If instead of input x it is given input x′ that is flipped in locations 2i− 1 or 2i, then
the value of LTFn(x′) 6= LTFn(x), but A distinguishes the two inputs with probability less
than 2/3. J

I Remark 3.7 (Quantum instance optimality). In the quantum case, the Parity function is
not instance optimal. Based on Grover’s algorithm [29], it is known that quantum certificate
complexity is exactly the square root of randomized certificate complexity (up to a constant
factor). An explicit statement appears in Aaronson [1], where this claim is shown to be
true on an input-by-input basis. On the other hand, computing Parity requires n/2 queries
(quantumly) as shown by Farhi et al. [20] and Beals et al. [8].8

3.2.1 Sensitivity and Instance Optimality
We show that a function for which the decision tree complexity for every input is (roughly)
equal to its sensitivity, then the function is instance optimizable. This is not true in the
opposite direction.

I Lemma 3.8. Let f be an n-input Boolean function. If there is a (randomized) decision tree
for f s.t. for any x the complexity on input x is Θ(s(f, x)), then this algorithm is instance
optimal.

Proof. Let f be an n-input Boolean function. Assume that there is a decision tree algorithm
(randomized or deterministic) whose complexity for every input x is O(s(f, x)). For the
deterministic case we show that any algorithm A that does not err must query s(f, x))

8 We thank Scott Aaronson for bringing these results to our attention.

ITCS 2020

56:16 Instance Complexity and Unlabeled Certificates

location on x: suppose that there is an index i such that f(x) 6= f(x⊕ ei) that A does not
query xi. Then, on input x⊕ ei the algorithm A makes the same decision as on input x and
thus must err.

For the randomized case, we show that any algorithm (that does not err with probability
larger than 1/3 on any input) must query at least as many points in expectation as 2s(f, x)/3
on input x before deciding the output of the function.

Consider two input distributions: one with the point x and the other one is on s(f, x)
points of the form x⊕ ei for a random i ∈ [n] such that f(x) 6= f(x⊕ ei). If an algorithm
makes at most j queries, then the probability of distinguishing the two distributions is at most
j/s(f, x). That is, the output distribution of such an algorithm when given one or the other
distribution can differ by at most j/s(f, x). Therefore, if the expected number of queries the
randomized algorithms makes on x is less than 2s(f, x)/3, then the expected difference is
less than 2/3 which means that the algorithm will err with probability at least 1/3. J

From this lemma we can obtain many results concerning the instance optimality of
many algorithms. For instance, we can recover our results for the parity, addressing and
lexicographic threshold functions.

The lemma actually holds for block-sensitivity as well (with essentially the same proof).
But this still does not give a tight characterization, as there are functions where the
block-sensitivity is lower than the randomized certificate complexity (by some polynomial
factor) [1, 24].

3.2.2 Random Functions are Instance Optimizable
Consider the uniform distribution of Boolean functions, i.e. selecting at random one from the
set of size 22n functions {0, 1}n → {0, 1}. A random Boolean function f : {0, 1}n → {0, 1} is
instance optimizable with probability 1− 2−cn for some constant c and the naive algorithm
that reads the entire input is an instance optimal algorithm. A proof follows.

What we need to show is that for such a random function on all inputs any algorithm
must read a large fraction of the bits.

For input x ∈ {0, 1}n consider all
(
n
2
)
elements at (Hamming) distance 2. We have that

except with probability � 2−n we will have at least
(
n
2
)
/4 values x′ of distance 2 from x

such that f(x) 6= f(x′).
Consider first a deterministic algorithm for x that queries k locations. If the algorithm is

not to err, then it must cover all those x′’s in the sense that it queries at least one of the
two bits where x and x′ differ. Now if it queries only k ∈ o(n) locations it can cover at most(
k
2
)

+ k(n− k) such x′, but this is much smaller than
(
n
2
)
/4.

To get a lower bound for a randomized algorithm, consider the set of locations that have
probability at least 1/8 to be queried. If this set does not cover an x′ at distance 2 from x

where f(x′) 6= f(x), then we have that the algorithms errs with probability at least 3/4 when
the input is x′. So again we get that this set should be large and the expected number of
location queried is Θ(n). So, altogether, we get that on all inputs x an algorithm tailored for
x must ask Ω(n) queries and therefore the naive algorithm is instance optimal. This proves
Item 5 of Theorem 1.3.

I Remark 3.9. It would have been nice if we could show the above claim (that random
functions are instance optimizable) by showing that such functions have high block sensitivity
on any input. But note that to use the union bound we need to get probability less than 2−n
and that just won’t work. Instead, we gave a direct proof.

T. Grossman, I. Komargodski, and M. Naor 56:17

3.2.3 A Separation From Deterministic Instance Optimality
As we have seen, deterministic instance optimality does not imply randomized instance
optimality (e.g., the Majority function, Lemma 3.2 and 3.5). There are several examples
for the other direction, utilizing cases where there is a difference between the worst case
deterministic and randomized complexities. In particular the following example:

I Lemma 3.10 (Item 2 of Theorem 1.3, second part). There exists a function that is R-instance
optimal but not D-instance optimal.

Proof. Let g(x1) (where |x1| = n) be a function for which D(g) ∈ Ω(n), R(g) ∈ o(n) and
C(g) ∈ o(n) in the worst case. Such functions are known, for example Saks and Wigderson [46]
or Ambainis et al. [5]. Let Parity` be the parity function of all the bits of the input string of
length `. Let x be the concatenation of x1 and x2, and let f(x) = g(x1)⊕ Parity`(x2) where
we set ` = |x2| = R(g). For this length we have C(Parity, x2) = R(g) on all inputs x2.

Regarding the deterministic complexity of f , we have that D(f) = D(g) + D(Parity`) ≥
D(g) ∈ Ω(n). Similarly C(f, x) = C(g, x1) + C(Parity`, x2) ∈ o(n) and thus on the worst case
input, the certificate outperforms the deterministic algorithm, and thus f is not D instance
optimal.

On the other hand, in the randomized case: let ∆g be the best randomized algorithm
to evaluate g in the worst case. Let ∆Parity`

be the algorithm that evaluates Parity` by
simply querying the entire input. Let ∆f be the algorithm that evaluates f by doing both
∆g and∆Parity`

. We have, for any x, R(∆f , x) = R(∆g, x1) + R(∆Parity`
, x2) ∈ O(R(g)).

Similarly RC(f, x) = RC(g, x1) + RC(Parity`, x2) > RC(Parity`, x2) ∈ Ω(R(g)) and thus f
is R-instance optimal. J

3.3 Instance Optimality and Graph Properties
In this section we study the instance optimizability of a specific set of functions, ones that
test graph properties.9 Our motivation comes from our example in Lemma 3.6 of a monotone
function which is R-instance optimizable: the function is very “far” from being a graph
property as the location of each bit greatly influences its effect on the outcome of the function.
This raises the question of whether non-symmetry is necessary for R-instance optimizability
of monotone functions.

As a first step, we ask the following question: if we restrict our attention to graph
properties, then is it possible that having a certificate always “helps”? In Lemma 3.11 we
show that it is not the case. Specifically, we give an explicit graph property that is instance
optimal. The graph property that we use is the scorpion property. An n vertex graph
G = (V,E) is a scorpion graph if it contains 3 special vertices: a vertex b (body) of degree
n− 2, a vertex t (tail) of degree 2 and a vertex s (sting) of degree 1. The tail is adjacent to
both b and s. Edges in between the remaining n− 3 vertices in V \ {b, s, t} may be present
or not.

I Lemma 3.11 (Item 4 of Theorem 1.3). The scorpion graph property is R-instance optimal.

Proof. We first show that a deterministic algorithm can test whether a given graph is a
scorpion graph with O(n) queries. This is a result of Best et al. [9]. We provide a proof of
this in Appendix A for completeness.

9 We consider finite and undirected graphs with neither self loops nor parallel edges. A graph property
is an invariant that depends only on the abstract structure of the graph (and not on specific graph
representations). See Section 2.3.

ITCS 2020

56:18 Instance Complexity and Unlabeled Certificates

B Claim 3.12 ([9]). Testing whether a given n vertex graph is a scorpion graph takes at
most O(n) queries.

To complete the proof we show that on any instance G the complexity is Ω(n):

B Claim 3.13. For any graph G the best randomized algorithm on G that is correct on all
inputs with probability at least 2/3 must make Ω(n) queries in expectation.

Proof. Consider first a graphs that is a scorpion. The sensitivity of such a graph is at least
n− 1: there is a unique vertex that is the body (of degree n− 2). If any of its n− 2 adjacent
edges is missing, then the graph ceases to be a scorpion. So as in the proof of Lemma 3.8
any correct algorithm must make Ω(n) queries in expectation. Consider now a graph that is
not a scorpion. We partition its vertices into n/3 groups of triples and know that if for any
one of the triples we completely change the neighborhood the triple can become the b, t and
s of the scorpion graph (and the corresponding graph will satisfy the property). So consider
the following two distributions on graphs: one is simply G the other one starts with G, picks
a triple at random and changes the neighborhoods so they become the body, tail and sting.
Differentiating between these two distributions implies that the number of triples touched
(i.e. at least one edge in their neighborhood is queried) is close to n/3, but since each edge
belongs to at most two triples we get that Ω(n) edges must be queried in expectation. C

J

3.3.1 Conjecture: monotone graph properties are not instance
optimizable

One of the most famous conjectures in the literature of query complexity is the evasiveness
conjecture (a.k.a. the Aanderaa-Rosenberg conjecture). Roughly speaking, the conjecture says
that for any non-trivial graph property any deterministic decision tree algorithm must query
at least a constant fraction of all the edges (in the worst case). This conjecture was resolved by
Rivest and Vuillemin [44]. In another version, called the Aanderaa-Karp-Rosenberg conjecture
(AKR conjecture), the specific constant is also conjectured to be 1. This was resolved for
graphs of prime power order (number of vertices) by Kahn, Saks and Sturtevant [35].

Yao [52, §4, Question (2)] asked whether an analogue of the Rivest-Vuillemin result
holds for monotone graph properties and no-error randomized algorithms. Namely, whether
a constant fraction of edges must be queried in expectation for any non-trivial monotone
graph property by any randomized decision tree algorithm. The first result related to this
question was of Yao [53] who showed a lower bound of Ω(n · log1/12 n). This was improved
by King [36] and then by Hajnal [30] to Ω(n5/4) and Ω(n4/3), respectively. The currently
best lower bound is Ω(n4/3 · log1/3 n) of Chakrabarti and Khot [13].

If the algorithm is allowed to make two-sided errors the best lower bound we are aware
of is that of Jain and Zhang [33]. One could also pose a conjecture analogous to Yao’s for
such algorithms:

I Conjecture 3.14. Any randomized decision tree algorithm has to query a constant fraction
of edges for any non-trivial monotone graph property P , even if it is allowed to make an error
with probability 1/3. That is, R(P) is Θ(n2) for any non-trivial monotone graph property P
on n-vertex graphs.

We make a conjecture regarding instance optimality of graph properties, namely that every
monotone graph property is not R-instance optimizable. That is, a randomized algorithm
that gets a certificate will always be better than any randomized algorithm (that has no

T. Grossman, I. Komargodski, and M. Naor 56:19

certificate) on some input. The examples we gave in previous sections do not rule out this
conjecture: the scorpion property is not monotone, the lexicographic threshold function is
not a graph property, and the majority function (which can be phrased as a graph property)
is not R-instance optimizable. Recall that the majority function is D-instance optimal, so
the conjecture is false for deterministic computation.

I Conjecture 3.15. Every non-trivial monotone graph property is not R-instance optimizable.

We do not know what is the relationship between Conjectures 3.14 and 3.15.

3.4 Composition of Instance Optimal Functions
Given boolean function f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}. The composition of f
and g, denoted f ◦ g : {0, 1}nm → {0, 1}, is defined as the value of f(g(~x1), ..., g(~xn)) where
each ~xi is an independent vector of m bits. Most classical notions in query complexity (such
as deterministic and certificate complexities, degree, sensitivity and more) are known to
behave well under composition (see for example Tal [48, Lemma 3.1]). In this section we show
that instance optimality, on the other hand, does not compose. That is, the composition of
two instance optimal functions is not necessarily instance optimal.

I Lemma 3.16 (Item 4 of Theorem 1.2 and Item 6 of Theorem 1.3). There exist two functions
that are both strictly D-instance optimal and R-instance optimal, but their composition results
in a function that is neither R nor D instance optimal.

Proof. Let f : {0, 1}n → {0, 1} have input of the form: (a1, b1), ..., (an/2, bn/2). The function
f outputs bi where i is the first index for which ai = 1. We also define an/2 = 1, regardless
of the true input. The lemma follows immediately from the claims below.

B Claim 3.17. The function f is strictly D-instance optimal.

Proof. Consider the naive algorithm that queries each ai in order until it finds an i for which
ai = 1 and then queries bi. WLOG suppose the naive algorithm outputs 0. Suppose towards
a contradiction that there exists an algorithm A that makes at most k queries for some input
X, while the naive algorithm makes k + 1 queries. We will show that by changing the values
of bits that A did not query we can make A output the wrong value. If A makes at most k
queries one of two things must be true:
1. For some i < k, A does not query any one of ai and bi.
2. A doesn’t query ak or A doesn’t query bk. If Item 1 does not occur, then this must occur

(since if for every i < k, A queries either ai or bi, then querying both ak and bk would
require k + 1 total queries).

For the first case, if ai = bi = 1 then A makes an error. For the second case, we have two
options: either A queries ak or A queries bk. Suppose A queries ak. Note that ak = 1 since
the naive algorithm makes k+ 1 queries. If bk = 1 then A has made an error. For the second
option, suppose A queries bk. If ak = 0 but ak+1 = bk+1 = 1 then A has made an error.
Note that the maximum number of queries the naive algorithm makes is k + 1 = n

2 since we
know automatically that an/2 = 1. C

B Claim 3.18. The function f is R-instance optimal.

Proof sketch. This is very similar to the proof of Lemma 3.6, that the lexicographic function
is R-instance optimal. Essentially, any algorithm that is correct on 2/3 of the input must
query the ai’s in order, since otherwise the input can be set to fool the algorithm. C

ITCS 2020

56:20 Instance Complexity and Unlabeled Certificates

B Claim 3.19. For any algorithm ∆ ∈ ∆f◦f (i.e., that computes f ◦ f on all inputs
correctly with probability 2/3) there exists an input, x, for which C(f ◦ f, x) ∈ O(n) while
R(∆, x) ∈ Ω(n2).

The above claim implies that instance optimality does not compose in both the randomized
and the deterministic case. This is true since our upper bound uses a deterministic decision
tree while the lower bound is for any randomized decision tree.

Proof. Consider f ′ ◦ f ′′. where both f ′ and f ′′ are f as defined above. Denote the input of
f ′ by [aout

1 (~x1,1), bout
1 (~x1,2)], ..., [aout

n/2(~xn/2,2), bout
n/2(~xn/2,2)], and similarly the input of each f ′′

by ~xi,j = (ain
1 , b

in
1), ..., (ain

n/2, b
in
n/2). Note that ain

i and bin
i consists of a single bit. On the other

hand aout
i (~xi,1) and bout

i (~xi,2) are functions on n bits.
Consider an input of the following form: for every i, ~xi,2 has ain

1 = 1 (and thus for all i,
bout
i (~xi,2) can be computed in O(1)). Suppose that for all i 6= n

2 , ~xi,2 has bin
1 = 0, (and thus

for all i 6= n
2 , b

out
i (~xi,2) = 0), and ~xn/2,2 has bin

1 = 1 (and thus bout
n/2(~xn/2,2) = 1). Suppose

that for every i, ~xi,1 has ain
k = 0 for every k 6= n

2 , and a
in
n/2 = 1 (and thus for all i, computing

aout
i (~xi,1) requires Ω(n) queries). Suppose there exists a single i∗, which is chosen uniformly

at random from [1, n2 − 1], such that ~xi∗,1 has bin
n/2 = 1 (and thus aout

i∗ (~xi∗,1) = 1). Similarly,
suppose ~xn/2,1 has bin

n/2 = 1 (and thus aout
n/2(~xn/2,1) = 1). For all i 6= i∗, n2 suppose ~xi,1 has

bin
n/2 = 0 (and thus for i 6= i∗, n2 , we have aout

i (~xi,1) = 0).
Consider the following certificate algorithm: First the algorithm determines all of bout

i (~xi,2).
To do this, for every ~xi,2 the algorithm queries ain

1 , bin
1 . If for any i 6= n

2 , either a
in
1 6= 1 or

bin
1 6= 0 then the input doesn’t match the certificate (and in this case the algorithm can query
everything, and we don’t care about the number of queries). This requires O(n) queries, since
for every bout

i (~xi,2) the algorithm makes two queries and there are O(n) such bout
i . Since for all

i < n
2 , b

out
i (~xi,2) = 0, if the certificate algorithm finds a single i < n

2 for which aout
i (~xi,1) = 1

then the algorithm with a certificate knows that the output is 0. Thus the algorithm with a
certificate can query all of the bits of ~xi∗,1 in O(n) queries. If the certificate is truthful all of
the ain

i = 0, except for i = n
2 for which ain

n/2 = 1 and bin
n/2 = 1, and thus aout

i∗ (~xi∗,1) = 1 (once
again, if the queries do not match the certificate, then the certificate can query everything,
and the number of queries is irrelevant). Thus the certificate algorithm outputs 0 in O(n)
queries.

On the other hand any randomized algorithm without a certificate will take Ω(n2) queries.
Suppose that for every i the randomized algorithm is given the value of each bout

i (~xi,2), without
any queries. The output of the function is ’1’ iff there exists an i < n

2 for which aout
i (~xi,1) = 1.

That is, the algorithm needs to output the OR function of n2 − 1 many aout
i (~xi,1). In order to

compute a single aout
i (~xi,1) correctly with probability 2

3 any randomized algorithm must make
at least k ∈ Ω(n) queries due to Claim 3.18. That is k = cn for some constant c. Consider
any randomized algorithm that makes at most cn2

10 queries. This algorithm, can determine at
most cn2/10

cn = n
10 many aout

i (~xi,1) correctly with probability 2
3 (since the input ~xi,1 and ~xi′,1

are independent for each i and i′). Suppose the algorithm has determined n
10 many aout

i (~xi,1)
correctly with probability 1 (which is more than what any randomized algorithm can do).
Since the single i∗ that satisfies aout

i∗ (~xi∗,1) = 1 is distributed uniformly at random among all
the possible n

2 − 1 many i’s, and since any randomized algorithm knows the value of at most
n
10 many aout

i (~xi,1), and since n
10 <

2
3 (n2 − 1), any randomized algorithm that makes at most

cn2

10 will succeed with probability less than 2
3 . C

J

T. Grossman, I. Komargodski, and M. Naor 56:21

3.5 Testing Instance Optimality

In this section, we deal with the computational complexity of the problem of constructing
and verifying instance optimal algorithms. The input is a function, i.e., the truthtable and
the output is a decision tree.

We give an algorithm10 U (for universal) that for a function f and an instance x, outputs
an optimal randomized certificate tree for f on x. Thus, if one wants to test whether a
given decision tree T is instance optimal for a problem f , then it is enough to compare its
complexity on input x to the complexity of the output of U on f and input x for every
x ∈ {0, 1}n. A different interpretation of U is that if one wants to prove that f is instance
optimizable, then one has to give a decision tree that performs just as well as the decision
tree generated by U for every input.

The running time of U for a problem f and input x is polynomial in the domain size of f
and thus the total running time of testing whether a decision tree is instance optimal is a
polynomial in the domain size of f

I Theorem 3.20 (Theorem 1.4 rephrased). There exists an algorithm U that gets as an input
a function f : {0, 1}n → {0, 1}, and a certificate y for the input to the function, and generates
in time 2O(n) a correct randomized decision tree Ty for f such that R(Ty, y) ∈ O(RC(f, y)).

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function and y ∈ {0, 1}n be a certificate for the
input. For a subset S ⊆ [n] let yS ∈ {0, 1}n be the incidence vector of S, i.e., a string whose
i-th bit is:

(yS)i =
{
yi if i 6∈ S
ȳi if i ∈ S

The algorithm U is given as Algorithm 1. On a high level, it uses the truth table of f to
construct a linear program whose variables are all the possible inputs to f and the output is
a set of n numbers p1, . . . , pn ∈ [0, 1] that correspond to the probability that the certificate
verification tree should query the ith input bit.

Each such bit should be queried independently and the result is a non-adaptive verifier.
The algorithm takes exponential time (its input is a function f whose description may be
exponential and it solves an exponentially large linear program) but the representation of
the decision tree is small – just a set of probabilities {pi}i.

10Throughout the paper the term “algorithm” was used synonymously with the term “decision tree”. In
this section the term “algorithm” has a different meaning. Specifically, in this section the model the
algorithm works in is RAM rather than the query model.

ITCS 2020

56:22 Instance Complexity and Unlabeled Certificates

Algorithm 1 Randomized Decision Tree Generation Algorithm.

1: procedure U (f, y)
2: Solve the linear program

minimize
n∑
i=1

pi

subject to 0 ≤ pi ≤ 1 , ∀1 ≤ i ≤ n∑
i∈S

pi ≥ 1 , ∀S ⊆ [n] such that f(yS) 6= f(y)

3: end procedure

The certificate verification algorithm is:
1: Repeat c times:
2: for 1 ≤ i ≤ n do
3: query x at location i with probability pi.
4: if the result is equal to yi then continue.
5: else query x at all locations and output f(x).
6: end if
7: end for
8: output f(y).

First note that there is always a solution for the linear program by setting all the pi’s
to 1.

We begin by proving that Algorithm 1 satisfies correctness. Namely, that the resulting
decision tree computes f correctly on every input (with sufficiently high probability). If
y = x, then clearly the decision tree generated by Algorithm 1 outputs the correct value with
probability 1 (since f(x) = f(y)). Otherwise, assume that y 6= x. Either the decision tree
finds the differing point or not. In the former, it outputs f(x) as needed. In the latter, there
are two cases again: either f(x) 6= f(y) or f(x) = f(y). In the latter, we are done again by
construction.

We are left with calculating the probability that the differing point is not recognized in
case f(x) 6= f(y). Let S = {i1, . . . , ik} ⊆ [n] be a subset of size k ≤ n of indices such that
xi 6= yi for i ∈ S. Algorithm 1 is wrong only if it does not query on any xi such that i ∈ S.
But since f(y) 6= f(yS) (since yS = x) Algorithm 1 ensures that

∑
i∈S pi ≥ 1. Let qi = 1− pi

(i.e., qi is the probability that the decision tree does not query on xi) and the probability of
the algorithm being wrong is

∏
i∈S qi. By the inequality of arithmetic and geometric means,

we get that

∏
i∈S

qi ≤
(∑

i∈S qi

k

)k
≤
(
k − 1
k

)k
≤ e−1 < 0.4.

Hence, Algorithm 1 succeeds with probability at least 0.6. By standard amplification (running
the algorithm repeatedly c times and outputting f(y) only if there was never a disagreement),
we get an algorithm whose success probability is at least 2/3.

To prove that Algorithm 1 is optimal in terms of the number of queries it makes,
let T′ be a randomized algorithm that computes f . Assume towards contradiction that
R(T′, x) ∈ o(R(T, x)), where T is the randomized decision tree generated by Algorithm 1. We
will reach a contradiction by giving an input x′ to T′ for which it must error with probability

T. Grossman, I. Komargodski, and M. Naor 56:23

at least 1/3. By definition, R(T, x) =
∑n
i=1 pi and denote by p′i the probability that T′

queries xi (on input x). Since R(T′, x) ∈ o(R(T, x)), there exists some S ⊆ [n] for which∑
i∈S p

′
i ∈ o(1) and f(x) 6= f(x′) where x′ = xS . This is true since otherwise the p′i’s (times

some constant) would be a solution to the linear program. Clearly, T′ computes f correctly
on x′ with probability at most o(1), contradicting the assumption. J

The conclusion is therefore that when given a function and a decision tree, in order
to check whether the decision tree is instance optimal (with a given constant and some
slackness) one may go over all inputs, for each one compute the certificate complexity as in
Algorithm 1 and compare it to the complexity of the decision tree on that input. So only
time proportional to polynomial in the truth table size is required.

I Remark 3.21. Aaronson [1, Lemma 5] showed that there is a non-adaptive verifier whose
query complexity is similar to the best adaptive verifier. While Aaronson starts with the
adaptive verifier and defines from it a non-adaptive one, we construct the non-adaptive
verifier directly from the function.

We leave open the question of the complexity of testing whether a given function is
instance optimizable.

I Question 3.22. What is the complexity of testing whether a given function f is instance
optimizable (within some c).

3.6 Instance Optimality of Proximity Property Testing
Consider instance optimality in proximity-to-property testing: the task in proximity property
testing, as defined by Goldreich, Goldwasser and Ron [26] (see [25] for a current survey), is
to decide whether an object has some property or whether it is far from having it (according
to some measure of distance). This is actually a function with “don’t cares”: if the object is
close to satisfying the property but does not satisfy it, then any answer is acceptable; in this
sense it is different than the other functions considered in the paper which are full domain.

There are several examples and characterizations of problems that can be tested within
query complexity that only depends on the proximity parameter (see, for example, [26, 3, 27]).
In this case, when the proximity parameter is constant, the number of queries is also constant
which means that every such property is “trivially” instance optimizable: both the tester
that has a certificate and the tester that does not have it can decide the property within a
constant number of queries.

We observe that these properties, namely the ones that are testable within a constant
number of queries, are the only properties that are R-instance optimizable: the tester that
gets a certificate can always efficiently check (using O(1/δ) queries sampled at random) that
its certificate is δ/2-close to the object. If the certificate satisfies the property or if it δ/2
close to satisfying the property, then it outputs “accept”. Otherwise it outputs “reject”. Here,
we are using the fact that we are allowing two-sided errors.

4 Unlabeled Certificates

In this section we switch gears and study the notion of unlabeled certificates (see Section
2.2 for formal definitions). In the previous section the competing algorithm received as a
certificate the entire input (this can be though of as an “untrusted hint” where the hint is
the entire input), whereas in this section the certificate is a permutation of the input (the
“untrusted hint” is a permutation of the input, where the permutation is chosen adversarially).

ITCS 2020

56:24 Instance Complexity and Unlabeled Certificates

The unlabeled certificate makes sense especially for functions that are symmetric under some
class of permutations. For instance, if the input is a graph property, the unlabeled certificate
will be an isomorphic copy of the graph. That means that the algorithm should always be
correct (even if the unlabeled certificate is not an isomorphic copy of graph), but the runtime
of the algorithm is only measured when the unlabeled certificate is indeed isomorphic to the
graph.

We study both the worst case complexity and the instance complexity of unlabeled
certificates. For the worst case, roughly speaking, suppose we have a graph property, and
suppose we are given an isomorphic copy of the graph as a certificate. It turns out that there
exists a function for which such a certificate helps almost as much as an unlabeled certificate
can possibly help. See Section 4.1 for more details.

In the case of instance complexity of unlabeled certificates, we say a function is unlabeled
instance optimal if there exists an algorithm that performs as well as the unlabeled complexity
(up to a multiplicative constant) for every input. We show that the group of permutations
considered is important. Specifically, the majority property is randomized unlabeled instance
optimal (where the unlabeled certificate is simply the hamming weight, since the function is
symmetric under any permutation of the input), whereas the graph property of having more
edges than non edges (now the group of allowed permutations are all isomorphisms of the
graph) is far from being unlabeled instance optimal. See Section 4.2 for more details.

4.1 Unlabeled Certificates In the Worst Case

4.1.1 The Power of Unlabeled Certificates
We construct an example of a function (graph property) for which an algorithm that receives
an isomorphic copy of the graph as a certificate outperforms any algorithm that has no
certificate, thus showing a separation between algorithms receiving unlabeled certificates
and algorithms with no certificate in the worst case. The separation is almost the largest
possible.

I Theorem 4.1 (Theorem 1.5 rephrased). There exists a graph property f for which AC(f) ∈
O(n logn) while R(f) ∈ Ω(n2).

That is, we show a function f for which R(f) ∈ Ω̃(AC(f)2). Since D(f) ≥ R(f), and
AC(f) ≥ RAC(f), we also know that there exists a function where D(f) ∈ Ω̃(AC(f)2) and
R(f) ∈ Ω̃(RAC(f)2). Up to log factors, this example is tight in the deterministic setting
since D(f) < C(f)2 (see for example [34, Theorem 14.3]). In the randomized setting, the
best known separation between R(f) and RC(f) is R(f) ∈ O(RC(f)2), and improving this
separation is a major open research problem. In fact, if D(f) ∈ O(bs(f)2) then for all total
functions f , R(f) ∈ O(RC(f)2), in which case our example is also tight in the randomized
setting, up to log factors.

Our starting point in the construction is the property that every vertex has degree at
least logn. If one has a labeled certificate of the graph, then for each vertex it is easy to
check logn neighbors and see that they indeed exist. But the problem with an unlabeled
certificate is that there is no clear way to figure out who the vertices in the graph correspond
to in the certificate and hence finding the logn neighbors might be lengthy and require Ω(n)
queries per vertex. To overcome this we add some gadgets in order to uniquely define the
vertices in a manner that allows to find their “identities” with relatively few queries.

T. Grossman, I. Komargodski, and M. Naor 56:25

P

Figure 1 Example of binary tree illustrating Conditions 3 and 4.

I Construction 4.2. The function outputs ’1’ iff all of the following conditions holds:
1. There are exactly 2 vertices of degree 1, T1 and T2, both of which have an edge to a

special vertex, denote this vertex by P .
2. There is a vertex of degree n− 3 that is adjacent to all vertices except T1 and T2. Call

this vertex B.
3. Vertex P is the root of a “binary tree” of size 10 logn. Every “right” child consists of

an intermediate vertex. See Figure 1 where such a tree is shown. All vertices in the tree
are also adjacent to B, this is not shown in the figure. Condition 4 is also shown in the
figure.

4. There are 2 extra vertices, both adjacent to P ’s right child, and one of which is also
adjacent to P ’s left child. This makes both of P ’s immediate children also have degree 5.
See Figure 1.

5. All the 10 logn leaves have degree different than 5. This makes P and its immediate
children the only vertices of degree 5.

6. We call the set of remaining vertices (n−O(logn) in number) the “crowd” (denoted by
C). The neighbor of every vertex in the crowd either also belongs to the crowd, or is a
leaf of the tree described in Condition 3 or is the vertex B from Condition 2. Furthermore,
all vertices in the crowd must have degree at least logn on the subgraph induced by C
(that is, every vertex in C must have at least logn neighbors also in C).11

7. No two vertices in the crowd have the same neighborhood when restricted to the leaves of
the tree. Note that this is possible since we have more than logn leaves.

See Figure 2 for an illustration.

Proof. Note that if the function outputs 1, then T1 and T2 are the only vertices of degree
1. Thus, once we find T1 or T2 we can also find P in O(n) queries by finding T1’s (or T2’s)
only neighbor. If we know which vertex is B, then in O(n) queries we can find T1 and T2, as
they are the only vertices not adjacent to B. Once we find P we can check if Condition 1 is

11This condition can be replaced with any condition that can be solved in O(n logn) queries with a labeled
certificate, but requires Ω(n2) queries without a certificate.

ITCS 2020

56:26 Instance Complexity and Unlabeled Certificates

Figure 2 An illustration of Construction 4.2.

met by querying all of P ’s neighbors, and for each one making O(n) queries to see if their
only neighbor is P . If only 2 of P ’s 5 neighbors have this property then Condition 1 is met.
Similarly once we find P , T1 and T2 we can check in O(n) queries that Condition 2 is met
by checking that one of P ’s neighbor has degree n− 3 and is not adjacent to T1 and T2 as a
neighbor. We can similarly check that Condition 4 is met in O(n) queries given P . If we
find a vertex, v, of degree 5 we can find P in O(n) queries by checking if v has exactly two
neighbors of degree 5, if it does then v = P , otherwise v 6= P since P has 2 neighbors of
degree 5, and these two neighbors don’t have an edge between them.

The first phase of the algorithm is to find out either T1, T2 or B, and afterwards in O(n)
queries we also find P . We do this without using the unlabeled certificate similar to the way
we check if a graph is a scorpion [9], see Appendix A. Start by picking an arbitrary vertex, v,
and querying all of its neighbors. If deg(v) ∈ {1, 5, n− 3} we are done, as v must be T , P (or
one of P ’s immediate children) or B respectively. If deg(v) > n− 3 then output 0 since then
we can’t have two vertices of degree 1. So assume deg(v) /∈ {1, 5, n− 3, n− 2, n− 1}. Let
N0 denote the set of all of v’s neighbors, and let N1 = N0 \ {v}. Notice that if the function
outputs 1 then B ∈ N0 and T1, T2 ∈ N1 since T1 and T2 are only adjacent to P , and v 6= P .
Furthermore P ∈ N1 because all of P ’s neighbors have degree 1, 5 or n− 3. Iteratively pick
x ∈ N0 and y ∈ N1, and make a query to see if x is adjacent to y. If x and y are adjacent
then y can’t be T1 or T2 (since T1 and T2 only have an edge to P which is also in N1), so
remove y from N0. If x and y are not adjacent then x can’t be B unless y is T1 or T2, so
remove x from N0. Eventually N0 will be empty, in which case y must be either T1 or T2.
Thus in O(n) queries we find P , and using O(n) further queries we can check if Conditions
1, 2 and 4 are met.

Once we find P we proceed to find the leaves of the tree in O(n logn) queries. If at any
point the structure does not match the tree (each vertex having one child of degree 2 + 1
and one of degree 3 + 1, where the +1 if for the edge with B) output 0 (Condition 3). Once

T. Grossman, I. Komargodski, and M. Naor 56:27

we find the leaves of the tree, for each leaf we make n− 1 queries to check if each leaf has
degree different than 5 (Condition 5) and to find the neighborhood of all the leaves. Having
the neighborhood of each leaf allows us to check if Condition 7 is met, that no two vertices
in the crowd have the same neighborhood when restricted to the leaves. If it is met then we
can determine the isomorphism (for the vertices in C 12), between the unlabeled certificate
and the true (labeled) certificate. Note that the leaves of the tree are distinguishable since
we know exactly which is a right child and which is a left child due to the intermediate right
children, and this allows us to determine the isomorphism. With the (labeled) certificate we
can check if Condition 6 is met in O(n logn).

Lower bound for randomized algorithms. It remains to show that the randomized com-
plexity of this function is Ω(n2). Suppose the algorithm is given (without any queries) all of
the vertices of degree less than logn, their neighbors, the vertex of degree n− 3, as well as
being told which vertices are the leaves of the tree. Suppose that all conditions except 6 are
met. It remains to check if Condition 6 is met – that all vertices in C have at least logn
neighbors also in C. Consider the following two input distributions:

1. The vertices in C are split into 3 sets, C1, C2 and C3, where |C1| = log(n) − 1 and
|C2| = |C3| ∈ Ω(n). The subgraphs induced by C1 and C3 are cliques, and every vertex in
C1 is connected to every vertex in C2. For every vertex in C2 we pick a vertex at random
from C3 and add an edge. Pick an edge uniformly at random from all edges that have
one vertex in C2 and one in C3. Call the pair of endpoints of the edge the “marked pair”.

2. Same as distribution 1, except the edge which is the marked pair is removed.

For the first distribution Condition 6 is met, since every vertex in C2 has degree logn (on
the subgraph induced by C) because it has logn− 1 neighbors from C1 and a single neighbor
from C3. In the second distribution Condition 6 is not met since there exists a single vertex
in C2 with degree logn− 1.

Differentiating between the first distribution and the second distribution requires Ω(n2)
queries: Suppose that the algorithm A that attempts to distinguish between the two cases is
given the partition of the vertices in C into C1, C2 and C3 “for free”, as well as being given
for free that C1 and C3 are cliques. Furthermore, suppose that each query not only tells us if
(u, v) is an edge, but also tells us if (u, v) is the marked pair. Note that the two distributions
are identical, except that the second distribution does not contain the marked pair as an
edge, and thus it is possible to tell apart the two distributions with any advantage (even if
algorithm is allowed to err) if and only if the marked pair is queried.

Consider an arbitrary algorithm A. Let N = |C2| = |C3| ∈ Ω(n). At any point during the
execution of A, call a vertex u ∈ C2 “unmatched” if its adjacent edge has not been discovered
yet, call it “thin” if thus far A has made at most N

2 queries that involve u, and call it “thick”
if A has made at least N

2 queries that involve u. We can also think of the choice of the edges
as well as the marked one as happening when the queries are made (principle of deferred
decision): given an unmatched vertex u with qu queries made so far, when a new slot is
queried, it is matched with probability 1/(n− qu − 1) and if it matched it is chosen as the
marked one with probability proportional to the number of unmatched vertices.

12We do not have the full isomorphism, but we do know the mapping of the isomorphism for each of the
vertices in the crowd – the vertices for which we want to check if they all have degree at least logn on
the subgraph induced on C.

ITCS 2020

56:28 Instance Complexity and Unlabeled Certificates

We do not charge the algorithm for queries made to thick vertices: once a vertex u

becomes thick the next time A decides to query u it queries all the slots adjacent to it and
gets the edge (or the marked pair); this modification does not result in a big change in the
complexity, since it at most halves the total number of queries we charge A for making in any
given execution. Thus, when considering an execution of A, we assume it can only choose
among thin vertices.

We will first show that if A has made at most q = 1
200N

2 queries so far, then the number
of unmatched vertices is at least N/2 whp. Consider q independent trials (corresponding to
the queries), each successful with probability at most 2/N (a vertex becoming matched). By
the Chernoff Bound, the probability that q independent (and identical) trials, each successful
with probability 2

N have more than N
2 successes is13

Pr[More than N/2 vertices become matched] ≤ 2−N/2.

Thus any algorithm that thus far has made less than 1
200N

2 queries, has at least N2 unmatched
vertices with high probability.

We conclude that under the assumption that the number of unmatched vertices is at least
N/2 the probability that A queries the marked pair in the next round is bounded by 4/N2:
The probability that a given thin vertex u is part of the matched pair is 2

N (since there are at
least N/2 unmatched vertices), and given that we query a vertex that is part of the marked
pair, the probability that we query the marked pair is at most 2/N (since u is thin). So we
get that the probability that A finds the marked pair in q rounds is bounded by 4q/N2 (union
bound) plus the probability of not having N/2 unmatched vertices (which is negligible).
So altogether, an algorithm operating with q = 1

200N
2 queries has a limited probability

of success and we get that the worst-case randomized complexity of f (Definition 2.3) is
Ω(N2) = Ω(n2) . J

I Remark 4.3. The technique or gadget used in the above construction in order to make each
vertex unique has additional applications. For instance, it can be used to turn an arbitrary
function into a graph property while the complexity increases by an additive O(n · logn)
factor, resulting in the first known graph property with separation between the deterministic
and randomized complexity. We explore this in future work.

4.2 Unlabeled Instance Optimality

4.2.1 Unlabeled Certificates of Majority
Our first example regarding unlabeled instance complexity is that while the majority function
is not R-instance optimizable (Lemma 3.5), it is (almost) unlabeled R-instance optimizable.
Namely, knowing the Hamming weight of the input does not help in significantly reducing
the number of queries made to the input.14

Here, the optimality ratio is super-constant, that is, the unlabeled decision tree has an
asymptotic advantage over the standard decision tree but it is only doubly-logarithmic in
the input size (and this is tight).

13We use the following form of Chernoff: ∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t. Indeed in this case E[X] =
q 2

N = N
100 . And

N
2 > 2e N

100 .14The majority is a symmetric function, and so in this case Γ contains all permutations of the n inputs,
thus the full information is given by the hamming weight of the input.

T. Grossman, I. Komargodski, and M. Naor 56:29

I Lemma 4.4 (Item 1 of Theorem 1.6). The majority function is within O(log logn) of being
unlabeled R-instance optimizable.

Proof. Consider an algorithm with an unlabeled certificate, which in the case of majority
can be thought of as the number of 1’s in the input. Suppose that the Hamming weight is
n/2 + εn. Then the algorithm must make at least Ω(1/ε2) queries to the input. This follows
by fixing the distribution that with probability 1/2 outputs a random input of Hamming
weight n/2 + εn and with probability 1/2 outputs a random input of Hamming weight
n/2−εn. By the same fact we used in Lemma 3.5, Ω(1/ε2) queries are required to distinguish
the two cases.

We show that without a certificate, we can work with almost the same number of samples:
Θ(1/ε2 ·log log(1/ε)). The decision is obviously based on where the majority of the coordinates
we read vote, but the issue is when to stop. This is a case of sequential hypothesis testing
and the danger is that we are trying too many hypotheses and may fail in one of the trials,
even though there is decent a probability of not failing in any particular one.

We use a recent result of Daskalakis and Kawase [15] who studied the following problem:
Given sample access to an unknown distribution p over {0, 1} and an explicit distribution
q over the same domain. How many samples are needed to reject the hypothesis “p = q”
when p 6= q, while never rejecting when p = q. Daskalakis and Kawase showed that
Θ(1/d2

p,q · log log(1/dp,q)) queries are needed and sufficient, where dp,q is the total variation
distance between p and q. We sketch the upper bound directly for our case next.

The algorithm samples a coordinate i← [n] uniformly at random and queries its input
at i. Let t be the number of queries made so far and let t0 be the number of 0’s and t1 the
number of 1’s (where t0 + t1 = t). Whenever t is a power of 2, the algorithm decides whether
to stop or go on:
1. if t ≥ n, read the whole input and output the majority value.
2. if tb > t/2 + 2

√
t · log logn, output the bit b.

We need to show two properties of the algorithm. First, that after enough iterations, it
stops with the right answer. Second, that the probability that it stops too early, before
making enough queries, is small. For the latter, since our test is done only when t is a power
of two, the test is performed at most logn times. Thus, if we wish that no error will be
made by stopping too early we need to reduce the probability of error per test to be at most
1/(3 logn). Assume that the input has n/2 + εn 1’s (the case with 0 majority is analogous).
We start by showing that the probability that the algorithm halts and outputs the wrong
answer is small. Denote by T (t)

b the random variable corresponding to the number of b’s seen
until query t, for b ∈ {0, 1}. (T (t)

b is the sum of t independent random variables.) By a union
bound, the probability that the algorithm makes a mistake it at most

∑
t=2i

Pr
[
T

(t)
0 ≥ t

2 + 2
√
t · log logn

]
,

where the sum is over all t’s that are powers of 2. We bound each of these terms separately
using Chernoff’s bound.15 Since the input contains n/2+εn 1’s, it holds that E[T (t)

0] = t/2−εt.

15We use the additive version of Chernoff’s bound [4, Appendix A.1]. Let X =
∑n

i=1 Xi be a sum of
identically distributed independent random variables X1, . . . , Xn ∈ {0, 1}. Let µ = E[X] =

∑n

i=1 E[Xi].
It holds that for a > 0, Pr[X > µ+ a] ≤ exp(−2a2/n).

ITCS 2020

56:30 Instance Complexity and Unlabeled Certificates

Hence, for every t ∈ [n]:

Pr
[
T

(t)
0 ≥ t

2 + 2
√
t · log logn

]
= Pr

[
T

(t)
0 ≥

(
t

2 − εt
)

+
(
ε
√
t+ 2

√
log logn

)
·
√
t

]
≤ exp

(
−2
(
ε
√
t+ 2

√
log logn

)2
)

≤ exp (−8 log logn) ≤ log−8 n.

Thus, the overall probability that the algorithm makes a mistake is less than logn · log−8 n <

1/3.
We show that with probability at least 2/3 our algorithm halts (with the correct output)

after at most t′ = min{2n, 25(log logn)/ε2} queries. This will finish the proof of the claim.
Again, consider an input with n/2 + εn 1’s. If ε is such that t′ ≥ n, then we are done.
Otherwise, by the same Chernoff bound:

Pr
[
T

(t′)
1 <

t′

2 + 2
√
t′ · log logn

]
= Pr

[
T

(t′)
1 ≤

(
t

2 + εt

)
−
(
ε
√
t− 2

√
log logn

)
·
√
t

]
≤ exp

(
−2
(
ε
√
t− 2

√
log logn

)2
)
< 1/3. J

4.2.2 Unlabeled Certificates of Graph Properties
Our next result is that there exists a graph property which is not unlabeled R-instance
optimizable. It is our “old friend” the majority property, but this time the group of
permutations Γ considered is that of the vertices (rather than the edges), which demonstrates
the significance of picking the most appropriate Γ.

I Lemma 4.5 (Item 2 of Theorem 1.6). There exists a graph property – majority of edges
– which is not unlabeled R-instance optimizable. There is a distribution where any correct
algorithm takes Ω(n2) queries but an algorithm receiving an unlabeled certificate requires only
O(n logn) queries.

Proof. The graph property is that the graph G = (V,E) with n vertices contains at least(
n
2
)
/2 edges. The hard distribution for (certificateless) randomized decision trees will be a

random graph that has either
(
n
2
)
/2 + n edges or

(
n
2
)
/2− n edges.

On the one hand, a randomized algorithm that has no certificate cannot distinguish
random graphs that have

(
n
2
)
/2 + n edges from random graphs that have

(
n
2
)
/2− n edges

unless it makes Ω(n2) queries to the input and recovers a constant fraction of the graph.
This is the fact we used in the proof of Lemma 3.5. The rest of the proof is devoted to
showing that using an unlabeled certificate can significantly help.

We design a decision tree algorithm that has access to an unlabeled certificate and makes
only O(n · logn) queries to the input in expectation on the above distribution and decides the
property correctly on all inputs with probability 2/3. The algorithm works in two steps after
which the algorithms recovers the exact graph (and not a permutation thereof) or figures out
that it was given the wrong certificate. Then, we are back in the case of Lemma 3.5 where
the (exact) certificate helps compared to the algorithm without the certificate.

Denote by G = (V,E) the real graph we are querying and denote by G′ = (V,E′) the
permuted graph we have as a certificate. That is, E′ = {(π(u), π(v)) | (u, v) ∈ E}) for
some unknown permutation π. The first step of our algorithm is to sample a random set of
k = c · logn vertices A = {v1, . . . , vk} (for some large enough constant c > 0) and query all
edges (vi, vj) for all i, j ∈ [k]. We call the set A the anchor. This costs at most k2 ∈ O(log2 n)

T. Grossman, I. Komargodski, and M. Naor 56:31

queries. Denote by GA the induced subgraph that the algorithm just queried. The algorithm
then tests how many isomorphic subgraphs there are to GA in G′. If there are no copies, we
query all the edges in the graph, as the certificate is not a permutation of the input graph.
If there is more than one copy, then we are unlucky (see below) and again we query all edges.
If there is exactly one isomorphic subgraph, we have just identified the vertices in A and we
can use them as an anchor to identify the other vertices.

The next step of the algorithm is to query the input on all possible neighbors for each
vertex in the anchor A. This costs n · k ∈ O(n · logn) additional queries. For a vertex
v ∈ V \A, let v(A) = (E(v, v1), . . . , E(v, vk)) be the incidence vector w.r.t. neighborhood in
A. For each such v ∈ V \A, look for a vertex in the certificate with the same “fingerprint”,
i.e., same list of vertices in A (again, if we find no match, we output ⊥).

At this point, the algorithm completely recovers the permutation between the input
and the certificate and thus we are almost done: as in Lemma 3.5, the algorithm checks
using O(n) random queries that the input graph corresponds to the certificate; if it does the
algorithm answers accordingly (i.e., by the majority of the edges of the ceritificate) and if not
the algorithm queries all the edges and answers according to the result. By the correctness
of Lemma 3.5 we get that the algorithm is correct with high probability.

The fact that the algorithm is efficient, that is, if it is given a permutation of the true
graph then the expected number of queries it makes is O(n logn), follows from the two claims
below. They show that we will indeed recognize the vertices in A uniquely and then each
other vertex in V \A (with very good probability). The overall complexity of the algorithm
is O(n · logn) queries with probability 1− 1/n (the probability is over the distribution of the
graphs and the random choices of the algorithm).

B Claim 4.6. With all but 1/n probability, there is only one induced subgraph of G that is
isomorphic to GA.

Proof. In Alon-Spencer [4, §10], Subsection titled “THE PROBABILISTIC LENS: Counting
Subgraphs” the following is shown. Let G = (V,E) be a G(n, p) graph (i.e., a graph on n
vertices with edge probability p ∈ (0, 1)) and let S ⊆ V be a subset of k vertices. Let GS
be the induced subgraph of G to the vertices in S. Then, the probability that there is an
isomorphic copy to GS in G besides the one induced by S is at most

t∑
g=1

(
n2 · p1/3−k/6

)g
.

Letting p = 1/2± n/
(
n
2
)
and k = 100 logn, we get that the above probability is bounded by

1/n2.
The above holds for aG(n, p) graph while our graph is sampled from a different distribution.

Our distribution is such that the given graph is a random one conditioned on having
(
n
2
)
/2±n

edges. But, a random G(n, p) graph has inverse-polynomial probability of ending up with
p ·
(
n
2
)
edges so we can get the result for these graphs by conditioning. More generally,

it is known that random graphs with m edges have similar properties to ones with edge
probability p = m/

(
n
2
)
; see, for example, Frieze and Karonski [23, Lemma 1.2]. C

B Claim 4.7. With probability less than 1/n, there exist distinct v, v′ ∈ V \ A such that
v(A) = v′(A).

ITCS 2020

56:32 Instance Complexity and Unlabeled Certificates

Proof. For every two distinct v, v′ ∈ V \A the probability that v(A) = v′(A) is 2−k. Applying
a union bound over all possible such pairs, we get that there exist distinct v, v′ ∈ V \A such
that v(A) = v′(A) with probability at most

|V \A|2 · 2−k ≤ n2/2c·logn ≤ 1/n2,

where the last inequality follows for c > 4. C

This concludes the proof that majority is not instance optimal in this sense. J

Lastly, we show that even when considering graph properties (that is, the permutation
group considered is over the vertices of the graph), there is a (monotone) graph property
which is unlabeled R-instance optimizable:

I Lemma 4.8 (Item 3 of Theorem 1.6). There exists a monotone graph property (“there exists
at least one edge”) which is unlabeled R-instance optimizable. But not labelling R-instance
optimal.

Proof. The graph property is that the graph G = (V,E) contains at least one edge. Let
n = |V |, and let m be the number of edges.The instance optimal randomized decision tree
algorithm is the one that just samples random edges in the graph (without repetition) and
queries on them until it either finds an edge or until it exhausts all the edges in the graph. If
the input graph has m ≥ 1 edges, the expected number of queries the algorithm makes is
bounded by

(
n
2
)
/m.

In the unlabeled certificate case, we need to argue that for any m ∈ {0, . . . ,
(
n
2
)
} and any

graph G no randomized decision tree algorithm given G′, an isomorphic copy of G, as an
unlabeled certificate can be correct (on all graphs) with probability at least 2/3 by querying
in expectation o

((
n
2
)
/m
)
.

Consider a distribution DG on graphs such that with probability 1/2 the output is a
random isomorphic copy of the graph G and with probability 1/2 the output is the empty
graph (no edges at all). Consider the first k queries of any decision tree T . We will argue
that for k =

(
n
2
)
/(8m), with high probability T will not query any edge (when the graph it

queries is a random isomorphic copy of G), and thus have no way of telling if the graph is
indeed an isomorphic copy of G′ or the empty graph. Note that as long as T doesn’t query
any edges, T is non-adaptive. Since T makes k queries, the probability that it queries at least
one edge is the same as the probability that a k-edge graph H and a random permutation of
a m-edge graph G intersect. We argue that this is roughly on the order of k ·m/n2. More
precisely, by a union bound and assuming the first i− 1 rounds returned no edges, if T makes
k queries, then with probability at most:

k∑
i=1

m(
n
2
)
− i+ 1

≤ 2mk
n2 − 2n− 2k ≤ 1/4

it will query an edge. Therefore, with probability at least 2/3 it will not query any edge
and thus have no way of knowing whether the graph has an edge or not. This means that
Ω
((
n
2
)
/m
)
queries must be made in expectation, same as the naive algorithm that does not

get a certificate nor does it know m and therefore the property of having at least one edge is
unlabeled R-instance optimizable.

The function is not labelling R-instance optimal, since if there exists one edge the
algorithm with a (labeled) certificate requires only O(1) queries. J

T. Grossman, I. Komargodski, and M. Naor 56:33

4.2.3 Labelling Instance Optimal
All instance optimal functions are also labelling instance optimal since for every x C(f, x) ≤
AC(f,Γ, x) ≤ D(f, x) and RC(f, x) ≤ RAC(f,Γ, x) ≤ R(f, x). We show that, up to log
factors, the converse is not true; i.e, there exists a function that is within O(log(n)) of being
labelling D-instance optimal (resp. labelling R-instance optimal) but is not D-instance
optimal (resp. R-instance optimal).

I Lemma 4.9 (Item 4 of Theorem 1.6). The function defined in Construction 4.2 is within
O(log(n)) of being labelling D-instance optimal, and labelling R-instance optimal, but is
neither D-instance optimal nor R-instance optimal.

Proof. We know the function isn’t D nor R instance optimal since in the worst case the
algorithm that has access to an unlabeled certificate does significantly better than the
algorithm that has no certificate due to Theorem 4.1.

We will show that for every input RC(f, x) ∈ Ω(n). Since for all inputs AC(f, x) ∈ Õ(n)
both D and R instance optimality follows. Notice that all the conditions except for Condition
3 make a requirement about the degree of a given vertex (or multiple vertices). Ω(n) queries
are necessary to determine the degree of a given vertex with high probability. Condition 3
claims that we have a binary tree of size O(log(n)) and thus this condition also requires Ω(n)
queries with a certificate. J

4.2.4 Unlabeled Instance Optimality of Proximity Property Testing
It turns out that every proximity property, given an (unlabeled) certificate, can be done
with at most Õ(

√
n) queries (with two-sided errors). This follows from a result of Fischer

and Matsliah [22] who studied the query complexity of graph isomorphism in the proximity
property testing model. One of their results determines the query complexity of this problem
where one of the graphs is “known” to the algorithm and while allowing two-sided errors
(this is in the dense graph model). They showed that, in this setting, Õ(

√
n) queries suffice

and Ω(
√
n) queries are necessary in general. Thus, in the unlabeled model, we can use this

algorithm to first test proximity between the object and the given unlabeled certificate (using
Õ(
√
n) queries). Then, if they are close, answer according to whether the certificate possess

the property. If they are far, query the whole object and just compute the output precisely.
So, for a proximity property to be instance optimizable, it is necessary to prove that

O(
√
n) queries are sufficient in the worst case.

5 Open Questions and Future Research

This work raises several open problems and research directions. Conjecture 3.15 is about the
lack of monotone graph properties which are R-instance optimal.

I Conjecture 5.1 (Conjecture 3.15, repeated). Every non-trivial monotone graph property is
not R-instance optimizable.

In section Section 3.5 we showed that given a truth-table representing a function, we can
test if a given algorithm is instance optimal in time polynomial in the size of the truth-table.
It remains open if we can test if a given function is instance optimizable in time polynomial
in the size of the truth table. Another question is, given a decision tree (instead of a truth
table), can we test whether the function it evaluates is instance optimizable.

ITCS 2020

56:34 Instance Complexity and Unlabeled Certificates

I Question 5.2 (Question 3.22, repeated). What is the complexity of testing whether a given
function f is instance optimizable (within some c).

As we observed in Section 3.6, there is a clean characterization of (randomized) instance
optimality in the context of proximity testing. Also, we know that unlabeled certificates help
(with properties which require many queries to test), but we do not have a full characterization.

I Question 5.3. Are there unlabeled instance optimizable properties in the proximity testing
model, with worst case complexity ω(1)?

Another question is whether analogues of the Aanderaa-Rosenberg conjecture holds for
unlabeled certificate decision tree complexity. The randomized variant of this question for
monotone properties is also open.

I Question 5.4. Can the result of Rivest and Vuillemin [44] be extended to algorithms with
an unlabeled certificate? Namely, do deterministic decision tree algorithms require querying
a constant fraction of the edges for any non-trivial monotone graph property, even given a
permutation of the given graph?

In this work we considered two types of hints regarding the input, i.e. side information
where the competing algorithm is measured only when it is correct: the full input and a
permutation of the input. A natural question is what other types of hints are useful to study,
e.g. partial inputs (that do not contain a certificate), such as the degree sequence.

References
1 Scott Aaronson. Quantum certificate complexity. J. Comput. Syst. Sci., 74(3):313–322, 2008.

doi:10.1016/j.jcss.2007.06.020.
2 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-Optimal Geometric

Algorithms. J. ACM, 64(1):3:1–3:38, 2017. doi:10.1145/3046673.
3 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A Combinatorial Characterization

of the Testable Graph Properties: It’s All About Regularity. SIAM J. Comput., 39(1):143–167,
2009.

4 Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, third edition, 2008.
5 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris

Smotrovs. Separations in Query Complexity Based on Pointer Functions. J. ACM, 64(5):32:1–
32:24, 2017.

6 Andris Ambainis and Xiaoming Sun. New separation between s(f) and bs(f). Electronic
Colloquium on Computational Complexity (ECCC), 18:116, 2011.

7 Ilya Baran and Erik D. Demaine. Optimal adaptive algorithms for finding the nearest and
farthest point on a parametric black-box curve. In Proceedings of the 20th ACM Symposium
on Computational Geometry, SOCG, pages 220–229. ACM, 2004.

8 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.

9 R. Best, P. van Emde Boas, and H.W. Lenstra. A Sharpened Version of the Aanderaa-Rosenberg
Conjecture. Mathematisch Centrum Amsterdam. Afdeling Zuivere Wiskunde: ZW. Stichting
Mathematisch Centrum, 1974. URL: http://books.google.co.il/books?id=9KLcHAAACAAJ.

10 Manuel Blum and Russell Impagliazzo. Generic Oracles and Oracle Classes (Extended
Abstract). In 28th Annual Symposium on Foundations of Computer Science, FOCS, pages
118–126. IEEE Computer Society, 1987.

11 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

https://doi.org/10.1016/j.jcss.2007.06.020
https://doi.org/10.1145/3046673
http://books.google.co.il/books?id=9KLcHAAACAAJ

T. Grossman, I. Komargodski, and M. Naor 56:35

12 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)00144-X.

13 Amit Chakrabarti and Subhash Khot. Improved lower bounds on the randomized complexity
of graph properties. Random Struct. Algorithms, 30(3):427–440, 2007.

14 Stephen A. Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and Lower Time Bounds
for Parallel Random Access Machines without Simultaneous Writes. SIAM J. Comput.,
15(1):87–97, 1986.

15 Constantinos Daskalakis and Yasushi Kawase. Optimal Stopping Rules for Sequential Hypo-
thesis Testing. In 25th Annual European Symposium on Algorithms, ESA, pages 32:1–32:14,
2017.

16 Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Patrascu. The
geometry of binary search trees. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 496–505, 2009.

17 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set intersections, unions,
and differences. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 743–752. ACM/SIAM, 2000.

18 Cynthia Dwork and Yoram Moses. Knowledge and Common Knowledge in a Byzantine
Environment: Crash Failures. Inf. Comput., 88(2):156–186, 1990. doi:10.1016/0890-5401(90)
90014-9.

19 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci., 66(4):614–656, 2003. doi:10.1016/S0022-0000(03)00026-6.

20 Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Limit on the Speed of
Quantum Computation in Determining Parity. Phys. Rev. Lett., 81:5442–5444, December
1998.

21 Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms, The State of the Art (the
book grow out of a Dagstuhl Seminar, June 1996), volume 1442 of Lecture Notes in Computer
Science. Springer, 1998. doi:10.1007/BFb0029561.

22 Eldar Fischer and Arie Matsliah. Testing Graph Isomorphism. SIAM J. Comput., 38(1):207–
225, 2008.

23 Alan M. Frieze and Michal Karonski. Introduction to Random Graphs. Cambridge University
Press, 2015. doi:10.1017/CBO9781316339831.

24 Justin Gilmer, Michael Saks, and Srikanth Srinivasan. Composition limits and separating
examples for some boolean function complexity measures. Combinatorica, 36(3):265–311, June
2016. doi:10.1007/s00493-014-3189-x.

25 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
26 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connection to

Learning and Approximation. J. ACM, 45(4):653–750, 1998.
27 Oded Goldreich and Dana Ron. Algorithmic Aspects of Property Testing in the Dense Graphs

Model. In Property Testing - Current Research and Surveys, pages 295–305. Springer, 2010.
28 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-Communication Lifting for BPP.

In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 132–143.
IEEE Computer Society, 2017.

29 Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.

30 Péter Hajnal. An Ω(n4/3) lower bound on the randomized complexity of graph properties.
Combinatorica, 11(2):131–143, 1991.

31 Joseph Y. Halpern, Yoram Moses, and Orli Waarts. A Characterization of Eventual Byzantine
Agreement. In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing, pages 333–346. ACM, 1990.

32 Hao Huang. Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture.
CoRR, abs/1907.00847, 2019. arXiv:1907.00847.

ITCS 2020

https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1007/BFb0029561
https://doi.org/10.1017/CBO9781316339831
https://doi.org/10.1007/s00493-014-3189-x
http://arxiv.org/abs/1907.00847

56:36 Instance Complexity and Unlabeled Certificates

33 Rahul Jain and Shengyu Zhang. The Influence Lower Bound Via Query Elimination. Theory
of Computing, 7(1):147–153, 2011.

34 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Berlin
Heidelberg, 2012.

35 Jeff Kahn, Michael E. Saks, and Dean Sturtevant. A topological approach to evasiveness.
Combinatorica, 4(4):297–306, 1984.

36 Valerie King. An Ω(n5/4) lower bound on the randomized complexity of graph properties.
Combinatorica, 11(1):23–32, 1991.

37 Silvio Micali and Rafael Pass. Local zero knowledge. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, STOC, pages 306–315. ACM, 2006. Revision
http://www.cs.cornell.edu/~rafael/papers/preciseZK.pdf.

38 Yoram Moses and Mark R. Tuttle. Programming Simultaneous Actions Using Common
Knowledge. Algorithmica, 3:121–169, 1988.

39 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. In Allen B. Tucker,
editor, The Computer Science and Engineering Handbook, pages 141–161. CRC Press, 1997.

40 Noam Nisan. CREW prams and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.
41 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. URL:

http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-
complexity-computer-algebra-and-computational-g/analysis-boolean-functions.

42 Pekka Orponen, Ker-I Ko, Uwe Schöning, and Osamu Watanabe. Instance Complexity. J.
ACM, 41(1):96–121, 1994. doi:10.1145/174644.174648.

43 Ran Raz and Pierre McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica,
19(3):403–435, 1999.

44 Ronald L. Rivest and Jean Vuillemin. A Generalization and Proof of the Aanderaa-Rosenberg
Conjecture. In Proceedings of the 7th Annual ACM Symposium on Theory of Computing,
STOC, pages 6–11. ACM, 1975.

45 David Rubinstein. Sensitivity vs. Block Sensitivity of Boolean Functions. Combinatorica,
15(2):297–299, 1995.

46 Michael Saks and Avi Wigderson. Probabilistic Boolean Decision Trees and the Complexity of
Evaluating Game Trees. In 27th Annual Symposium on Foundations of Computer Science,
SFCS ’86, pages 29–38. IEEE Computer Society, 1986. doi:10.1109/SFCS.1986.44.

47 Daniel Dominic Sleator and Robert Endre Tarjan. Self-Adjusting Binary Search Trees. J.
ACM, 32(3):652–686, 1985. doi:10.1145/3828.3835.

48 Avishay Tal. Properties and applications of boolean function composition. In Innovations in
Theoretical Computer Science, ITCS, pages 441–454. ACM, 2013.

49 Gábor Tardos. Query complexity, or why is it difficult to seperate NPA ∩ coNPA from PA

by random oracles A? Combinatorica, 9(4):385–392, 1989.
50 Gregory Valiant and Paul Valiant. Instance optimal learning of discrete distributions. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
pages 142–155. ACM, 2016.

51 Gregory Valiant and Paul Valiant. An Automatic Inequality Prover and Instance Optimal
Identity Testing. SIAM J. Comput., 46(1):429–455, 2017.

52 Andrew Chi-Chih Yao. Probabilistic Computations: Toward a Unified Measure of Complexity
(Extended Abstract). In 18th Annual Symposium on Foundations of Computer Science, FOCS,
pages 222–227. IEEE Computer Society, 1977.

53 Andrew Chi-Chih Yao. Lower Bounds to Randomized Algorithms for Graph Properties. J.
Comput. Syst. Sci., 42(3):267–287, 1991.

http://www.cs.cornell.edu/~rafael/papers/preciseZK.pdf
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
https://doi.org/10.1145/174644.174648
https://doi.org/10.1109/SFCS.1986.44
https://doi.org/10.1145/3828.3835

T. Grossman, I. Komargodski, and M. Naor 56:37

A Efficiently Testing Scorpion Graphs

B Claim A.1 (Restatement of Claim 3.12, [9]). Testing whether a given n vertex graph is a
scorpion graph takes at most O(n) queries.

Proof. Let G = (V,E) be an n vertex graph. We give an algorithm that does at most O(n)
queries to the graph G. Denote by d(v) the degree of a vertex v ∈ V . Observe that once
we find one of the special vertices (i.e., the body, the tail or the sting), we can locate all
other special vertices with at most 3n queries and then check that the graph is a scorpion
graph. For example, once we find a vertex b with d(b) = n − 2, then the vertex must be
the body (if the graph is a scorpion). Going over all the neighbors of b we locate the only
vertex s ∈ V that is not a neighbor of b. This must be the sting vertex (again, if the graph
is a scorpion). Then, going over all the edges adjacent to s, we locate the tail vertex t and
verify that d(t) = 2. In total, we made 3n queries to the edges in G. Thus, the goal now is
to locate one of the special vertices.

We begin with an arbitrary vertex v ∈ V . If d(v) ∈ {0, n− 1} then G is not a scorpion
graph. Otherwise, if d(v) ∈ {1, 2} then either v is one of the special vertices or a neighbor of
v is one of the special vertices. If d(v) = n− 2 then v must be the body vertex. In any such
case we can identify all the special vertices and checking if the graph is a scorpion graph
using at most 4n queries to G.

Assume now that 3 ≤ d(v) ≤ n − 3. Denote by N0 the set of neighbors of v. Let
N1 = N̄0 \ {v}. The body of G (if G is a scorpion) must be in N0 and the sting and the tail
must be in N1. At this point we iteratively choose x ∈ N0 and y ∈ N1 such that if (x, y) ∈ E
then N1 = N1 \ {y} (as y can not be the sting) and choose a new y ∈ N1, and otherwise (i.e.,
if (x, y) 6∈ E), N0 = N0 \ {x} (as x can not be the body unless y is the sting) and choose a
new x ∈ N0. This process terminates after at most n queries since after every query a vertex
is deleted. Moreover, if G is a scorpion then at the end of the iterations N0 = ∅ and y is the
sting. To see this, notice that the body can not be deleted from N0 by any vertex in N1 that
is not the sting, and once the sting is encountered all the vertices in N0 will be deleted. C

B Instance Optimality in Other Settings

The term “Instance optimality” was coined by Fagin, Lotem and Naor [19] in the context of
finding items with the top k aggregate scores in a database of sorted lists.16 It has appeared
in the theoretical computer science literature in several other contexts and forms. Here are a
number of examples:

Competitive online analysis. The competitive ratio of an algorithm A is its worst
case performance relative to the best offline (see [11, 21]). This is a slightly different form
of instance optimality since the comparison here is to an algorithm that is not necessarily
from the same class.
Approximation algorithms. Comparing the size (or value) that the best algorithm
can find to the one the approximating algorithm finds.
Self-adjusting data structures. Is it possible to construct an optimal binary search
tree, i.e., with smallest possible search time, for an access sequence given online? Sleator
and Tarjan [47] conjectured that Splay Trees are instance optimal in this sense and
resolving it has been a central issue in the area. See also Demaine et al. [16].

16We note that the term “Instance Complexity” has been used by Orponen et al. [42] in a different
meaning, one related to Kolmogorov Complexity.

ITCS 2020

56:38 Instance Complexity and Unlabeled Certificates

Database operations. Demaine et al. [17] studied the problem of finding intersections,
unions, or differences of a collection of sorted sets. While the worst-case complexity of
these problems is straightforward, they consider algorithms whose complexity depends on
the particular instance.
Computational geometry. Baran and Demaine [7] gave an instance optimal algorithm
for the nearest-point-on-curve problem (where one needs to find a point on a curve that
is nearest to a given point). Instance optimal algorithms for convex hull and set maxima
were given by Afshani et al. [2]. Their notion is particularly related to the unlabeled
model we consider in Section 4, where the algorithm is competing against the best one
for the given set of points in some order.
Learning Theory. A fundamental question in learning theory is to produce an accurate
as possible approximation of an unknown distribution (over a discrete support) given
independent draws from it. Valiant and Valiant [50] gave an algorithm that outputs
an approximation whose expected distance from the real distribution is equal to the
minimum possible expected error that could be obtained by any algorithm that knows the
true yet unlabeled distribution and simply needs to assign labels. Another work of Valiant
and Valiant [51] studied the identity testing problem: Given the explicit description of a
distribution, decide whether a set of samples was drawn from it or from a distribution
with some distance from it. They gave an algorithm in which the number of queries
depends on the given distribution.
Distributed computing. A series of works studied the possibility of instance optimal
algorithms for eventual Byzantine agreement (a.k.a. Consensus) and simultaneous Byz-
antine agreement [18, 38, 31]. In these problems the inputs are the votes of the players
and the failure pattern. They provided several positive and negative results for various
notions of instance optimality appropriate for the setting.
Cryptography. The notion of precise zero knowledge bounds the knowledge gained by
a player in terms of its actual computation rather than standard zero knowledge that
bounds the knowledge of a player in terms of his potential computational power (see
Micali and Pass [37]).

In this work, we concentrated on cases where the domain is full and there is no promise
regarding the input (as opposed to, say the work of Fagin et al. [19], where the assumption
is that each column is sorted).

	Introduction
	Our Results
	Deterministic and Randomized Instance Optimality
	Unlabeled Certificate Complexity

	The Query Model and Instance Optimality
	Instance Complexity and Optimality
	Unlabeled Complexity and Optimality
	Additional Definitions & Known Relations

	Properties Of Instance Optimal Functions
	Deterministic Instance Optimality
	Randomized Instance Optimality
	Sensitivity and Instance Optimality
	Random Functions are Instance Optimizable
	A Separation From Deterministic Instance Optimality

	Instance Optimality and Graph Properties
	Conjecture: monotone graph properties are not instance optimizable

	Composition of Instance Optimal Functions
	Testing Instance Optimality
	Instance Optimality of Proximity Property Testing

	Unlabeled Certificates
	Unlabeled Certificates In the Worst Case
	The Power of Unlabeled Certificates

	Unlabeled Instance Optimality
	Unlabeled Certificates of Majority
	Unlabeled Certificates of Graph Properties
	Labelling Instance Optimal
	Unlabeled Instance Optimality of Proximity Property Testing

	Open Questions and Future Research
	Efficiently Testing Scorpion Graphs
	Instance Optimality in Other Settings

